YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
1(2(1(1(0(0(1(0(2(1(1(0(2(x0))))))))))))) | → | 1(2(2(1(0(0(2(0(1(2(2(0(1(0(0(2(2(x0))))))))))))))))) |
2(0(1(2(1(2(1(2(1(0(0(1(0(x0))))))))))))) | → | 2(2(0(0(2(1(1(1(0(0(0(1(1(1(2(2(0(x0))))))))))))))))) |
2(1(0(0(2(1(1(1(0(1(2(2(0(x0))))))))))))) | → | 0(0(2(1(0(0(1(1(2(2(2(2(2(1(2(1(0(x0))))))))))))))))) |
2(2(0(0(1(0(2(1(1(1(0(0(1(x0))))))))))))) | → | 2(2(1(1(2(0(0(1(2(2(0(2(0(0(2(2(2(x0))))))))))))))))) |
2(2(1(0(1(0(1(1(0(0(0(2(0(x0))))))))))))) | → | 0(2(2(1(0(0(1(0(0(1(1(1(1(0(0(2(0(x0))))))))))))))))) |
2(2(1(1(0(2(0(0(0(2(2(0(0(x0))))))))))))) | → | 0(0(1(2(0(0(0(2(2(0(1(2(2(2(2(0(0(x0))))))))))))))))) |
2(2(2(1(0(2(0(0(1(0(1(0(2(x0))))))))))))) | → | 0(2(2(0(0(2(2(2(1(2(0(0(2(2(0(2(2(x0))))))))))))))))) |
2(0(1(1(2(0(1(0(0(1(1(2(1(x0))))))))))))) | → | 2(2(0(0(1(0(2(2(1(0(2(0(0(1(2(2(1(x0))))))))))))))))) |
0(1(0(0(1(2(1(2(1(2(1(0(2(x0))))))))))))) | → | 0(2(2(1(1(1(0(0(0(1(1(1(2(0(0(2(2(x0))))))))))))))))) |
0(2(2(1(0(1(1(1(2(0(0(1(2(x0))))))))))))) | → | 0(1(2(1(2(2(2(2(2(1(1(0(0(1(2(0(0(x0))))))))))))))))) |
1(0(0(1(1(1(2(0(1(0(0(2(2(x0))))))))))))) | → | 2(2(2(0(0(2(0(2(2(1(0(0(2(1(1(2(2(x0))))))))))))))))) |
0(2(0(0(0(1(1(0(1(0(1(2(2(x0))))))))))))) | → | 0(2(0(0(1(1(1(1(0(0(1(0(0(1(2(2(0(x0))))))))))))))))) |
0(0(2(2(0(0(0(2(0(1(1(2(2(x0))))))))))))) | → | 0(0(2(2(2(2(1(0(2(2(0(0(0(2(1(0(0(x0))))))))))))))))) |
2(0(1(0(1(0(0(2(0(1(2(2(2(x0))))))))))))) | → | 2(2(0(2(2(0(0(2(1(2(2(2(0(0(2(2(0(x0))))))))))))))))) |
final states:
{99, 84, 68, 53, 36, 19, 1}
transitions:
84 | → | 101 |
84 | → | 23 |
84 | → | 38 |
84 | → | 37 |
99 | → | 69 |
99 | → | 20 |
1 | → | 69 |
1 | → | 20 |
36 | → | 22 |
36 | → | 37 |
53 | → | 85 |
53 | → | 3 |
68 | → | 37 |
19 | → | 37 |
10(104) | → | 105 |
10(78) | → | 79 |
10(14) | → | 15 |
10(79) | → | 80 |
10(51) | → | 52 |
10(70) | → | 71 |
10(5) | → | 6 |
10(24) | → | 25 |
10(26) | → | 27 |
10(76) | → | 77 |
10(39) | → | 40 |
10(54) | → | 55 |
10(58) | → | 59 |
10(38) | → | 85 |
10(49) | → | 50 |
10(10) | → | 11 |
10(2) | → | 3 |
10(31) | → | 32 |
10(92) | → | 93 |
10(25) | → | 26 |
10(43) | → | 44 |
10(42) | → | 43 |
10(73) | → | 74 |
10(77) | → | 78 |
10(32) | → | 33 |
10(30) | → | 31 |
10(21) | → | 54 |
20(111) | → | 112 |
20(59) | → | 60 |
20(82) | → | 83 |
20(20) | → | 21 |
20(17) | → | 18 |
20(37) | → | 69 |
20(33) | → | 34 |
20(85) | → | 86 |
20(45) | → | 46 |
20(8) | → | 9 |
20(93) | → | 94 |
20(69) | → | 70 |
20(102) | → | 103 |
20(2) | → | 20 |
20(12) | → | 13 |
20(47) | → | 48 |
20(90) | → | 91 |
20(18) | → | 1 |
20(23) | → | 24 |
20(112) | → | 99 |
20(101) | → | 102 |
20(65) | → | 66 |
20(103) | → | 104 |
20(55) | → | 56 |
20(60) | → | 61 |
20(4) | → | 5 |
20(109) | → | 110 |
20(89) | → | 90 |
20(66) | → | 67 |
20(95) | → | 96 |
20(11) | → | 12 |
20(38) | → | 39 |
20(108) | → | 109 |
20(96) | → | 97 |
20(44) | → | 45 |
20(46) | → | 47 |
20(62) | → | 63 |
20(50) | → | 51 |
20(3) | → | 4 |
20(67) | → | 53 |
20(48) | → | 49 |
20(94) | → | 95 |
20(105) | → | 106 |
20(34) | → | 35 |
f30 | → | 2 |
00(64) | → | 65 |
00(22) | → | 23 |
00(97) | → | 98 |
00(75) | → | 76 |
00(71) | → | 72 |
00(100) | → | 101 |
00(107) | → | 108 |
00(41) | → | 42 |
00(110) | → | 111 |
00(56) | → | 57 |
00(15) | → | 16 |
00(29) | → | 30 |
00(70) | → | 100 |
00(6) | → | 7 |
00(13) | → | 14 |
00(63) | → | 64 |
00(88) | → | 89 |
00(80) | → | 81 |
00(86) | → | 87 |
00(81) | → | 82 |
00(106) | → | 107 |
00(87) | → | 88 |
00(98) | → | 84 |
00(28) | → | 29 |
00(91) | → | 92 |
00(74) | → | 75 |
00(35) | → | 19 |
00(2) | → | 37 |
00(21) | → | 22 |
00(72) | → | 73 |
00(37) | → | 38 |
00(61) | → | 62 |
00(57) | → | 58 |
00(52) | → | 36 |
00(9) | → | 10 |
00(27) | → | 28 |
00(83) | → | 68 |
00(40) | → | 41 |
00(16) | → | 17 |
00(7) | → | 8 |