NO Termination w.r.t. Q proof of /home/cern_httpd/provide/research/cycsrs/tpdb/TPDB-d9b80194f163/SRS_Standard/Mixed_SRS/05-oppelt08-rotate.srs

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

begin(end(x)) → rewrite(end(x))
begin(b(x)) → rotate(cut(Cb(guess(x))))
begin(a(x)) → rotate(cut(Ca(guess(x))))
begin(c(x)) → rotate(cut(Cc(guess(x))))
guess(b(x)) → Cb(guess(x))
guess(a(x)) → Ca(guess(x))
guess(c(x)) → Cc(guess(x))
guess(b(x)) → moveleft(Bb(wait(x)))
guess(a(x)) → moveleft(Ba(wait(x)))
guess(c(x)) → moveleft(Bc(wait(x)))
guess(end(x)) → finish(end(x))
Cb(moveleft(Bb(x))) → moveleft(Bb(Ab(x)))
Ca(moveleft(Bb(x))) → moveleft(Bb(Aa(x)))
Cc(moveleft(Bb(x))) → moveleft(Bb(Ac(x)))
Cb(moveleft(Ba(x))) → moveleft(Ba(Ab(x)))
Ca(moveleft(Ba(x))) → moveleft(Ba(Aa(x)))
Cc(moveleft(Ba(x))) → moveleft(Ba(Ac(x)))
Cb(moveleft(Bc(x))) → moveleft(Bc(Ab(x)))
Ca(moveleft(Bc(x))) → moveleft(Bc(Aa(x)))
Cc(moveleft(Bc(x))) → moveleft(Bc(Ac(x)))
cut(moveleft(Bb(x))) → Db(cut(goright(x)))
cut(moveleft(Ba(x))) → Da(cut(goright(x)))
cut(moveleft(Bc(x))) → Dc(cut(goright(x)))
goright(Ab(x)) → Cb(goright(x))
goright(Aa(x)) → Ca(goright(x))
goright(Ac(x)) → Cc(goright(x))
goright(wait(b(x))) → moveleft(Bb(wait(x)))
goright(wait(a(x))) → moveleft(Ba(wait(x)))
goright(wait(c(x))) → moveleft(Bc(wait(x)))
goright(wait(end(x))) → finish(end(x))
Cb(finish(x)) → finish(b(x))
Ca(finish(x)) → finish(a(x))
Cc(finish(x)) → finish(c(x))
cut(finish(x)) → finish2(x)
Db(finish2(x)) → finish2(b(x))
Da(finish2(x)) → finish2(a(x))
Dc(finish2(x)) → finish2(c(x))
rotate(finish2(x)) → rewrite(x)
rewrite(b(a(x))) → begin(a(b(x)))
rewrite(c(c(x))) → begin(a(b(c(x))))
rewrite(c(b(x))) → begin(b(c(x)))
rewrite(a(a(x))) → begin(b(a(c(x))))

Q is empty.

(1) NonTerminationProof (COMPLETE transformation)

We used the non-termination processor [OPPELT08] to show that the SRS problem is infinite.

Found the self-embedding DerivationStructure:
rewrite c b endrewrite c b end

rewrite c b endrewrite c b end
by OverlapClosure OC 3
rewrite c b endrotate finish2 c b end
by OverlapClosure OC 3
rewrite c b endrotate Dc finish2 b end
by OverlapClosure OC 3
rewrite c b endrotate Dc cut finish b end
by OverlapClosure OC 3
rewrite c b endrotate Dc cut Cb finish end
by OverlapClosure OC 2
rewrite c brotate Dc cut Cb goright wait
by OverlapClosure OC 3
rewrite c brotate Dc cut goright Ab wait
by OverlapClosure OC 3
rewrite c brotate cut moveleft Bc Ab wait
by OverlapClosure OC 3
rewrite c brotate cut Cb moveleft Bc wait
by OverlapClosure OC 2
rewrite c brotate cut Cb guess c
by OverlapClosure OC 3
rewrite c bbegin b c
by original rule (OC 1)
begin brotate cut Cb guess
by original rule (OC 1)
guess cmoveleft Bc wait
by original rule (OC 1)
Cb moveleft Bcmoveleft Bc Ab
by original rule (OC 1)
cut moveleft BcDc cut goright
by original rule (OC 1)
goright AbCb goright
by original rule (OC 1)
goright wait endfinish end
by original rule (OC 1)
Cb finishfinish b
by original rule (OC 1)
cut finishfinish2
by original rule (OC 1)
Dc finish2finish2 c
by original rule (OC 1)
rotate finish2rewrite
by original rule (OC 1)

(2) NO