YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
b(b(x0)) |
→ |
c(d(x0)) |
c(c(x0)) |
→ |
d(d(d(x0))) |
c(x0) |
→ |
g(x0) |
d(d(x0)) |
→ |
c(f(x0)) |
d(d(d(x0))) |
→ |
g(c(x0)) |
f(x0) |
→ |
a(g(x0)) |
g(x0) |
→ |
d(a(b(x0))) |
g(g(x0)) |
→ |
b(c(x0)) |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the naturals
[f(x1)] |
= |
·
x1 +
|
[d(x1)] |
= |
·
x1 +
|
[g(x1)] |
= |
·
x1 +
|
[a(x1)] |
= |
·
x1 +
|
[b(x1)] |
= |
·
x1 +
|
[c(x1)] |
= |
·
x1 +
|
the
rules
c(c(x0)) |
→ |
d(d(d(x0))) |
c(x0) |
→ |
g(x0) |
d(d(x0)) |
→ |
c(f(x0)) |
d(d(d(x0))) |
→ |
g(c(x0)) |
f(x0) |
→ |
a(g(x0)) |
g(x0) |
→ |
d(a(b(x0))) |
g(g(x0)) |
→ |
b(c(x0)) |
remain.
1.1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the arctic semiring over the integers
[f(x1)] |
= |
·
x1 +
|
[d(x1)] |
= |
·
x1 +
|
[g(x1)] |
= |
·
x1 +
|
[a(x1)] |
= |
·
x1 +
|
[b(x1)] |
= |
·
x1 +
|
[c(x1)] |
= |
·
x1 +
|
the
rules
c(c(x0)) |
→ |
d(d(d(x0))) |
c(x0) |
→ |
g(x0) |
d(d(x0)) |
→ |
c(f(x0)) |
d(d(d(x0))) |
→ |
g(c(x0)) |
f(x0) |
→ |
a(g(x0)) |
g(x0) |
→ |
d(a(b(x0))) |
remain.
1.1.1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the arctic semiring over the integers
[f(x1)] |
= |
·
x1 +
|
[d(x1)] |
= |
·
x1 +
|
[g(x1)] |
= |
·
x1 +
|
[a(x1)] |
= |
·
x1 +
|
[b(x1)] |
= |
·
x1 +
|
[c(x1)] |
= |
·
x1 +
|
the
rules
c(c(x0)) |
→ |
d(d(d(x0))) |
c(x0) |
→ |
g(x0) |
d(d(x0)) |
→ |
c(f(x0)) |
f(x0) |
→ |
a(g(x0)) |
g(x0) |
→ |
d(a(b(x0))) |
remain.
1.1.1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
c(c(x0)) |
→ |
d(d(d(x0))) |
c(x0) |
→ |
g(x0) |
d(d(x0)) |
→ |
f(c(x0)) |
f(x0) |
→ |
g(a(x0)) |
g(x0) |
→ |
b(a(d(x0))) |
1.1.1.1.1 Bounds
The given TRS is
match-bounded by 3.
This is shown by the following automaton.
-
final states:
{10, 8, 6, 5, 1}
-
transitions:
25 |
→ |
54 |
29 |
→ |
78 |
81 |
→ |
30 |
97 |
→ |
55 |
15 |
→ |
7 |
18 |
→ |
1 |
41 |
→ |
8 |
3 |
→ |
16 |
9 |
→ |
38 |
65 |
→ |
90 |
55 |
→ |
26 |
62 |
→ |
106 |
1 |
→ |
61 |
1 |
→ |
28 |
1 |
→ |
7 |
1 |
→ |
26 |
26 |
→ |
61 |
6 |
→ |
75 |
6 |
→ |
3 |
6 |
→ |
43 |
6 |
→ |
95 |
109 |
→ |
27 |
109 |
→ |
63 |
54 |
→ |
94 |
52 |
→ |
110 |
53 |
→ |
17 |
2 |
→ |
14 |
2 |
→ |
25 |
2 |
→ |
42 |
45 |
→ |
5 |
66 |
→ |
1 |
66 |
→ |
18 |
16 |
→ |
52 |
14 |
→ |
74 |
93 |
→ |
18 |
93 |
→ |
66 |
63 |
→ |
4 |
63 |
→ |
27 |
77 |
→ |
28 |
77 |
→ |
7 |
77 |
→ |
15 |
7 |
→ |
28 |
113 |
→ |
53 |
30 |
→ |
6 |
17 |
→ |
64 |
27 |
→ |
4 |
27 |
→ |
111 |
f60
|
→ |
2 |
g2(52) |
→ |
53 |
g2(62) |
→ |
63 |
g2(54) |
→ |
55 |
g2(65) |
→ |
66 |
d2(74) |
→ |
75 |
d2(78) |
→ |
79 |
b0(11) |
→ |
10 |
g1(29) |
→ |
30 |
g1(14) |
→ |
15 |
c1(16) |
→ |
17 |
c1(25) |
→ |
26 |
g0(9) |
→ |
8 |
g0(2) |
→ |
5 |
f1(17) |
→ |
18 |
f1(26) |
→ |
27 |
a3(111) |
→ |
112 |
a3(95) |
→ |
96 |
a3(91) |
→ |
92 |
a3(107) |
→ |
108 |
f0(7) |
→ |
6 |
b1(44) |
→ |
45 |
b1(40) |
→ |
41 |
c0(2) |
→ |
7 |
d0(2) |
→ |
3 |
d0(4) |
→ |
1 |
d0(3) |
→ |
4 |
a1(39) |
→ |
40 |
a1(28) |
→ |
29 |
a1(43) |
→ |
44 |
d1(38) |
→ |
39 |
d1(42) |
→ |
43 |
b3(96) |
→ |
97 |
b3(92) |
→ |
93 |
b3(108) |
→ |
109 |
b3(112) |
→ |
113 |
a2(79) |
→ |
80 |
a2(64) |
→ |
65 |
a2(61) |
→ |
62 |
a2(75) |
→ |
76 |
a0(3) |
→ |
11 |
a0(2) |
→ |
9 |
b2(76) |
→ |
77 |
b2(80) |
→ |
81 |
d3(106) |
→ |
107 |
d3(94) |
→ |
95 |
d3(110) |
→ |
111 |
d3(90) |
→ |
91 |