YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
1(3(3(x0))) | → | 3(5(3(2(5(0(2(4(5(4(x0)))))))))) |
0(3(3(3(x0)))) | → | 5(4(3(5(3(0(5(4(4(0(x0)))))))))) |
0(3(3(3(1(x0))))) | → | 5(4(4(0(3(1(0(5(1(0(x0)))))))))) |
1(2(3(3(3(x0))))) | → | 4(1(1(2(3(5(0(4(0(5(x0)))))))))) |
1(4(4(2(2(x0))))) | → | 1(1(2(0(1(1(1(0(2(2(x0)))))))))) |
0(3(3(1(4(3(x0)))))) | → | 4(4(3(0(2(3(0(3(0(0(x0)))))))))) |
3(3(3(3(4(0(x0)))))) | → | 3(0(0(2(1(0(5(3(5(4(x0)))))))))) |
4(0(1(3(4(0(x0)))))) | → | 2(2(3(0(0(0(5(0(0(0(x0)))))))))) |
4(1(4(4(4(1(x0)))))) | → | 4(1(0(3(3(5(5(5(4(1(x0)))))))))) |
0(1(3(5(2(2(3(x0))))))) | → | 0(3(0(0(5(0(0(4(4(3(x0)))))))))) |
0(2(3(1(3(2(5(x0))))))) | → | 0(4(3(1(2(3(2(3(2(0(x0)))))))))) |
1(1(3(3(5(3(1(x0))))))) | → | 3(5(0(5(3(2(5(0(0(1(x0)))))))))) |
3(5(2(0(1(3(3(x0))))))) | → | 3(4(3(2(3(2(4(4(5(5(x0)))))))))) |
4(1(4(2(4(0(1(x0))))))) | → | 5(2(2(1(0(5(5(4(5(1(x0)))))))))) |
4(5(1(2(4(4(4(x0))))))) | → | 4(1(1(4(5(3(0(1(0(4(x0)))))))))) |
5(1(4(5(3(3(3(x0))))))) | → | 5(1(4(5(3(4(4(2(3(2(x0)))))))))) |
final states:
{141, 132, 123, 114, 105, 96, 86, 76, 68, 60, 51, 41, 31, 22, 12, 1}
transitions:
51 | → | 13 |
96 | → | 13 |
41 | → | 77 |
31 | → | 77 |
1 | → | 77 |
123 | → | 78 |
123 | → | 3 |
60 | → | 87 |
76 | → | 78 |
76 | → | 3 |
86 | → | 106 |
86 | → | 13 |
141 | → | 124 |
141 | → | 32 |
22 | → | 13 |
105 | → | 77 |
114 | → | 87 |
12 | → | 13 |
68 | → | 14 |
68 | → | 3 |
132 | → | 125 |
132 | → | 3 |
f60 | → | 2 |
10(138) | → | 139 |
10(128) | → | 129 |
10(139) | → | 140 |
10(46) | → | 47 |
10(50) | → | 41 |
10(133) | → | 134 |
10(84) | → | 85 |
10(38) | → | 39 |
10(63) | → | 64 |
10(49) | → | 50 |
10(148) | → | 149 |
10(2) | → | 77 |
10(45) | → | 46 |
10(44) | → | 45 |
10(101) | → | 102 |
10(13) | → | 23 |
10(39) | → | 40 |
10(25) | → | 26 |
50(126) | → | 127 |
50(23) | → | 24 |
50(78) | → | 79 |
50(91) | → | 92 |
50(30) | → | 22 |
50(7) | → | 8 |
50(136) | → | 137 |
50(35) | → | 36 |
50(112) | → | 113 |
50(125) | → | 126 |
50(32) | → | 115 |
50(107) | → | 108 |
50(79) | → | 80 |
50(77) | → | 124 |
50(110) | → | 111 |
50(149) | → | 141 |
50(131) | → | 123 |
50(18) | → | 19 |
50(3) | → | 4 |
50(69) | → | 70 |
50(146) | → | 147 |
50(80) | → | 81 |
50(61) | → | 62 |
50(15) | → | 16 |
50(21) | → | 12 |
50(10) | → | 11 |
50(2) | → | 32 |
20(74) | → | 75 |
20(130) | → | 131 |
20(37) | → | 38 |
20(129) | → | 130 |
20(98) | → | 99 |
20(48) | → | 49 |
20(8) | → | 9 |
20(108) | → | 109 |
20(142) | → | 143 |
20(64) | → | 65 |
20(119) | → | 120 |
20(75) | → | 68 |
20(42) | → | 43 |
20(55) | → | 56 |
20(13) | → | 97 |
20(5) | → | 6 |
20(117) | → | 118 |
20(2) | → | 42 |
20(100) | → | 101 |
00(72) | → | 73 |
00(111) | → | 112 |
00(2) | → | 13 |
00(95) | → | 86 |
00(6) | → | 7 |
00(71) | → | 72 |
00(16) | → | 17 |
00(32) | → | 33 |
00(24) | → | 25 |
00(34) | → | 35 |
00(77) | → | 106 |
00(83) | → | 84 |
00(70) | → | 71 |
00(47) | → | 48 |
00(89) | → | 90 |
00(106) | → | 107 |
00(92) | → | 93 |
00(93) | → | 94 |
00(27) | → | 28 |
00(56) | → | 57 |
00(134) | → | 135 |
00(13) | → | 52 |
00(62) | → | 63 |
00(90) | → | 91 |
00(66) | → | 67 |
00(53) | → | 54 |
00(3) | → | 133 |
00(52) | → | 69 |
00(43) | → | 44 |
00(127) | → | 128 |
00(104) | → | 96 |
00(65) | → | 66 |
30(2) | → | 87 |
30(9) | → | 10 |
30(54) | → | 55 |
30(67) | → | 60 |
30(99) | → | 100 |
30(19) | → | 20 |
30(113) | → | 105 |
30(36) | → | 37 |
30(4) | → | 61 |
30(26) | → | 27 |
30(17) | → | 18 |
30(11) | → | 1 |
30(135) | → | 136 |
30(118) | → | 119 |
30(94) | → | 95 |
30(81) | → | 82 |
30(52) | → | 53 |
30(42) | → | 142 |
30(82) | → | 83 |
30(120) | → | 121 |
30(73) | → | 74 |
30(57) | → | 58 |
30(97) | → | 98 |
30(109) | → | 110 |
30(145) | → | 146 |
30(122) | → | 114 |
30(102) | → | 103 |
40(87) | → | 88 |
40(29) | → | 30 |
40(140) | → | 132 |
40(143) | → | 144 |
40(58) | → | 59 |
40(88) | → | 89 |
40(124) | → | 125 |
40(59) | → | 51 |
40(4) | → | 5 |
40(28) | → | 29 |
40(13) | → | 14 |
40(147) | → | 148 |
40(20) | → | 21 |
40(116) | → | 117 |
40(14) | → | 15 |
40(40) | → | 31 |
40(103) | → | 104 |
40(137) | → | 138 |
40(121) | → | 122 |
40(144) | → | 145 |
40(85) | → | 76 |
40(77) | → | 78 |
40(33) | → | 34 |
40(115) | → | 116 |
40(2) | → | 3 |