YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
0(1(1(2(x0)))) | → | 0(1(0(3(1(2(x0)))))) |
0(2(3(1(x0)))) | → | 0(3(2(0(1(x0))))) |
0(2(3(1(x0)))) | → | 1(0(3(4(2(x0))))) |
0(2(3(1(x0)))) | → | 4(0(3(2(1(x0))))) |
0(2(3(1(x0)))) | → | 0(0(3(2(1(4(x0)))))) |
3(0(1(1(x0)))) | → | 0(3(4(1(1(0(x0)))))) |
3(0(1(2(x0)))) | → | 0(3(4(1(2(4(x0)))))) |
3(0(1(2(x0)))) | → | 0(3(4(4(1(2(x0)))))) |
3(0(2(1(x0)))) | → | 0(3(2(1(0(x0))))) |
3(0(2(1(x0)))) | → | 0(3(2(1(4(x0))))) |
3(0(2(1(x0)))) | → | 0(3(4(2(1(0(x0)))))) |
0(1(0(1(2(x0))))) | → | 0(0(2(1(1(3(x0)))))) |
0(1(1(4(2(x0))))) | → | 1(0(3(1(4(2(x0)))))) |
0(1(2(3(1(x0))))) | → | 1(0(3(1(2(2(x0)))))) |
0(1(2(3(1(x0))))) | → | 1(4(0(3(1(2(x0)))))) |
0(1(2(3(1(x0))))) | → | 2(1(0(3(2(1(x0)))))) |
0(1(5(3(1(x0))))) | → | 0(3(1(5(4(1(x0)))))) |
0(2(3(2(1(x0))))) | → | 0(3(2(4(1(2(x0)))))) |
0(2(4(3(1(x0))))) | → | 0(3(4(1(2(0(x0)))))) |
0(2(4(3(1(x0))))) | → | 1(0(0(3(4(2(x0)))))) |
0(3(3(1(2(x0))))) | → | 3(0(1(0(3(2(x0)))))) |
0(3(3(2(1(x0))))) | → | 0(3(2(3(1(4(x0)))))) |
0(5(2(3(1(x0))))) | → | 0(3(2(1(5(4(x0)))))) |
0(5(2(3(1(x0))))) | → | 0(5(0(3(2(1(x0)))))) |
0(5(4(3(1(x0))))) | → | 0(3(4(1(4(5(x0)))))) |
1(4(0(1(2(x0))))) | → | 2(1(4(0(3(1(x0)))))) |
3(0(1(0(2(x0))))) | → | 0(3(2(0(4(1(x0)))))) |
3(0(2(3(1(x0))))) | → | 3(0(0(3(1(2(x0)))))) |
3(0(2(5(1(x0))))) | → | 0(3(2(5(0(1(x0)))))) |
3(0(2(5(1(x0))))) | → | 0(3(5(2(1(4(x0)))))) |
3(0(2(5(1(x0))))) | → | 5(4(0(3(2(1(x0)))))) |
3(0(4(5(1(x0))))) | → | 5(0(0(3(4(1(x0)))))) |
3(3(0(1(4(x0))))) | → | 3(0(0(3(1(4(x0)))))) |
3(3(1(1(1(x0))))) | → | 0(3(1(3(1(1(x0)))))) |
3(3(1(1(2(x0))))) | → | 1(3(2(1(4(3(x0)))))) |
3(3(1(1(4(x0))))) | → | 4(4(3(1(3(1(x0)))))) |
3(4(3(2(1(x0))))) | → | 3(0(3(2(4(1(x0)))))) |
3(5(0(2(1(x0))))) | → | 0(3(2(0(5(1(x0)))))) |
3(5(0(2(1(x0))))) | → | 0(3(5(2(4(1(x0)))))) |
4(0(1(1(4(x0))))) | → | 1(0(3(4(4(1(x0)))))) |
4(5(3(2(1(x0))))) | → | 0(3(1(5(2(4(x0)))))) |
5(0(1(1(4(x0))))) | → | 0(3(1(5(1(4(x0)))))) |
5(0(2(3(1(x0))))) | → | 5(0(3(2(1(0(x0)))))) |
5(3(0(1(1(x0))))) | → | 0(3(1(1(5(0(x0)))))) |
5(3(0(2(1(x0))))) | → | 0(3(4(2(1(5(x0)))))) |
5(3(0(2(1(x0))))) | → | 0(3(5(1(2(4(x0)))))) |
5(3(1(1(2(x0))))) | → | 3(1(2(1(4(5(x0)))))) |
5(3(1(1(4(x0))))) | → | 3(4(1(5(2(1(x0)))))) |
5(4(3(4(1(x0))))) | → | 0(3(4(4(1(5(x0)))))) |
final states:
{189, 185, 182, 179, 174, 169, 168, 164, 160, 156, 153, 148, 144, 140, 135, 130, 127, 123, 122, 119, 115, 113, 109, 104, 98, 96, 91, 87, 82, 80, 75, 72, 67, 65, 63, 58, 54, 48, 45, 26, 42, 38, 33, 27, 21, 17, 13, 8, 1}
transitions:
33 | → | 49 |
87 | → | 28 |
80 | → | 28 |
98 | → | 28 |
96 | → | 28 |
119 | → | 49 |
122 | → | 49 |
65 | → | 10 |
65 | → | 28 |
185 | → | 99 |
130 | → | 49 |
1 | → | 10 |
1 | → | 28 |
123 | → | 49 |
8 | → | 28 |
127 | → | 49 |
13 | → | 28 |
135 | → | 49 |
179 | → | 99 |
26 | → | 49 |
38 | → | 49 |
91 | → | 28 |
58 | → | 10 |
58 | → | 28 |
21 | → | 28 |
72 | → | 28 |
153 | → | 49 |
109 | → | 49 |
54 | → | 10 |
54 | → | 28 |
75 | → | 28 |
174 | → | 99 |
67 | → | 10 |
67 | → | 28 |
82 | → | 28 |
45 | → | 49 |
63 | → | 10 |
63 | → | 28 |
169 | → | 99 |
104 | → | 23 |
104 | → | 9 |
140 | → | 49 |
113 | → | 49 |
182 | → | 99 |
42 | → | 49 |
189 | → | 92 |
189 | → | 99 |
115 | → | 49 |
48 | → | 10 |
48 | → | 28 |
17 | → | 28 |
160 | → | 100 |
160 | → | 22 |
164 | → | 116 |
164 | → | 170 |
164 | → | 99 |
168 | → | 170 |
168 | → | 99 |
148 | → | 49 |
144 | → | 49 |
27 | → | 49 |
156 | → | 22 |
f60 | → | 2 |
50(20) | → | 97 |
50(18) | → | 186 |
50(68) | → | 69 |
50(24) | → | 120 |
50(34) | → | 161 |
50(22) | → | 92 |
50(9) | → | 149 |
50(23) | → | 165 |
50(42) | → | 168 |
50(145) | → | 154 |
50(126) | → | 123 |
50(2) | → | 99 |
50(28) | → | 170 |
50(35) | → | 180 |
50(10) | → | 116 |
50(17) | → | 122 |
10(100) | → | 101 |
10(165) | → | 166 |
10(170) | → | 171 |
10(81) | → | 80 |
10(76) | → | 77 |
10(14) | → | 55 |
10(183) | → | 184 |
10(59) | → | 60 |
10(159) | → | 156 |
10(136) | → | 137 |
10(84) | → | 85 |
10(132) | → | 133 |
10(34) | → | 35 |
10(105) | → | 141 |
10(99) | → | 175 |
10(6) | → | 7 |
10(107) | → | 108 |
10(92) | → | 93 |
10(29) | → | 30 |
10(28) | → | 29 |
10(3) | → | 4 |
10(139) | → | 135 |
10(69) | → | 70 |
10(64) | → | 63 |
10(57) | → | 54 |
10(9) | → | 131 |
10(161) | → | 162 |
10(50) | → | 51 |
10(49) | → | 50 |
10(20) | → | 66 |
10(62) | → | 58 |
10(2) | → | 9 |
10(171) | → | 172 |
10(16) | → | 13 |
10(22) | → | 23 |
10(186) | → | 187 |
30(31) | → | 32 |
30(180) | → | 181 |
30(46) | → | 47 |
30(11) | → | 12 |
30(166) | → | 167 |
30(78) | → | 79 |
30(141) | → | 142 |
30(73) | → | 74 |
30(162) | → | 163 |
30(157) | → | 158 |
30(120) | → | 121 |
30(3) | → | 83 |
30(86) | → | 82 |
30(129) | → | 127 |
30(24) | → | 25 |
30(184) | → | 182 |
30(89) | → | 90 |
30(133) | → | 134 |
30(111) | → | 112 |
30(138) | → | 139 |
30(114) | → | 113 |
30(18) | → | 19 |
30(68) | → | 124 |
30(9) | → | 105 |
30(70) | → | 71 |
30(151) | → | 152 |
30(131) | → | 132 |
30(94) | → | 95 |
30(60) | → | 61 |
30(145) | → | 146 |
30(177) | → | 178 |
30(102) | → | 103 |
30(55) | → | 56 |
30(4) | → | 5 |
30(117) | → | 118 |
30(191) | → | 192 |
30(14) | → | 15 |
30(36) | → | 37 |
30(43) | → | 44 |
30(40) | → | 41 |
30(2) | → | 49 |
30(23) | → | 88 |
30(147) | → | 144 |
30(154) | → | 155 |
30(172) | → | 173 |
30(188) | → | 185 |
20(2) | → | 3 |
20(175) | → | 176 |
20(51) | → | 52 |
20(110) | → | 111 |
20(88) | → | 89 |
20(28) | → | 76 |
20(150) | → | 151 |
20(108) | → | 104 |
20(9) | → | 18 |
20(93) | → | 94 |
20(68) | → | 145 |
20(23) | → | 24 |
20(137) | → | 138 |
20(116) | → | 117 |
20(66) | → | 65 |
20(39) | → | 73 |
20(3) | → | 59 |
20(10) | → | 11 |
20(29) | → | 43 |
20(101) | → | 183 |
20(22) | → | 34 |
00(2) | → | 28 |
00(167) | → | 164 |
00(163) | → | 160 |
00(149) | → | 150 |
00(56) | → | 57 |
00(9) | → | 10 |
00(90) | → | 87 |
00(128) | → | 129 |
00(134) | → | 130 |
00(146) | → | 147 |
00(105) | → | 106 |
00(95) | → | 91 |
00(79) | → | 75 |
00(19) | → | 20 |
00(152) | → | 148 |
00(71) | → | 67 |
00(25) | → | 26 |
00(124) | → | 125 |
00(61) | → | 62 |
00(26) | → | 21 |
00(37) | → | 33 |
00(155) | → | 153 |
00(74) | → | 72 |
00(178) | → | 174 |
00(181) | → | 179 |
00(192) | → | 189 |
00(6) | → | 114 |
00(83) | → | 84 |
00(118) | → | 115 |
00(53) | → | 48 |
00(125) | → | 126 |
00(32) | → | 27 |
00(121) | → | 119 |
00(173) | → | 169 |
00(112) | → | 109 |
00(7) | → | 1 |
00(15) | → | 16 |
00(52) | → | 53 |
00(103) | → | 98 |
00(85) | → | 86 |
00(12) | → | 8 |
00(97) | → | 96 |
00(41) | → | 38 |
00(44) | → | 42 |
00(16) | → | 81 |
00(5) | → | 6 |
00(88) | → | 128 |
00(68) | → | 110 |
00(158) | → | 159 |
00(47) | → | 45 |
40(143) | → | 140 |
40(101) | → | 102 |
40(106) | → | 107 |
40(142) | → | 143 |
40(99) | → | 100 |
40(4) | → | 39 |
40(43) | → | 46 |
40(6) | → | 64 |
40(39) | → | 40 |
40(20) | → | 17 |
40(9) | → | 68 |
40(49) | → | 136 |
40(35) | → | 36 |
40(3) | → | 14 |
40(30) | → | 31 |
40(190) | → | 191 |
40(176) | → | 177 |
40(175) | → | 190 |
40(77) | → | 78 |
40(68) | → | 157 |
40(187) | → | 188 |
40(2) | → | 22 |