YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
a(a(a(x0))) |
→ |
a(b(b(b(x0)))) |
b(b(a(b(x0)))) |
→ |
a(a(a(x0))) |
Proof
1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
a#(a(a(x0))) |
→ |
b#(x0) |
a#(a(a(x0))) |
→ |
b#(b(x0)) |
a#(a(a(x0))) |
→ |
b#(b(b(x0))) |
a#(a(a(x0))) |
→ |
a#(b(b(b(x0)))) |
b#(b(a(b(x0)))) |
→ |
a#(x0) |
b#(b(a(b(x0)))) |
→ |
a#(a(x0)) |
b#(b(a(b(x0)))) |
→ |
a#(a(a(x0))) |
1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the arctic semiring over the integers
[b(x1)] |
= |
2 ·
x1 +
-∞
|
[b#(x1)] |
= |
8 ·
x1 +
-∞
|
[a(x1)] |
= |
3 ·
x1 +
-∞
|
[a#(x1)] |
= |
6 ·
x1 +
-∞
|
together with the usable
rules
a(a(a(x0))) |
→ |
a(b(b(b(x0)))) |
b(b(a(b(x0)))) |
→ |
a(a(a(x0))) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
a#(a(a(x0))) |
→ |
b#(b(b(x0))) |
a#(a(a(x0))) |
→ |
a#(b(b(b(x0)))) |
remain.
1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.