YES Termination Proof

Termination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

0(0(1(0(2(x0))))) 0(0(1(2(2(x0)))))
0(0(1(0(2(x0))))) 0(0(2(1(2(x0)))))
0(0(1(0(2(x0))))) 0(1(0(2(2(x0)))))
0(0(1(0(2(x0))))) 0(1(1(2(2(x0)))))
0(0(1(0(2(x0))))) 0(1(2(0(2(x0)))))
0(0(1(0(2(x0))))) 0(1(2(2(0(x0)))))
0(0(1(0(2(x0))))) 0(1(2(2(2(x0)))))
0(0(1(0(2(x0))))) 0(2(1(0(2(x0)))))
0(0(1(0(2(x0))))) 0(2(1(2(2(x0)))))
0(0(1(0(2(x0))))) 0(2(2(1(0(x0)))))
0(0(1(0(2(x0))))) 0(2(2(1(2(x0)))))
0(0(1(0(2(x0))))) 1(0(0(2(2(x0)))))
0(0(1(0(2(x0))))) 1(0(2(0(2(x0)))))
0(0(1(0(2(x0))))) 1(0(2(2(0(x0)))))
0(0(1(0(2(x0))))) 1(0(2(2(2(x0)))))
0(0(1(0(2(x0))))) 1(1(0(2(2(x0)))))
0(0(1(0(2(x0))))) 1(2(0(2(2(x0)))))
0(0(1(0(2(x0))))) 1(2(1(0(2(x0)))))
0(0(1(0(2(x0))))) 1(2(2(0(2(x0)))))
0(0(1(0(2(x0))))) 1(2(2(2(0(x0)))))
0(0(1(0(2(x0))))) 2(1(0(2(2(x0)))))
0(0(1(0(2(x0))))) 2(2(1(0(2(x0)))))
0(0(1(0(2(x0))))) 2(2(2(1(0(x0)))))
0(1(2(0(2(x0))))) 0(1(0(2(2(x0)))))
0(1(2(0(2(x0))))) 0(1(1(2(2(x0)))))
0(1(2(0(2(x0))))) 0(1(2(2(2(x0)))))
0(1(2(0(2(x0))))) 0(2(1(0(2(x0)))))
0(1(2(0(2(x0))))) 0(2(1(2(2(x0)))))
0(1(2(0(2(x0))))) 0(2(2(1(0(x0)))))
0(1(2(0(2(x0))))) 0(2(2(1(2(x0)))))
0(1(2(0(2(x0))))) 1(0(2(2(2(x0)))))
0(1(2(0(2(x0))))) 1(2(0(2(2(x0)))))
0(1(2(0(2(x0))))) 1(2(2(0(2(x0)))))
0(1(2(0(2(x0))))) 1(2(2(2(0(x0)))))
1(0(1(0(2(x0))))) 0(1(2(2(2(x0)))))
1(0(1(0(2(x0))))) 0(2(1(2(2(x0)))))
1(0(1(0(2(x0))))) 1(0(0(2(2(x0)))))
1(0(1(0(2(x0))))) 1(0(1(2(2(x0)))))
1(0(1(0(2(x0))))) 1(0(2(0(2(x0)))))
1(0(1(0(2(x0))))) 1(0(2(1(2(x0)))))
1(0(1(0(2(x0))))) 1(0(2(2(0(x0)))))
1(0(1(0(2(x0))))) 1(0(2(2(2(x0)))))
1(0(1(0(2(x0))))) 1(1(0(2(2(x0)))))
1(0(1(0(2(x0))))) 1(2(0(2(2(x0)))))
1(0(1(0(2(x0))))) 1(2(1(0(2(x0)))))
1(0(1(0(2(x0))))) 1(2(2(0(2(x0)))))
1(0(1(0(2(x0))))) 1(2(2(2(0(x0)))))
1(0(1(0(2(x0))))) 2(0(1(2(2(x0)))))
1(0(1(0(2(x0))))) 2(0(2(1(2(x0)))))
1(0(1(0(2(x0))))) 2(1(0(2(2(x0)))))
1(0(1(0(2(x0))))) 2(1(2(0(2(x0)))))
1(0(1(0(2(x0))))) 2(1(2(2(0(x0)))))
1(0(1(0(2(x0))))) 2(2(0(1(2(x0)))))
1(0(1(0(2(x0))))) 2(2(1(0(2(x0)))))
1(0(1(0(2(x0))))) 2(2(1(2(0(x0)))))
1(0(1(0(2(x0))))) 2(2(2(1(0(x0)))))
1(0(2(0(2(x0))))) 1(0(2(2(2(x0)))))
1(0(2(0(2(x0))))) 1(2(0(2(2(x0)))))
1(0(2(0(2(x0))))) 1(2(2(0(2(x0)))))
1(0(2(0(2(x0))))) 1(2(2(2(0(x0)))))
1(0(2(0(2(x0))))) 2(1(0(2(2(x0)))))
1(0(2(0(2(x0))))) 2(2(1(0(2(x0)))))
1(1(2(0(2(x0))))) 0(1(2(2(2(x0)))))
1(1(2(0(2(x0))))) 0(2(1(2(2(x0)))))
1(1(2(0(2(x0))))) 0(2(2(1(2(x0)))))
1(1(2(0(2(x0))))) 1(0(0(2(2(x0)))))
1(1(2(0(2(x0))))) 1(0(1(2(2(x0)))))
1(1(2(0(2(x0))))) 1(0(2(0(2(x0)))))
1(1(2(0(2(x0))))) 1(0(2(1(2(x0)))))
1(1(2(0(2(x0))))) 1(0(2(2(0(x0)))))
1(1(2(0(2(x0))))) 1(0(2(2(2(x0)))))
1(1(2(0(2(x0))))) 1(1(0(2(2(x0)))))
1(1(2(0(2(x0))))) 1(2(0(2(2(x0)))))
1(1(2(0(2(x0))))) 1(2(1(0(2(x0)))))
1(1(2(0(2(x0))))) 1(2(2(0(2(x0)))))
1(1(2(0(2(x0))))) 1(2(2(2(0(x0)))))
1(1(2(0(2(x0))))) 2(0(1(2(2(x0)))))
1(1(2(0(2(x0))))) 2(1(0(2(2(x0)))))
1(1(2(0(2(x0))))) 2(1(2(0(2(x0)))))
1(1(2(0(2(x0))))) 2(2(0(1(2(x0)))))
1(1(2(0(2(x0))))) 2(2(1(0(2(x0)))))
1(1(2(0(2(x0))))) 2(2(2(1(0(x0)))))
1(2(2(0(2(x0))))) 1(0(2(2(2(x0)))))
2(0(1(0(2(x0))))) 2(0(1(2(2(x0)))))
2(0(1(0(2(x0))))) 2(0(2(1(2(x0)))))
2(0(1(0(2(x0))))) 2(1(0(2(2(x0)))))
2(0(1(0(2(x0))))) 2(1(2(0(2(x0)))))
2(0(1(0(2(x0))))) 2(1(2(2(0(x0)))))
2(0(1(0(2(x0))))) 2(2(0(1(2(x0)))))
2(0(1(0(2(x0))))) 2(2(1(0(2(x0)))))
2(0(1(0(2(x0))))) 2(2(1(2(0(x0)))))
2(0(1(0(2(x0))))) 2(2(2(1(0(x0)))))
2(1(1(0(2(x0))))) 2(0(1(0(2(x0)))))
2(1(1(0(2(x0))))) 2(0(2(1(2(x0)))))
2(1(1(0(2(x0))))) 2(1(2(0(2(x0)))))
2(1(1(0(2(x0))))) 2(2(1(0(2(x0)))))
2(1(2(0(2(x0))))) 2(0(1(2(2(x0)))))
2(1(2(0(2(x0))))) 2(1(0(2(2(x0)))))
2(1(2(0(2(x0))))) 2(2(1(0(2(x0)))))
2(1(2(0(2(x0))))) 2(2(2(1(0(x0)))))

Proof

1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[0(x1)] = 2 · x1 + -∞
[2(x1)] = 0 · x1 + -∞
[1(x1)] = 2 · x1 + -∞
the rules
0(1(2(0(2(x0))))) 0(1(0(2(2(x0)))))
0(1(2(0(2(x0))))) 0(1(1(2(2(x0)))))
0(1(2(0(2(x0))))) 0(2(1(0(2(x0)))))
0(1(2(0(2(x0))))) 0(2(2(1(0(x0)))))
1(1(2(0(2(x0))))) 1(0(0(2(2(x0)))))
1(1(2(0(2(x0))))) 1(0(1(2(2(x0)))))
1(1(2(0(2(x0))))) 1(0(2(0(2(x0)))))
1(1(2(0(2(x0))))) 1(0(2(1(2(x0)))))
1(1(2(0(2(x0))))) 1(0(2(2(0(x0)))))
1(1(2(0(2(x0))))) 1(1(0(2(2(x0)))))
1(1(2(0(2(x0))))) 1(2(1(0(2(x0)))))
1(2(2(0(2(x0))))) 1(0(2(2(2(x0)))))
2(1(1(0(2(x0))))) 2(0(1(0(2(x0)))))
2(1(2(0(2(x0))))) 2(0(1(2(2(x0)))))
2(1(2(0(2(x0))))) 2(1(0(2(2(x0)))))
2(1(2(0(2(x0))))) 2(2(1(0(2(x0)))))
2(1(2(0(2(x0))))) 2(2(2(1(0(x0)))))
remain.

1.1 Bounds

The given TRS is match-bounded by 0. This is shown by the following automaton.