YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
0(0(1(2(x0)))) | → | 2(3(1(0(0(x0))))) |
0(0(1(2(x0)))) | → | 3(1(0(0(2(x0))))) |
0(0(1(2(x0)))) | → | 0(0(2(3(1(1(x0)))))) |
0(1(0(4(x0)))) | → | 3(1(4(0(0(x0))))) |
0(1(0(4(x0)))) | → | 3(4(0(0(3(1(x0)))))) |
0(1(0(4(x0)))) | → | 4(3(1(0(5(0(x0)))))) |
0(1(0(4(x0)))) | → | 5(0(4(3(1(0(x0)))))) |
0(1(0(5(x0)))) | → | 3(5(3(1(0(0(x0)))))) |
0(1(0(5(x0)))) | → | 5(3(1(0(0(2(x0)))))) |
0(1(4(2(x0)))) | → | 2(3(1(4(0(x0))))) |
0(1(4(2(x0)))) | → | 4(0(3(1(2(4(x0)))))) |
0(1(4(2(x0)))) | → | 4(3(1(1(0(2(x0)))))) |
0(5(0(4(x0)))) | → | 4(0(0(3(5(x0))))) |
0(5(0(4(x0)))) | → | 5(0(0(3(4(x0))))) |
0(5(0(5(x0)))) | → | 3(5(2(0(0(5(x0)))))) |
0(5(0(5(x0)))) | → | 5(3(5(4(0(0(x0)))))) |
0(5(0(5(x0)))) | → | 5(5(3(4(0(0(x0)))))) |
2(0(1(2(x0)))) | → | 0(2(4(1(2(x0))))) |
2(0(1(2(x0)))) | → | 2(5(0(2(2(1(x0)))))) |
2(0(1(2(x0)))) | → | 3(1(3(2(2(0(x0)))))) |
2(0(4(2(x0)))) | → | 4(0(2(2(1(x0))))) |
2(0(4(2(x0)))) | → | 4(0(2(1(2(1(x0)))))) |
2(0(5(2(x0)))) | → | 0(2(1(5(2(2(x0)))))) |
3(0(4(2(x0)))) | → | 0(3(4(1(1(2(x0)))))) |
3(0(4(2(x0)))) | → | 4(3(3(1(0(2(x0)))))) |
0(0(1(2(2(x0))))) | → | 0(0(2(1(2(1(x0)))))) |
0(0(1(3(2(x0))))) | → | 0(3(1(2(0(4(x0)))))) |
0(0(1(3(2(x0))))) | → | 2(5(0(3(1(0(x0)))))) |
0(0(5(2(2(x0))))) | → | 0(0(2(5(2(1(x0)))))) |
0(1(0(5(2(x0))))) | → | 0(2(1(0(3(5(x0)))))) |
0(1(0(5(5(x0))))) | → | 1(3(5(0(0(5(x0)))))) |
0(1(2(0(5(x0))))) | → | 4(0(5(2(1(0(x0)))))) |
0(1(3(0(4(x0))))) | → | 1(0(3(4(4(0(x0)))))) |
0(1(3(4(2(x0))))) | → | 4(2(1(0(3(4(x0)))))) |
0(1(4(2(2(x0))))) | → | 1(1(0(2(4(2(x0)))))) |
0(1(4(2(4(x0))))) | → | 4(0(2(3(1(4(x0)))))) |
0(1(4(3(2(x0))))) | → | 3(1(2(0(4(4(x0)))))) |
0(3(0(0(5(x0))))) | → | 5(3(1(0(0(0(x0)))))) |
0(4(1(0(4(x0))))) | → | 4(0(2(1(4(0(x0)))))) |
0(4(3(2(2(x0))))) | → | 4(2(0(3(5(2(x0)))))) |
0(5(1(0(4(x0))))) | → | 5(2(4(1(0(0(x0)))))) |
0(5(1(4(2(x0))))) | → | 4(0(3(5(1(2(x0)))))) |
2(1(0(1(2(x0))))) | → | 2(1(1(0(2(3(x0)))))) |
2(4(0(5(2(x0))))) | → | 0(4(2(3(5(2(x0)))))) |
3(0(0(1(2(x0))))) | → | 0(3(5(1(0(2(x0)))))) |
3(0(0(5(2(x0))))) | → | 2(0(0(3(5(1(x0)))))) |
3(0(5(4(2(x0))))) | → | 4(0(3(5(2(1(x0)))))) |
3(2(0(1(2(x0))))) | → | 2(1(3(1(0(2(x0)))))) |
3(2(0(5(2(x0))))) | → | 2(0(2(3(4(5(x0)))))) |
3(2(0(5(2(x0))))) | → | 5(3(0(2(2(2(x0)))))) |
2(1(0(0(x0)))) | → | 0(0(1(3(2(x0))))) |
2(1(0(0(x0)))) | → | 2(0(0(1(3(x0))))) |
2(1(0(0(x0)))) | → | 1(1(3(2(0(0(x0)))))) |
4(0(1(0(x0)))) | → | 0(0(4(1(3(x0))))) |
4(0(1(0(x0)))) | → | 1(3(0(0(4(3(x0)))))) |
4(0(1(0(x0)))) | → | 0(5(0(1(3(4(x0)))))) |
4(0(1(0(x0)))) | → | 0(1(3(4(0(5(x0)))))) |
5(0(1(0(x0)))) | → | 0(0(1(3(5(3(x0)))))) |
5(0(1(0(x0)))) | → | 2(0(0(1(3(5(x0)))))) |
2(4(1(0(x0)))) | → | 0(4(1(3(2(x0))))) |
2(4(1(0(x0)))) | → | 4(2(1(3(0(4(x0)))))) |
2(4(1(0(x0)))) | → | 2(0(1(1(3(4(x0)))))) |
4(0(5(0(x0)))) | → | 5(3(0(0(4(x0))))) |
4(0(5(0(x0)))) | → | 4(3(0(0(5(x0))))) |
5(0(5(0(x0)))) | → | 5(0(0(2(5(3(x0)))))) |
5(0(5(0(x0)))) | → | 0(0(4(5(3(5(x0)))))) |
5(0(5(0(x0)))) | → | 0(0(4(3(5(5(x0)))))) |
2(1(0(2(x0)))) | → | 2(1(4(2(0(x0))))) |
2(1(0(2(x0)))) | → | 1(2(2(0(5(2(x0)))))) |
2(1(0(2(x0)))) | → | 0(2(2(3(1(3(x0)))))) |
2(4(0(2(x0)))) | → | 1(2(2(0(4(x0))))) |
2(4(0(2(x0)))) | → | 1(2(1(2(0(4(x0)))))) |
2(5(0(2(x0)))) | → | 2(2(5(1(2(0(x0)))))) |
2(4(0(3(x0)))) | → | 2(1(1(4(3(0(x0)))))) |
2(4(0(3(x0)))) | → | 2(0(1(3(3(4(x0)))))) |
2(2(1(0(0(x0))))) | → | 1(2(1(2(0(0(x0)))))) |
2(3(1(0(0(x0))))) | → | 4(0(2(1(3(0(x0)))))) |
2(3(1(0(0(x0))))) | → | 0(1(3(0(5(2(x0)))))) |
2(2(5(0(0(x0))))) | → | 1(2(5(2(0(0(x0)))))) |
2(5(0(1(0(x0))))) | → | 5(3(0(1(2(0(x0)))))) |
5(5(0(1(0(x0))))) | → | 5(0(0(5(3(1(x0)))))) |
5(0(2(1(0(x0))))) | → | 0(1(2(5(0(4(x0)))))) |
4(0(3(1(0(x0))))) | → | 0(4(4(3(0(1(x0)))))) |
2(4(3(1(0(x0))))) | → | 4(3(0(1(2(4(x0)))))) |
2(2(4(1(0(x0))))) | → | 2(4(2(0(1(1(x0)))))) |
4(2(4(1(0(x0))))) | → | 4(1(3(2(0(4(x0)))))) |
2(3(4(1(0(x0))))) | → | 4(4(0(2(1(3(x0)))))) |
5(0(0(3(0(x0))))) | → | 0(0(0(1(3(5(x0)))))) |
4(0(1(4(0(x0))))) | → | 0(4(1(2(0(4(x0)))))) |
2(2(3(4(0(x0))))) | → | 2(5(3(0(2(4(x0)))))) |
4(0(1(5(0(x0))))) | → | 0(0(1(4(2(5(x0)))))) |
2(4(1(5(0(x0))))) | → | 2(1(5(3(0(4(x0)))))) |
2(1(0(1(2(x0))))) | → | 3(2(0(1(1(2(x0)))))) |
2(5(0(4(2(x0))))) | → | 2(5(3(2(4(0(x0)))))) |
2(1(0(0(3(x0))))) | → | 2(0(1(5(3(0(x0)))))) |
2(5(0(0(3(x0))))) | → | 1(5(3(0(0(2(x0)))))) |
2(4(5(0(3(x0))))) | → | 1(2(5(3(0(4(x0)))))) |
2(1(0(2(3(x0))))) | → | 2(0(1(3(1(2(x0)))))) |
2(5(0(2(3(x0))))) | → | 5(4(3(2(0(2(x0)))))) |
2(5(0(2(3(x0))))) | → | 2(2(2(0(3(5(x0)))))) |
final states:
{201, 197, 193, 191, 186, 182, 177, 172, 169, 164, 160, 158, 157, 153, 150, 145, 140, 135, 131, 125, 122, 119, 116, 112, 109, 105, 100, 96, 93, 90, 86, 81, 77, 72, 68, 64, 61, 58, 55, 50, 48, 43, 38, 32, 26, 21, 18, 12, 7, 1}
transitions:
157 | → | 33 |
61 | → | 35 |
61 | → | 178 |
61 | → | 27 |
32 | → | 178 |
32 | → | 27 |
81 | → | 3 |
96 | → | 165 |
96 | → | 3 |
129 | → | 231 |
129 | → | 233 |
119 | → | 3 |
145 | → | 3 |
122 | → | 165 |
122 | → | 3 |
18 | → | 178 |
18 | → | 27 |
50 | → | 141 |
50 | → | 3 |
55 | → | 141 |
55 | → | 3 |
90 | → | 179 |
90 | → | 141 |
90 | → | 3 |
193 | → | 3 |
1 | → | 3 |
197 | → | 165 |
197 | → | 3 |
135 | → | 178 |
135 | → | 27 |
26 | → | 178 |
26 | → | 27 |
125 | → | 73 |
125 | → | 33 |
38 | → | 33 |
86 | → | 3 |
58 | → | 35 |
58 | → | 178 |
58 | → | 27 |
201 | → | 165 |
201 | → | 3 |
177 | → | 133 |
177 | → | 165 |
177 | → | 3 |
21 | → | 178 |
21 | → | 27 |
186 | → | 165 |
186 | → | 3 |
72 | → | 33 |
150 | → | 27 |
172 | → | 3 |
116 | → | 3 |
153 | → | 3 |
109 | → | 3 |
105 | → | 179 |
105 | → | 141 |
105 | → | 3 |
232 | → | 206 |
66 | → | 205 |
66 | → | 223 |
93 | → | 179 |
93 | → | 141 |
93 | → | 3 |
12 | → | 3 |
112 | → | 3 |
169 | → | 141 |
169 | → | 3 |
77 | → | 3 |
140 | → | 141 |
140 | → | 3 |
100 | → | 179 |
100 | → | 141 |
100 | → | 3 |
7 | → | 3 |
234 | → | 224 |
182 | → | 3 |
64 | → | 33 |
158 | → | 178 |
158 | → | 27 |
48 | → | 141 |
48 | → | 3 |
160 | → | 3 |
164 | → | 178 |
164 | → | 27 |
68 | → | 33 |
131 | → | 33 |
43 | → | 33 |
210 | → | 35 |
191 | → | 141 |
191 | → | 3 |
228 | → | 35 |
31(226) | → | 227 |
31(208) | → | 209 |
51(223) | → | 224 |
51(209) | → | 210 |
51(233) | → | 234 |
30(51) | → | 52 |
30(35) | → | 36 |
30(173) | → | 194 |
30(73) | → | 74 |
30(3) | → | 4 |
30(33) | → | 44 |
30(91) | → | 151 |
30(24) | → | 25 |
30(123) | → | 124 |
30(143) | → | 144 |
30(9) | → | 87 |
30(59) | → | 60 |
30(83) | → | 117 |
30(198) | → | 199 |
30(179) | → | 180 |
30(27) | → | 28 |
30(136) | → | 137 |
30(62) | → | 63 |
30(15) | → | 16 |
30(39) | → | 40 |
30(161) | → | 162 |
30(126) | → | 127 |
30(13) | → | 101 |
30(28) | → | 106 |
30(2) | → | 8 |
30(176) | → | 172 |
30(188) | → | 189 |
20(2) | → | 3 |
20(132) | → | 133 |
20(175) | → | 176 |
20(120) | → | 121 |
20(113) | → | 114 |
20(51) | → | 91 |
20(110) | → | 111 |
20(147) | → | 148 |
20(88) | → | 89 |
20(202) | → | 203 |
20(98) | → | 99 |
20(87) | → | 88 |
20(80) | → | 77 |
20(83) | → | 84 |
20(185) | → | 182 |
20(47) | → | 43 |
20(91) | → | 92 |
20(187) | → | 198 |
20(203) | → | 204 |
20(11) | → | 7 |
20(108) | → | 105 |
20(9) | → | 154 |
20(99) | → | 96 |
20(181) | → | 177 |
20(14) | → | 15 |
20(27) | → | 141 |
20(163) | → | 160 |
20(13) | → | 78 |
20(57) | → | 55 |
20(170) | → | 192 |
20(84) | → | 85 |
20(39) | → | 65 |
20(204) | → | 201 |
20(53) | → | 54 |
20(178) | → | 179 |
20(33) | → | 165 |
20(94) | → | 95 |
20(104) | → | 100 |
20(171) | → | 169 |
20(149) | → | 145 |
20(196) | → | 193 |
10(106) | → | 107 |
10(151) | → | 152 |
10(126) | → | 146 |
10(170) | → | 171 |
10(78) | → | 97 |
10(91) | → | 94 |
10(183) | → | 184 |
10(166) | → | 167 |
10(85) | → | 81 |
10(173) | → | 174 |
10(8) | → | 9 |
10(95) | → | 93 |
10(79) | → | 80 |
10(194) | → | 195 |
10(92) | → | 90 |
10(36) | → | 37 |
10(29) | → | 56 |
10(28) | → | 29 |
10(3) | → | 173 |
10(40) | → | 41 |
10(121) | → | 119 |
10(111) | → | 109 |
10(25) | → | 21 |
10(101) | → | 113 |
10(192) | → | 191 |
10(102) | → | 103 |
10(15) | → | 110 |
10(117) | → | 118 |
10(133) | → | 134 |
10(103) | → | 104 |
10(17) | → | 12 |
10(2) | → | 126 |
10(141) | → | 142 |
10(4) | → | 5 |
10(44) | → | 45 |
10(16) | → | 17 |
10(52) | → | 53 |
10(190) | → | 186 |
40(101) | → | 102 |
40(8) | → | 22 |
40(78) | → | 79 |
40(5) | → | 49 |
40(63) | → | 61 |
40(94) | → | 159 |
40(152) | → | 150 |
40(69) | → | 70 |
40(54) | → | 50 |
40(13) | → | 178 |
40(148) | → | 149 |
40(155) | → | 156 |
40(156) | → | 153 |
40(9) | → | 19 |
40(165) | → | 166 |
40(74) | → | 75 |
40(137) | → | 138 |
40(34) | → | 35 |
40(138) | → | 139 |
40(144) | → | 140 |
40(199) | → | 200 |
40(115) | → | 112 |
40(2) | → | 27 |
50(180) | → | 181 |
50(60) | → | 58 |
50(189) | → | 190 |
50(200) | → | 197 |
50(97) | → | 98 |
50(130) | → | 125 |
50(127) | → | 128 |
50(162) | → | 163 |
50(2) | → | 33 |
50(3) | → | 82 |
50(30) | → | 31 |
50(124) | → | 122 |
50(44) | → | 69 |
50(8) | → | 39 |
50(52) | → | 170 |
50(101) | → | 183 |
50(33) | → | 73 |
50(15) | → | 120 |
50(67) | → | 64 |
50(51) | → | 132 |
f60 | → | 2 |
00(2) | → | 13 |
00(167) | → | 168 |
00(51) | → | 59 |
00(114) | → | 115 |
00(46) | → | 47 |
00(56) | → | 57 |
00(9) | → | 10 |
00(65) | → | 66 |
00(128) | → | 129 |
00(134) | → | 131 |
00(10) | → | 11 |
00(184) | → | 185 |
00(49) | → | 48 |
00(146) | → | 147 |
00(19) | → | 20 |
00(71) | → | 68 |
00(107) | → | 108 |
00(159) | → | 158 |
00(37) | → | 32 |
00(76) | → | 72 |
00(89) | → | 86 |
00(3) | → | 187 |
00(6) | → | 1 |
00(118) | → | 116 |
00(141) | → | 161 |
00(66) | → | 67 |
00(70) | → | 71 |
00(23) | → | 24 |
00(139) | → | 135 |
00(29) | → | 30 |
00(33) | → | 34 |
00(27) | → | 51 |
00(195) | → | 196 |
00(45) | → | 46 |
00(129) | → | 130 |
00(22) | → | 23 |
00(42) | → | 38 |
00(75) | → | 76 |
00(20) | → | 18 |
00(82) | → | 83 |
00(126) | → | 136 |
00(174) | → | 175 |
00(97) | → | 123 |
00(154) | → | 155 |
00(142) | → | 143 |
00(41) | → | 42 |
00(34) | → | 62 |
00(44) | → | 202 |
00(187) | → | 188 |
00(31) | → | 26 |
00(5) | → | 6 |
00(13) | → | 14 |
00(47) | → | 157 |
00(168) | → | 164 |
01(225) | → | 226 |
01(207) | → | 208 |
01(206) | → | 207 |
01(224) | → | 225 |
41(205) | → | 206 |
41(227) | → | 228 |
41(231) | → | 232 |