YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
5(5(x0)) | → | 0(5(4(0(2(5(4(5(2(1(x0)))))))))) |
5(5(x0)) | → | 3(4(1(1(1(1(4(4(0(4(x0)))))))))) |
2(5(5(x0))) | → | 4(2(5(4(4(0(0(1(1(2(x0)))))))))) |
5(2(4(x0))) | → | 0(5(0(2(3(3(4(2(4(2(x0)))))))))) |
5(5(2(x0))) | → | 0(1(3(2(3(0(3(2(5(3(x0)))))))))) |
5(5(3(x0))) | → | 0(3(5(4(4(1(0(1(5(0(x0)))))))))) |
5(5(5(x0))) | → | 5(3(4(1(0(1(4(5(0(0(x0)))))))))) |
2(5(0(4(x0)))) | → | 4(4(3(2(4(4(5(1(0(0(x0)))))))))) |
4(5(2(4(x0)))) | → | 4(1(5(5(2(0(3(1(3(3(x0)))))))))) |
4(5(5(5(x0)))) | → | 1(5(1(2(0(3(2(1(0(5(x0)))))))))) |
0(2(5(3(4(x0))))) | → | 3(2(4(3(1(5(1(1(3(4(x0)))))))))) |
2(5(5(3(4(x0))))) | → | 4(5(4(3(1(4(0(2(4(4(x0)))))))))) |
5(5(5(1(4(x0))))) | → | 3(3(0(5(0(4(3(4(4(0(x0)))))))))) |
0(4(4(5(5(5(x0)))))) | → | 0(4(4(4(3(3(4(1(3(1(x0)))))))))) |
1(2(4(5(2(4(x0)))))) | → | 3(3(5(3(0(4(0(3(1(3(x0)))))))))) |
4(1(5(5(0(4(x0)))))) | → | 1(0(3(0(4(2(4(4(3(4(x0)))))))))) |
4(2(5(5(1(5(x0)))))) | → | 2(3(4(2(1(1(3(4(2(5(x0)))))))))) |
5(2(5(5(0(4(x0)))))) | → | 0(4(2(3(3(5(2(1(4(4(x0)))))))))) |
5(5(2(4(5(0(x0)))))) | → | 2(1(1(4(2(4(0(4(2(0(x0)))))))))) |
0(1(5(5(5(3(5(x0))))))) | → | 5(3(2(5(1(0(1(2(0(5(x0)))))))))) |
4(4(5(2(4(2(2(x0))))))) | → | 4(0(5(5(4(5(1(2(2(1(x0)))))))))) |
5(5(x0)) | → | 1(2(5(4(5(2(0(4(5(0(x0)))))))))) |
5(5(x0)) | → | 4(0(4(4(1(1(1(1(4(3(x0)))))))))) |
5(5(2(x0))) | → | 2(1(1(0(0(4(4(5(2(4(x0)))))))))) |
4(2(5(x0))) | → | 2(4(2(4(3(3(2(0(5(0(x0)))))))))) |
2(5(5(x0))) | → | 3(5(2(3(0(3(2(3(1(0(x0)))))))))) |
3(5(5(x0))) | → | 0(5(1(0(1(4(4(5(3(0(x0)))))))))) |
5(5(5(x0))) | → | 0(0(5(4(1(0(1(4(3(5(x0)))))))))) |
4(0(5(2(x0)))) | → | 0(0(1(5(4(4(2(3(4(4(x0)))))))))) |
4(2(5(4(x0)))) | → | 3(3(1(3(0(2(5(5(1(4(x0)))))))))) |
5(5(5(4(x0)))) | → | 5(0(1(2(3(0(2(1(5(1(x0)))))))))) |
4(3(5(2(0(x0))))) | → | 4(3(1(1(5(1(3(4(2(3(x0)))))))))) |
4(3(5(5(2(x0))))) | → | 4(4(2(0(4(1(3(4(5(4(x0)))))))))) |
4(1(5(5(5(x0))))) | → | 0(4(4(3(4(0(5(0(3(3(x0)))))))))) |
5(5(5(4(4(0(x0)))))) | → | 1(3(1(4(3(3(4(4(4(0(x0)))))))))) |
4(2(5(4(2(1(x0)))))) | → | 3(1(3(0(4(0(3(5(3(3(x0)))))))))) |
4(0(5(5(1(4(x0)))))) | → | 4(3(4(4(2(4(0(3(0(1(x0)))))))))) |
5(1(5(5(2(4(x0)))))) | → | 5(2(4(3(1(1(2(4(3(2(x0)))))))))) |
4(0(5(5(2(5(x0)))))) | → | 4(4(1(2(5(3(3(2(4(0(x0)))))))))) |
0(5(4(2(5(5(x0)))))) | → | 0(2(4(0(4(2(4(1(1(2(x0)))))))))) |
5(3(5(5(5(1(0(x0))))))) | → | 5(0(2(1(0(1(5(2(3(5(x0)))))))))) |
2(2(4(2(5(4(4(x0))))))) | → | 1(2(2(1(5(4(5(5(0(4(x0)))))))))) |
final states:
{184, 176, 167, 159, 149, 140, 132, 123, 114, 105, 96, 86, 77, 68, 58, 49, 40, 32, 22, 12, 1}
transitions:
78 | → | 226 |
78 | → | 270 |
280 | → | 80 |
176 | → | 59 |
32 | → | 23 |
96 | → | 61 |
96 | → | 14 |
96 | → | 23 |
167 | → | 3 |
149 | → | 88 |
149 | → | 59 |
227 | → | 281 |
184 | → | 150 |
185 | → | 193 |
185 | → | 237 |
49 | → | 60 |
49 | → | 13 |
1 | → | 59 |
40 | → | 150 |
123 | → | 59 |
86 | → | 59 |
58 | → | 59 |
22 | → | 59 |
105 | → | 61 |
105 | → | 14 |
105 | → | 23 |
114 | → | 23 |
12 | → | 59 |
77 | → | 23 |
140 | → | 124 |
140 | → | 23 |
236 | → | 80 |
290 | → | 81 |
68 | → | 124 |
68 | → | 23 |
159 | → | 124 |
159 | → | 23 |
203 | → | 187 |
132 | → | 23 |
247 | → | 187 |
51(200) | → | 201 |
51(231) | → | 232 |
51(198) | → | 199 |
51(233) | → | 234 |
51(194) | → | 195 |
51(288) | → | 289 |
51(227) | → | 228 |
41(228) | → | 229 |
41(277) | → | 278 |
41(244) | → | 245 |
41(232) | → | 233 |
41(279) | → | 280 |
41(276) | → | 277 |
41(238) | → | 239 |
41(246) | → | 247 |
41(199) | → | 200 |
41(243) | → | 244 |
41(271) | → | 272 |
41(195) | → | 196 |
11(281) | → | 282 |
11(274) | → | 275 |
11(235) | → | 236 |
11(242) | → | 243 |
11(239) | → | 240 |
11(275) | → | 276 |
11(202) | → | 203 |
11(272) | → | 273 |
11(240) | → | 241 |
11(273) | → | 274 |
11(241) | → | 242 |
01(245) | → | 246 |
01(229) | → | 230 |
01(285) | → | 286 |
01(193) | → | 194 |
01(196) | → | 197 |
01(226) | → | 227 |
01(278) | → | 279 |
50(115) | → | 133 |
50(65) | → | 66 |
50(183) | → | 176 |
50(78) | → | 79 |
50(73) | → | 74 |
50(162) | → | 163 |
50(158) | → | 149 |
50(95) | → | 86 |
50(3) | → | 4 |
50(7) | → | 8 |
50(186) | → | 187 |
50(24) | → | 25 |
50(50) | → | 51 |
50(87) | → | 88 |
50(56) | → | 57 |
50(9) | → | 10 |
50(79) | → | 80 |
50(177) | → | 178 |
50(47) | → | 48 |
50(116) | → | 117 |
50(2) | → | 59 |
50(23) | → | 106 |
50(185) | → | 186 |
50(100) | → | 101 |
50(188) | → | 189 |
40(72) | → | 73 |
40(109) | → | 110 |
40(2) | → | 23 |
40(25) | → | 26 |
40(21) | → | 12 |
40(120) | → | 121 |
40(124) | → | 125 |
40(113) | → | 105 |
40(26) | → | 27 |
40(71) | → | 72 |
40(51) | → | 52 |
40(19) | → | 20 |
40(4) | → | 5 |
40(112) | → | 113 |
40(173) | → | 174 |
40(165) | → | 166 |
40(8) | → | 9 |
40(60) | → | 61 |
40(187) | → | 188 |
40(106) | → | 107 |
40(135) | → | 136 |
40(36) | → | 37 |
40(125) | → | 126 |
40(143) | → | 144 |
40(18) | → | 19 |
40(128) | → | 129 |
40(23) | → | 69 |
40(64) | → | 65 |
40(13) | → | 14 |
40(97) | → | 98 |
40(148) | → | 140 |
40(169) | → | 170 |
40(118) | → | 119 |
40(156) | → | 157 |
40(38) | → | 39 |
40(121) | → | 122 |
40(166) | → | 159 |
40(145) | → | 146 |
40(146) | → | 147 |
40(3) | → | 124 |
40(52) | → | 53 |
40(104) | → | 96 |
40(171) | → | 172 |
40(151) | → | 152 |
20(33) | → | 34 |
20(124) | → | 160 |
20(23) | → | 24 |
20(70) | → | 71 |
20(170) | → | 171 |
20(42) | → | 43 |
20(144) | → | 145 |
20(37) | → | 38 |
20(174) | → | 175 |
20(6) | → | 7 |
20(60) | → | 177 |
20(152) | → | 153 |
20(92) | → | 93 |
20(46) | → | 47 |
20(111) | → | 112 |
20(163) | → | 164 |
20(191) | → | 192 |
20(80) | → | 81 |
20(13) | → | 97 |
20(181) | → | 182 |
20(31) | → | 22 |
20(10) | → | 11 |
20(2) | → | 150 |
20(39) | → | 32 |
20(157) | → | 158 |
20(89) | → | 90 |
20(190) | → | 191 |
00(87) | → | 141 |
00(142) | → | 143 |
00(5) | → | 6 |
00(122) | → | 114 |
00(172) | → | 173 |
00(94) | → | 95 |
00(117) | → | 118 |
00(136) | → | 137 |
00(44) | → | 45 |
00(27) | → | 28 |
00(66) | → | 67 |
00(54) | → | 55 |
00(4) | → | 33 |
00(28) | → | 29 |
00(90) | → | 91 |
00(20) | → | 21 |
00(67) | → | 58 |
00(182) | → | 183 |
00(62) | → | 63 |
00(81) | → | 82 |
00(57) | → | 49 |
00(110) | → | 111 |
00(179) | → | 180 |
00(175) | → | 167 |
00(134) | → | 135 |
00(76) | → | 68 |
00(23) | → | 185 |
00(115) | → | 116 |
00(75) | → | 76 |
00(2) | → | 3 |
30(59) | → | 60 |
30(147) | → | 148 |
30(48) | → | 40 |
30(137) | → | 138 |
30(155) | → | 156 |
30(139) | → | 132 |
30(34) | → | 35 |
30(98) | → | 99 |
30(130) | → | 131 |
30(91) | → | 92 |
30(133) | → | 134 |
30(69) | → | 70 |
30(126) | → | 127 |
30(119) | → | 120 |
30(84) | → | 85 |
30(127) | → | 128 |
30(85) | → | 77 |
30(82) | → | 83 |
30(43) | → | 44 |
30(2) | → | 13 |
30(3) | → | 50 |
30(45) | → | 46 |
30(41) | → | 42 |
30(107) | → | 108 |
30(35) | → | 36 |
30(103) | → | 104 |
30(161) | → | 162 |
30(13) | → | 115 |
30(150) | → | 151 |
30(160) | → | 161 |
30(141) | → | 142 |
f60 | → | 2 |
10(2) | → | 87 |
10(99) | → | 100 |
10(30) | → | 31 |
10(55) | → | 56 |
10(189) | → | 190 |
10(131) | → | 123 |
10(63) | → | 64 |
10(61) | → | 62 |
10(138) | → | 139 |
10(74) | → | 75 |
10(150) | → | 168 |
10(178) | → | 179 |
10(3) | → | 41 |
10(164) | → | 165 |
10(17) | → | 18 |
10(11) | → | 1 |
10(192) | → | 184 |
10(14) | → | 15 |
10(83) | → | 84 |
10(53) | → | 54 |
10(23) | → | 78 |
10(29) | → | 30 |
10(15) | → | 16 |
10(180) | → | 181 |
10(93) | → | 94 |
10(101) | → | 102 |
10(129) | → | 130 |
10(154) | → | 155 |
10(108) | → | 109 |
10(16) | → | 17 |
10(88) | → | 89 |
10(168) | → | 169 |
10(153) | → | 154 |
10(102) | → | 103 |
21(283) | → | 284 |
21(234) | → | 235 |
21(230) | → | 231 |
21(197) | → | 198 |
21(287) | → | 288 |
21(201) | → | 202 |
31(237) | → | 238 |
31(270) | → | 271 |
31(289) | → | 290 |
31(286) | → | 287 |
31(284) | → | 285 |
31(282) | → | 283 |