YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
0(1(2(2(x0)))) | → | 0(1(0(1(x0)))) |
0(0(0(0(0(x0))))) | → | 2(0(2(0(x0)))) |
3(2(3(4(0(4(1(0(x0)))))))) | → | 2(3(2(2(5(3(1(x0))))))) |
1(4(1(0(4(1(2(2(5(3(x0)))))))))) | → | 1(4(4(2(5(3(1(5(2(x0))))))))) |
1(4(2(3(1(4(0(2(1(1(x0)))))))))) | → | 1(1(4(1(0(4(2(3(2(1(x0)))))))))) |
2(5(1(2(4(5(1(3(1(5(x0)))))))))) | → | 2(4(3(0(3(4(2(4(5(x0))))))))) |
2(3(2(4(3(2(3(4(4(0(0(0(x0)))))))))))) | → | 2(4(2(0(2(2(2(2(4(3(0(x0))))))))))) |
5(0(2(4(2(4(1(4(4(5(1(4(x0)))))))))))) | → | 1(4(5(3(3(2(3(2(3(3(4(x0))))))))))) |
1(0(1(3(5(5(1(2(5(2(3(5(4(x0))))))))))))) | → | 1(0(3(4(1(2(3(4(5(3(3(5(4(x0))))))))))))) |
1(4(4(2(5(3(1(5(1(2(1(5(0(x0))))))))))))) | → | 3(5(2(5(4(1(5(2(4(1(3(2(x0)))))))))))) |
4(1(2(5(1(1(0(0(5(4(1(3(1(x0))))))))))))) | → | 4(1(1(2(2(3(5(1(4(2(3(1(x0)))))))))))) |
5(5(3(2(0(3(4(0(0(3(1(4(3(x0))))))))))))) | → | 5(5(3(5(0(3(1(5(2(3(1(3(4(x0))))))))))))) |
0(5(3(2(4(0(2(1(2(3(3(4(3(3(x0)))))))))))))) | → | 0(5(4(4(5(3(4(0(1(0(1(3(1(2(3(x0))))))))))))))) |
4(3(0(5(5(2(5(2(3(5(3(0(2(2(4(x0))))))))))))))) | → | 4(3(3(4(3(1(4(1(5(0(0(5(1(5(3(4(x0)))))))))))))))) |
3(1(5(4(1(2(0(0(1(0(0(0(2(0(4(5(x0)))))))))))))))) | → | 3(0(2(2(3(3(1(3(2(2(1(2(2(5(5(x0))))))))))))))) |
4(1(1(0(5(4(2(0(4(0(5(1(2(0(3(1(x0)))))))))))))))) | → | 2(4(3(1(4(1(4(0(1(1(0(5(4(0(5(0(x0)))))))))))))))) |
4(0(2(2(4(4(1(1(1(1(0(4(1(5(1(2(0(1(x0)))))))))))))))))) | → | 4(5(5(2(5(0(2(1(5(2(4(1(1(1(5(3(2(x0))))))))))))))))) |
4(4(4(4(3(1(1(3(3(4(2(2(4(0(3(5(4(2(5(2(3(x0))))))))))))))))))))) | → | 2(5(5(4(0(1(5(3(3(5(0(1(5(1(5(4(2(4(2(2(x0)))))))))))))))))))) |
2(2(1(0(x0)))) | → | 1(0(1(0(x0)))) |
0(0(0(0(0(x0))))) | → | 0(2(0(2(x0)))) |
0(1(4(0(4(3(2(3(x0)))))))) | → | 1(3(5(2(2(3(2(x0))))))) |
3(5(2(2(1(4(0(1(4(1(x0)))))))))) | → | 2(5(1(3(5(2(4(4(1(x0))))))))) |
1(1(2(0(4(1(3(2(4(1(x0)))))))))) | → | 1(2(3(2(4(0(1(4(1(1(x0)))))))))) |
5(1(3(1(5(4(2(1(5(2(x0)))))))))) | → | 5(4(2(4(3(0(3(4(2(x0))))))))) |
0(0(0(4(4(3(2(3(4(2(3(2(x0)))))))))))) | → | 0(3(4(2(2(2(2(0(2(4(2(x0))))))))))) |
4(1(5(4(4(1(4(2(4(2(0(5(x0)))))))))))) | → | 4(3(3(2(3(2(3(3(5(4(1(x0))))))))))) |
4(5(3(2(5(2(1(5(5(3(1(0(1(x0))))))))))))) | → | 4(5(3(3(5(4(3(2(1(4(3(0(1(x0))))))))))))) |
0(5(1(2(1(5(1(3(5(2(4(4(1(x0))))))))))))) | → | 2(3(1(4(2(5(1(4(5(2(5(3(x0)))))))))))) |
1(3(1(4(5(0(0(1(1(5(2(1(4(x0))))))))))))) | → | 1(3(2(4(1(5(3(2(2(1(1(4(x0)))))))))))) |
3(4(1(3(0(0(4(3(0(2(3(5(5(x0))))))))))))) | → | 4(3(1(3(2(5(1(3(0(5(3(5(5(x0))))))))))))) |
3(3(4(3(3(2(1(2(0(4(2(3(5(0(x0)))))))))))))) | → | 3(2(1(3(1(0(1(0(4(3(5(4(4(5(0(x0))))))))))))))) |
4(2(2(0(3(5(3(2(5(2(5(5(0(3(4(x0))))))))))))))) | → | 4(3(5(1(5(0(0(5(1(4(1(3(4(3(3(4(x0)))))))))))))))) |
5(4(0(2(0(0(0(1(0(0(2(1(4(5(1(3(x0)))))))))))))))) | → | 5(5(2(2(1(2(2(3(1(3(3(2(2(0(3(x0))))))))))))))) |
1(3(0(2(1(5(0(4(0(2(4(5(0(1(1(4(x0)))))))))))))))) | → | 0(5(0(4(5(0(1(1(0(4(1(4(1(3(4(2(x0)))))))))))))))) |
1(0(2(1(5(1(4(0(1(1(1(1(4(4(2(2(0(4(x0)))))))))))))))))) | → | 2(3(5(1(1(1(4(2(5(1(2(0(5(2(5(5(4(x0))))))))))))))))) |
3(2(5(2(4(5(3(0(4(2(2(4(3(3(1(1(3(4(4(4(4(x0))))))))))))))))))))) | → | 2(2(4(2(4(5(1(5(1(0(5(3(3(5(1(0(4(5(5(2(x0)))))))))))))))))))) |
final states:
{181, 165, 152, 138, 123, 109, 96, 84, 72, 60, 51, 42, 34, 25, 16, 10, 6, 1}
transitions:
25 | → | 26 |
25 | → | 17 |
152 | → | 17 |
10 | → | 61 |
10 | → | 3 |
51 | → | 18 |
51 | → | 85 |
181 | → | 11 |
181 | → | 73 |
96 | → | 124 |
96 | → | 73 |
84 | → | 17 |
34 | → | 97 |
1 | → | 7 |
123 | → | 35 |
123 | → | 85 |
165 | → | 4 |
165 | → | 17 |
60 | → | 85 |
72 | → | 3 |
138 | → | 166 |
138 | → | 97 |
6 | → | 3 |
109 | → | 125 |
109 | → | 73 |
16 | → | 73 |
42 | → | 3 |
20(74) | → | 75 |
20(35) | → | 43 |
20(180) | → | 165 |
20(19) | → | 20 |
20(46) | → | 47 |
20(11) | → | 12 |
20(173) | → | 174 |
20(146) | → | 147 |
20(30) | → | 31 |
20(44) | → | 45 |
20(45) | → | 46 |
20(32) | → | 33 |
20(24) | → | 16 |
20(121) | → | 122 |
20(93) | → | 94 |
20(8) | → | 9 |
20(167) | → | 168 |
20(87) | → | 88 |
20(140) | → | 141 |
20(170) | → | 171 |
20(56) | → | 57 |
20(64) | → | 65 |
20(199) | → | 181 |
20(83) | → | 72 |
20(198) | → | 199 |
20(79) | → | 80 |
20(145) | → | 146 |
20(148) | → | 149 |
20(39) | → | 40 |
20(149) | → | 150 |
20(196) | → | 197 |
20(88) | → | 89 |
20(47) | → | 48 |
20(139) | → | 140 |
20(2) | → | 7 |
20(104) | → | 105 |
20(54) | → | 55 |
20(12) | → | 13 |
30(2) | → | 73 |
30(31) | → | 32 |
30(82) | → | 83 |
30(21) | → | 22 |
30(188) | → | 189 |
30(124) | → | 125 |
30(179) | → | 180 |
30(113) | → | 114 |
30(58) | → | 59 |
30(98) | → | 99 |
30(37) | → | 38 |
30(136) | → | 137 |
30(144) | → | 145 |
30(119) | → | 120 |
30(85) | → | 124 |
30(89) | → | 90 |
30(187) | → | 188 |
30(61) | → | 62 |
30(55) | → | 56 |
30(141) | → | 142 |
30(126) | → | 127 |
30(105) | → | 106 |
30(68) | → | 69 |
30(14) | → | 15 |
30(57) | → | 58 |
30(107) | → | 108 |
30(69) | → | 70 |
30(142) | → | 143 |
30(53) | → | 54 |
30(49) | → | 50 |
30(52) | → | 53 |
30(94) | → | 95 |
30(101) | → | 102 |
30(122) | → | 109 |
30(7) | → | 11 |
30(65) | → | 66 |
30(35) | → | 36 |
00(73) | → | 139 |
00(100) | → | 101 |
00(159) | → | 160 |
00(156) | → | 157 |
00(169) | → | 170 |
00(7) | → | 8 |
00(132) | → | 133 |
00(43) | → | 44 |
00(131) | → | 132 |
00(36) | → | 37 |
00(28) | → | 29 |
00(164) | → | 152 |
00(9) | → | 6 |
00(184) | → | 185 |
00(50) | → | 42 |
00(162) | → | 163 |
00(115) | → | 116 |
00(117) | → | 118 |
00(17) | → | 61 |
00(2) | → | 3 |
00(4) | → | 5 |
00(190) | → | 191 |
50(112) | → | 113 |
50(186) | → | 187 |
50(160) | → | 161 |
50(97) | → | 98 |
50(135) | → | 136 |
50(78) | → | 79 |
50(99) | → | 100 |
50(192) | → | 193 |
50(151) | → | 138 |
50(172) | → | 173 |
50(7) | → | 182 |
50(90) | → | 91 |
50(13) | → | 14 |
50(41) | → | 34 |
50(20) | → | 21 |
50(166) | → | 167 |
50(67) | → | 68 |
50(194) | → | 195 |
50(182) | → | 183 |
50(103) | → | 104 |
50(189) | → | 190 |
50(3) | → | 110 |
50(133) | → | 134 |
50(70) | → | 71 |
50(150) | → | 151 |
50(163) | → | 164 |
50(18) | → | 52 |
50(85) | → | 166 |
50(130) | → | 131 |
50(23) | → | 24 |
50(75) | → | 76 |
50(178) | → | 179 |
50(2) | → | 97 |
50(73) | → | 74 |
50(168) | → | 169 |
40(59) | → | 51 |
40(48) | → | 49 |
40(137) | → | 123 |
40(197) | → | 198 |
40(155) | → | 156 |
40(18) | → | 19 |
40(128) | → | 129 |
40(40) | → | 41 |
40(7) | → | 35 |
40(125) | → | 126 |
40(92) | → | 93 |
40(114) | → | 115 |
40(183) | → | 184 |
40(62) | → | 63 |
40(66) | → | 67 |
40(71) | → | 60 |
40(76) | → | 77 |
40(38) | → | 39 |
40(80) | → | 81 |
40(111) | → | 112 |
40(174) | → | 175 |
40(2) | → | 85 |
40(26) | → | 27 |
40(29) | → | 30 |
40(108) | → | 96 |
40(161) | → | 162 |
40(110) | → | 111 |
40(17) | → | 18 |
40(153) | → | 154 |
40(195) | → | 196 |
f60 | → | 2 |
10(2) | → | 17 |
10(157) | → | 158 |
10(177) | → | 178 |
10(91) | → | 92 |
10(134) | → | 135 |
10(175) | → | 176 |
10(95) | → | 84 |
10(191) | → | 192 |
10(36) | → | 153 |
10(63) | → | 64 |
10(3) | → | 4 |
10(17) | → | 26 |
10(86) | → | 87 |
10(147) | → | 148 |
10(176) | → | 177 |
10(118) | → | 119 |
10(81) | → | 82 |
10(33) | → | 25 |
10(15) | → | 10 |
10(27) | → | 28 |
10(129) | → | 130 |
10(22) | → | 23 |
10(127) | → | 128 |
10(85) | → | 86 |
10(120) | → | 121 |
10(143) | → | 144 |
10(154) | → | 155 |
10(5) | → | 1 |
10(185) | → | 186 |
10(106) | → | 107 |
10(77) | → | 78 |
10(193) | → | 194 |
10(158) | → | 159 |
10(116) | → | 117 |
10(102) | → | 103 |
10(171) | → | 172 |