YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
1(4(x0)) | → | 3(1(1(2(2(4(x0)))))) |
5(4(x0)) | → | 4(2(3(1(1(1(x0)))))) |
0(3(0(x0))) | → | 2(1(1(0(2(0(x0)))))) |
0(5(5(x0))) | → | 1(0(1(3(4(2(x0)))))) |
1(5(4(x0))) | → | 0(2(5(2(0(4(x0)))))) |
3(5(4(x0))) | → | 4(1(3(4(2(3(x0)))))) |
4(1(4(x0))) | → | 3(3(2(2(3(1(x0)))))) |
5(4(0(x0))) | → | 2(4(0(4(4(0(x0)))))) |
5(4(0(x0))) | → | 5(1(5(2(1(0(x0)))))) |
5(4(4(x0))) | → | 4(1(1(3(2(4(x0)))))) |
5(5(4(x0))) | → | 3(4(4(1(2(2(x0)))))) |
0(5(5(0(x0)))) | → | 0(2(0(0(3(0(x0)))))) |
0(5(5(4(x0)))) | → | 0(1(3(4(3(4(x0)))))) |
1(4(5(4(x0)))) | → | 0(4(5(0(2(1(x0)))))) |
1(4(5(5(x0)))) | → | 0(0(1(3(4(1(x0)))))) |
2(5(4(0(x0)))) | → | 0(4(1(2(4(0(x0)))))) |
4(3(0(5(x0)))) | → | 3(3(2(3(5(5(x0)))))) |
5(4(0(0(x0)))) | → | 1(0(4(0(2(2(x0)))))) |
5(4(0(2(x0)))) | → | 3(0(4(5(0(2(x0)))))) |
4(1(x0)) | → | 4(2(2(1(1(3(x0)))))) |
4(5(x0)) | → | 1(1(1(3(2(4(x0)))))) |
0(3(0(x0))) | → | 0(2(0(1(1(2(x0)))))) |
5(5(0(x0))) | → | 2(4(3(1(0(1(x0)))))) |
4(5(1(x0))) | → | 4(0(2(5(2(0(x0)))))) |
4(5(3(x0))) | → | 3(2(4(3(1(4(x0)))))) |
4(1(4(x0))) | → | 1(3(2(2(3(3(x0)))))) |
0(4(5(x0))) | → | 0(4(4(0(4(2(x0)))))) |
0(4(5(x0))) | → | 0(1(2(5(1(5(x0)))))) |
4(4(5(x0))) | → | 4(2(3(1(1(4(x0)))))) |
4(5(5(x0))) | → | 2(2(1(4(4(3(x0)))))) |
0(5(5(0(x0)))) | → | 0(3(0(0(2(0(x0)))))) |
4(5(5(0(x0)))) | → | 4(3(4(3(1(0(x0)))))) |
4(5(4(1(x0)))) | → | 1(2(0(5(4(0(x0)))))) |
5(5(4(1(x0)))) | → | 1(4(3(1(0(0(x0)))))) |
0(4(5(2(x0)))) | → | 0(4(2(1(4(0(x0)))))) |
5(0(3(4(x0)))) | → | 5(5(3(2(3(3(x0)))))) |
0(0(4(5(x0)))) | → | 2(2(0(4(0(1(x0)))))) |
2(0(4(5(x0)))) | → | 2(0(5(4(0(3(x0)))))) |
final states:
{92, 88, 85, 81, 76, 71, 66, 62, 57, 53, 47, 42, 37, 32, 26, 20, 14, 8, 1}
transitions:
32 | → | 9 |
81 | → | 27 |
103 | → | 62 |
57 | → | 9 |
37 | → | 9 |
20 | → | 48 |
62 | → | 27 |
1 | → | 9 |
8 | → | 9 |
71 | → | 9 |
26 | → | 9 |
76 | → | 48 |
88 | → | 77 |
88 | → | 27 |
53 | → | 9 |
66 | → | 9 |
14 | → | 93 |
14 | → | 27 |
63 | → | 97 |
85 | → | 48 |
42 | → | 27 |
47 | → | 27 |
92 | → | 28 |
92 | → | 15 |
21(101) | → | 102 |
21(97) | → | 98 |
10(51) | → | 52 |
10(16) | → | 17 |
10(11) | → | 12 |
10(41) | → | 37 |
10(3) | → | 4 |
10(33) | → | 54 |
10(77) | → | 78 |
10(48) | → | 49 |
10(80) | → | 76 |
10(9) | → | 33 |
10(59) | → | 60 |
10(27) | → | 67 |
10(75) | → | 71 |
10(72) | → | 82 |
10(15) | → | 16 |
10(13) | → | 8 |
10(4) | → | 5 |
10(22) | → | 23 |
10(2) | → | 21 |
10(12) | → | 13 |
30(2) | → | 3 |
30(78) | → | 79 |
30(36) | → | 32 |
30(23) | → | 24 |
30(54) | → | 55 |
30(64) | → | 65 |
30(67) | → | 68 |
30(69) | → | 70 |
30(39) | → | 86 |
30(33) | → | 34 |
30(3) | → | 38 |
30(10) | → | 11 |
30(40) | → | 41 |
20(91) | → | 88 |
20(35) | → | 36 |
20(38) | → | 39 |
20(6) | → | 7 |
20(60) | → | 61 |
20(55) | → | 56 |
20(90) | → | 91 |
20(29) | → | 30 |
20(18) | → | 19 |
20(82) | → | 83 |
20(9) | → | 10 |
20(25) | → | 20 |
20(96) | → | 92 |
20(50) | → | 51 |
20(61) | → | 57 |
20(27) | → | 28 |
20(74) | → | 75 |
20(5) | → | 6 |
20(2) | → | 15 |
20(39) | → | 40 |
00(19) | → | 14 |
00(17) | → | 18 |
00(21) | → | 22 |
00(46) | → | 42 |
00(63) | → | 64 |
00(27) | → | 77 |
00(28) | → | 63 |
00(84) | → | 81 |
00(43) | → | 44 |
00(89) | → | 90 |
00(52) | → | 47 |
00(3) | → | 93 |
00(30) | → | 31 |
00(65) | → | 62 |
00(95) | → | 96 |
00(2) | → | 27 |
00(73) | → | 74 |
50(87) | → | 85 |
50(72) | → | 73 |
50(94) | → | 95 |
50(49) | → | 50 |
50(2) | → | 48 |
50(28) | → | 29 |
50(86) | → | 87 |
f60 | → | 2 |
40(2) | → | 9 |
40(56) | → | 53 |
40(79) | → | 80 |
40(24) | → | 25 |
40(3) | → | 58 |
40(83) | → | 84 |
40(70) | → | 66 |
40(7) | → | 1 |
40(15) | → | 43 |
40(27) | → | 72 |
40(93) | → | 94 |
40(45) | → | 46 |
40(22) | → | 89 |
40(34) | → | 35 |
40(44) | → | 45 |
40(31) | → | 26 |
40(58) | → | 59 |
40(68) | → | 69 |
11(98) | → | 99 |
11(99) | → | 100 |
01(100) | → | 101 |
01(102) | → | 103 |