YES
0 QTRS
↳1 DependencyPairsProof (⇔, 16 ms)
↳2 QDP
↳3 DependencyGraphProof (⇔, 0 ms)
↳4 QDP
↳5 QDPOrderProof (⇔, 98 ms)
↳6 QDP
↳7 DependencyGraphProof (⇔, 0 ms)
↳8 TRUE
b(b(x)) → c(d(x))
c(c(x)) → d(d(d(x)))
c(x) → g(x)
d(d(x)) → c(f(x))
d(d(d(x))) → g(c(x))
f(x) → a(g(x))
g(x) → d(a(b(x)))
g(g(x)) → b(c(x))
B(b(x)) → C(d(x))
B(b(x)) → D(x)
C(c(x)) → D(d(d(x)))
C(c(x)) → D(d(x))
C(c(x)) → D(x)
C(x) → G(x)
D(d(x)) → C(f(x))
D(d(x)) → F(x)
D(d(d(x))) → G(c(x))
D(d(d(x))) → C(x)
F(x) → G(x)
G(x) → D(a(b(x)))
G(x) → B(x)
G(g(x)) → B(c(x))
G(g(x)) → C(x)
b(b(x)) → c(d(x))
c(c(x)) → d(d(d(x)))
c(x) → g(x)
d(d(x)) → c(f(x))
d(d(d(x))) → g(c(x))
f(x) → a(g(x))
g(x) → d(a(b(x)))
g(g(x)) → b(c(x))
C(c(x)) → D(d(d(x)))
D(d(x)) → C(f(x))
C(c(x)) → D(d(x))
D(d(x)) → F(x)
F(x) → G(x)
G(x) → B(x)
B(b(x)) → C(d(x))
C(c(x)) → D(x)
D(d(d(x))) → G(c(x))
G(g(x)) → B(c(x))
B(b(x)) → D(x)
D(d(d(x))) → C(x)
C(x) → G(x)
G(g(x)) → C(x)
b(b(x)) → c(d(x))
c(c(x)) → d(d(d(x)))
c(x) → g(x)
d(d(x)) → c(f(x))
d(d(d(x))) → g(c(x))
f(x) → a(g(x))
g(x) → d(a(b(x)))
g(g(x)) → b(c(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
D(d(x)) → C(f(x))
C(c(x)) → D(d(x))
D(d(x)) → F(x)
F(x) → G(x)
B(b(x)) → C(d(x))
C(c(x)) → D(x)
B(b(x)) → D(x)
D(d(d(x))) → C(x)
G(g(x)) → C(x)
POL(B(x1)) = 2 + 2·x1
POL(C(x1)) = 2 + 2·x1
POL(D(x1)) = 2·x1
POL(F(x1)) = 3 + 2·x1
POL(G(x1)) = 2 + 2·x1
POL(a(x1)) = 0
POL(b(x1)) = 3 + x1
POL(c(x1)) = 3 + x1
POL(d(x1)) = 2 + x1
POL(f(x1)) = x1
POL(g(x1)) = 3 + x1
c(c(x)) → d(d(d(x)))
d(d(x)) → c(f(x))
c(x) → g(x)
g(g(x)) → b(c(x))
b(b(x)) → c(d(x))
d(d(d(x))) → g(c(x))
f(x) → a(g(x))
g(x) → d(a(b(x)))
C(c(x)) → D(d(d(x)))
G(x) → B(x)
D(d(d(x))) → G(c(x))
G(g(x)) → B(c(x))
C(x) → G(x)
b(b(x)) → c(d(x))
c(c(x)) → d(d(d(x)))
c(x) → g(x)
d(d(x)) → c(f(x))
d(d(d(x))) → g(c(x))
f(x) → a(g(x))
g(x) → d(a(b(x)))
g(g(x)) → b(c(x))