YES
0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 FlatCCProof (⇔, 0 ms)
↳4 QTRS
↳5 RootLabelingProof (⇔, 0 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 12 ms)
↳8 QTRS
↳9 DependencyPairsProof (⇔, 0 ms)
↳10 QDP
↳11 DependencyGraphProof (⇔, 0 ms)
↳12 AND
↳13 QDP
↳14 UsableRulesProof (⇔, 0 ms)
↳15 QDP
↳16 QDPSizeChangeProof (⇔, 0 ms)
↳17 YES
↳18 QDP
↳19 UsableRulesProof (⇔, 0 ms)
↳20 QDP
↳21 QDPSizeChangeProof (⇔, 0 ms)
↳22 YES
a(b(x)) → b(b(b(x)))
b(a(x)) → a(a(a(x)))
a(x) → x
b(x) → x
b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
a(x) → x
b(x) → x
b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
b(a(x)) → b(x)
a(a(x)) → a(x)
b(b(x)) → b(x)
a(b(x)) → a(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(b_{b_1}(b_{b_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{b_1}(b_{b_1}(b_{a_1}(x)))
a_{b_1}(b_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(x)))
a_{b_1}(b_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{a_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
a_{b_1}(b_{a_1}(x)) → a_{a_1}(x)
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = x1
POL(b_{a_1}(x1)) = 1 + x1
POL(b_{b_1}(x1)) = x1
b_{a_1}(a_{b_1}(x)) → b_{b_1}(b_{b_1}(b_{b_1}(x)))
a_{b_1}(b_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{a_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
a_{b_1}(b_{a_1}(x)) → a_{a_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{b_1}(b_{b_1}(b_{a_1}(x)))
a_{b_1}(b_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
B_{A_1}(a_{a_1}(x)) → B_{B_1}(b_{b_1}(b_{a_1}(x)))
B_{A_1}(a_{a_1}(x)) → B_{B_1}(b_{a_1}(x))
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
A_{B_1}(b_{b_1}(x)) → A_{A_1}(a_{a_1}(a_{b_1}(x)))
A_{B_1}(b_{b_1}(x)) → A_{A_1}(a_{b_1}(x))
A_{B_1}(b_{b_1}(x)) → A_{B_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{b_1}(b_{b_1}(b_{a_1}(x)))
a_{b_1}(b_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
A_{B_1}(b_{b_1}(x)) → A_{B_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{b_1}(b_{b_1}(b_{a_1}(x)))
a_{b_1}(b_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
A_{B_1}(b_{b_1}(x)) → A_{B_1}(x)
From the DPs we obtained the following set of size-change graphs:
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{b_1}(b_{b_1}(b_{a_1}(x)))
a_{b_1}(b_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
From the DPs we obtained the following set of size-change graphs: