NO Nontermination Proof

Nontermination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

Begin(h(x0)) Wait(Right1(x0))
Begin(s(s(s(x0)))) Wait(Right2(x0))
Begin(s(s(x0))) Wait(Right3(x0))
Begin(s(x0)) Wait(Right4(x0))
Begin(h(x0)) Wait(Right5(x0))
Begin(f(s(s(x0)))) Wait(Right6(x0))
Begin(s(s(x0))) Wait(Right7(x0))
Begin(s(x0)) Wait(Right8(x0))
Begin(a(x0)) Wait(Right9(x0))
Right1(g(End(x0))) Left(g(f(s(End(x0)))))
Right2(f(End(x0))) Left(h(f(s(h(End(x0))))))
Right3(f(s(End(x0)))) Left(h(f(s(h(End(x0))))))
Right4(f(s(s(End(x0))))) Left(h(f(s(h(End(x0))))))
Right5(f(End(x0))) Left(h(f(s(h(End(x0))))))
Right6(f(End(x0))) Left(s(s(s(f(f(End(x0)))))))
Right7(f(f(End(x0)))) Left(s(s(s(f(f(End(x0)))))))
Right8(f(f(s(End(x0))))) Left(s(s(s(f(f(End(x0)))))))
Right9(b(End(x0))) Left(a(b(End(x0))))
Right1(g(x0)) Ag(Right1(x0))
Right2(g(x0)) Ag(Right2(x0))
Right3(g(x0)) Ag(Right3(x0))
Right4(g(x0)) Ag(Right4(x0))
Right5(g(x0)) Ag(Right5(x0))
Right6(g(x0)) Ag(Right6(x0))
Right7(g(x0)) Ag(Right7(x0))
Right8(g(x0)) Ag(Right8(x0))
Right9(g(x0)) Ag(Right9(x0))
Right1(h(x0)) Ah(Right1(x0))
Right2(h(x0)) Ah(Right2(x0))
Right3(h(x0)) Ah(Right3(x0))
Right4(h(x0)) Ah(Right4(x0))
Right5(h(x0)) Ah(Right5(x0))
Right6(h(x0)) Ah(Right6(x0))
Right7(h(x0)) Ah(Right7(x0))
Right8(h(x0)) Ah(Right8(x0))
Right9(h(x0)) Ah(Right9(x0))
Right1(f(x0)) Af(Right1(x0))
Right2(f(x0)) Af(Right2(x0))
Right3(f(x0)) Af(Right3(x0))
Right4(f(x0)) Af(Right4(x0))
Right5(f(x0)) Af(Right5(x0))
Right6(f(x0)) Af(Right6(x0))
Right7(f(x0)) Af(Right7(x0))
Right8(f(x0)) Af(Right8(x0))
Right9(f(x0)) Af(Right9(x0))
Right1(s(x0)) As(Right1(x0))
Right2(s(x0)) As(Right2(x0))
Right3(s(x0)) As(Right3(x0))
Right4(s(x0)) As(Right4(x0))
Right5(s(x0)) As(Right5(x0))
Right6(s(x0)) As(Right6(x0))
Right7(s(x0)) As(Right7(x0))
Right8(s(x0)) As(Right8(x0))
Right9(s(x0)) As(Right9(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right6(b(x0)) Ab(Right6(x0))
Right7(b(x0)) Ab(Right7(x0))
Right8(b(x0)) Ab(Right8(x0))
Right9(b(x0)) Ab(Right9(x0))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right6(a(x0)) Aa(Right6(x0))
Right7(a(x0)) Aa(Right7(x0))
Right8(a(x0)) Aa(Right8(x0))
Right9(a(x0)) Aa(Right9(x0))
Ag(Left(x0)) Left(g(x0))
Ah(Left(x0)) Left(h(x0))
Af(Left(x0)) Left(f(x0))
As(Left(x0)) Left(s(x0))
Ab(Left(x0)) Left(b(x0))
Aa(Left(x0)) Left(a(x0))
Wait(Left(x0)) Begin(x0)
g(h(x0)) g(f(s(x0)))
f(s(s(s(x0)))) h(f(s(h(x0))))
f(h(x0)) h(f(s(h(x0))))
h(x0) x0
f(f(s(s(x0)))) s(s(s(f(f(x0)))))
b(a(x0)) a(b(x0))

Proof

1 Loop

The following loop proves nontermination.

t0 = Begin(a(b(End(x36568))))
ε Wait(Right9(b(End(x36568))))
1 Wait(Left(a(b(End(x36568)))))
ε Begin(a(b(End(x36568))))
= t3
where t3 = t0σ and σ = {x36568/x36568}