YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
0(1(0(2(x0)))) | → | 0(0(3(1(2(x0))))) |
0(1(3(4(x0)))) | → | 0(4(1(0(3(x0))))) |
0(1(3(4(x0)))) | → | 0(4(1(1(3(x0))))) |
0(1(3(4(x0)))) | → | 0(4(1(3(1(x0))))) |
0(2(1(4(x0)))) | → | 0(4(1(2(3(x0))))) |
0(2(1(4(x0)))) | → | 0(4(1(3(2(x0))))) |
0(2(1(4(x0)))) | → | 2(0(4(1(4(x0))))) |
0(2(1(4(x0)))) | → | 5(5(0(4(1(2(x0)))))) |
0(2(1(5(x0)))) | → | 5(0(4(1(2(x0))))) |
0(2(2(4(x0)))) | → | 0(4(2(2(5(x0))))) |
0(2(2(4(x0)))) | → | 0(4(2(5(2(x0))))) |
3(4(0(2(x0)))) | → | 3(0(4(5(2(x0))))) |
3(4(0(2(x0)))) | → | 3(5(0(4(2(x0))))) |
0(0(1(4(5(x0))))) | → | 0(4(1(0(3(5(x0)))))) |
0(1(0(2(4(x0))))) | → | 2(0(0(4(1(1(x0)))))) |
0(1(2(3(4(x0))))) | → | 2(0(4(1(0(3(x0)))))) |
0(1(3(3(4(x0))))) | → | 0(0(3(1(3(4(x0)))))) |
0(1(4(0(2(x0))))) | → | 0(4(1(5(0(2(x0)))))) |
0(1(4(1(5(x0))))) | → | 2(5(0(4(1(1(x0)))))) |
0(1(4(3(4(x0))))) | → | 0(4(0(3(1(4(x0)))))) |
0(1(4(3(4(x0))))) | → | 3(0(4(1(5(4(x0)))))) |
0(1(4(3(5(x0))))) | → | 5(4(5(0(3(1(x0)))))) |
0(1(5(0(2(x0))))) | → | 0(0(4(1(2(5(x0)))))) |
0(1(5(1(4(x0))))) | → | 4(5(0(3(1(1(x0)))))) |
0(2(1(4(4(x0))))) | → | 0(4(1(2(4(3(x0)))))) |
0(2(1(4(5(x0))))) | → | 0(4(1(2(5(2(x0)))))) |
0(2(1(5(4(x0))))) | → | 5(0(2(0(4(1(x0)))))) |
0(2(4(1(5(x0))))) | → | 5(0(4(1(5(2(x0)))))) |
0(2(4(3(5(x0))))) | → | 0(4(5(2(5(3(x0)))))) |
0(2(5(1(4(x0))))) | → | 0(0(5(4(1(2(x0)))))) |
3(0(1(3(2(x0))))) | → | 0(3(1(0(3(2(x0)))))) |
3(0(2(1(4(x0))))) | → | 4(0(4(1(3(2(x0)))))) |
3(0(2(1(5(x0))))) | → | 5(3(2(0(4(1(x0)))))) |
3(0(4(0(2(x0))))) | → | 0(3(4(0(4(2(x0)))))) |
3(0(4(0(2(x0))))) | → | 0(4(1(2(0(3(x0)))))) |
3(0(5(1(4(x0))))) | → | 3(0(4(1(1(5(x0)))))) |
3(0(5(1(5(x0))))) | → | 0(4(1(3(5(5(x0)))))) |
3(2(4(1(2(x0))))) | → | 3(1(2(2(5(4(x0)))))) |
3(2(4(1(5(x0))))) | → | 3(1(4(5(2(5(x0)))))) |
3(4(0(1(2(x0))))) | → | 0(4(2(0(3(1(x0)))))) |
3(4(0(1(4(x0))))) | → | 0(4(1(5(3(4(x0)))))) |
3(4(0(1(5(x0))))) | → | 0(4(1(5(5(3(x0)))))) |
3(4(0(2(4(x0))))) | → | 0(3(4(0(4(2(x0)))))) |
3(4(1(2(4(x0))))) | → | 0(4(1(2(4(3(x0)))))) |
3(4(1(3(5(x0))))) | → | 4(3(0(3(1(5(x0)))))) |
3(4(3(0(2(x0))))) | → | 3(3(0(4(1(2(x0)))))) |
3(4(5(0(2(x0))))) | → | 0(3(0(4(2(5(x0)))))) |
3(5(0(2(2(x0))))) | → | 0(3(2(5(2(5(x0)))))) |
3(5(2(1(4(x0))))) | → | 3(5(1(0(4(2(x0)))))) |
2(0(1(0(x0)))) | → | 2(1(3(0(0(x0))))) |
4(3(1(0(x0)))) | → | 3(0(1(4(0(x0))))) |
4(3(1(0(x0)))) | → | 3(1(1(4(0(x0))))) |
4(3(1(0(x0)))) | → | 1(3(1(4(0(x0))))) |
4(1(2(0(x0)))) | → | 3(2(1(4(0(x0))))) |
4(1(2(0(x0)))) | → | 2(3(1(4(0(x0))))) |
4(1(2(0(x0)))) | → | 4(1(4(0(2(x0))))) |
4(1(2(0(x0)))) | → | 2(1(4(0(5(5(x0)))))) |
5(1(2(0(x0)))) | → | 2(1(4(0(5(x0))))) |
4(2(2(0(x0)))) | → | 5(2(2(4(0(x0))))) |
4(2(2(0(x0)))) | → | 2(5(2(4(0(x0))))) |
2(0(4(3(x0)))) | → | 2(5(4(0(3(x0))))) |
2(0(4(3(x0)))) | → | 2(4(0(5(3(x0))))) |
5(4(1(0(0(x0))))) | → | 5(3(0(1(4(0(x0)))))) |
4(2(0(1(0(x0))))) | → | 1(1(4(0(0(2(x0)))))) |
4(3(2(1(0(x0))))) | → | 3(0(1(4(0(2(x0)))))) |
4(3(3(1(0(x0))))) | → | 4(3(1(3(0(0(x0)))))) |
2(0(4(1(0(x0))))) | → | 2(0(5(1(4(0(x0)))))) |
5(1(4(1(0(x0))))) | → | 1(1(4(0(5(2(x0)))))) |
4(3(4(1(0(x0))))) | → | 4(1(3(0(4(0(x0)))))) |
4(3(4(1(0(x0))))) | → | 4(5(1(4(0(3(x0)))))) |
5(3(4(1(0(x0))))) | → | 1(3(0(5(4(5(x0)))))) |
2(0(5(1(0(x0))))) | → | 5(2(1(4(0(0(x0)))))) |
4(1(5(1(0(x0))))) | → | 1(1(3(0(5(4(x0)))))) |
4(4(1(2(0(x0))))) | → | 3(4(2(1(4(0(x0)))))) |
5(4(1(2(0(x0))))) | → | 2(5(2(1(4(0(x0)))))) |
4(5(1(2(0(x0))))) | → | 1(4(0(2(0(5(x0)))))) |
5(1(4(2(0(x0))))) | → | 2(5(1(4(0(5(x0)))))) |
5(3(4(2(0(x0))))) | → | 3(5(2(5(4(0(x0)))))) |
4(1(5(2(0(x0))))) | → | 2(1(4(5(0(0(x0)))))) |
2(3(1(0(3(x0))))) | → | 2(3(0(1(3(0(x0)))))) |
4(1(2(0(3(x0))))) | → | 2(3(1(4(0(4(x0)))))) |
5(1(2(0(3(x0))))) | → | 1(4(0(2(3(5(x0)))))) |
2(0(4(0(3(x0))))) | → | 2(4(0(4(3(0(x0)))))) |
2(0(4(0(3(x0))))) | → | 3(0(2(1(4(0(x0)))))) |
4(1(5(0(3(x0))))) | → | 5(1(1(4(0(3(x0)))))) |
5(1(5(0(3(x0))))) | → | 5(5(3(1(4(0(x0)))))) |
2(1(4(2(3(x0))))) | → | 4(5(2(2(1(3(x0)))))) |
5(1(4(2(3(x0))))) | → | 5(2(5(4(1(3(x0)))))) |
2(1(0(4(3(x0))))) | → | 1(3(0(2(4(0(x0)))))) |
4(1(0(4(3(x0))))) | → | 4(3(5(1(4(0(x0)))))) |
5(1(0(4(3(x0))))) | → | 3(5(5(1(4(0(x0)))))) |
4(2(0(4(3(x0))))) | → | 2(4(0(4(3(0(x0)))))) |
4(2(1(4(3(x0))))) | → | 3(4(2(1(4(0(x0)))))) |
5(3(1(4(3(x0))))) | → | 5(1(3(0(3(4(x0)))))) |
2(0(3(4(3(x0))))) | → | 2(1(4(0(3(3(x0)))))) |
2(0(5(4(3(x0))))) | → | 5(2(4(0(3(0(x0)))))) |
2(2(0(5(3(x0))))) | → | 5(2(5(2(3(0(x0)))))) |
4(1(2(5(3(x0))))) | → | 2(4(0(1(5(3(x0)))))) |
final states:
{163, 159, 155, 150, 145, 143, 141, 138, 134, 129, 127, 125, 123, 119, 114, 109, 104, 100, 96, 94, 90, 88, 86, 80, 76, 71, 68, 64, 59, 56, 54, 52, 48, 47, 43, 38, 36, 33, 29, 23, 18, 17, 15, 13, 11, 7, 1}
transitions:
33 | → | 81 |
23 | → | 81 |
29 | → | 24 |
80 | → | 81 |
15 | → | 81 |
96 | → | 44 |
96 | → | 24 |
129 | → | 19 |
119 | → | 19 |
119 | → | 81 |
145 | → | 44 |
145 | → | 24 |
18 | → | 81 |
134 | → | 24 |
59 | → | 24 |
90 | → | 72 |
90 | → | 81 |
1 | → | 19 |
123 | → | 19 |
71 | → | 44 |
71 | → | 24 |
127 | → | 24 |
13 | → | 81 |
125 | → | 81 |
76 | → | 91 |
76 | → | 19 |
38 | → | 19 |
86 | → | 81 |
36 | → | 81 |
141 | → | 81 |
138 | → | 19 |
150 | → | 19 |
109 | → | 81 |
88 | → | 82 |
88 | → | 24 |
54 | → | 81 |
52 | → | 81 |
143 | → | 24 |
11 | → | 81 |
114 | → | 24 |
104 | → | 19 |
100 | → | 81 |
7 | → | 81 |
64 | → | 81 |
48 | → | 81 |
17 | → | 81 |
47 | → | 24 |
68 | → | 81 |
159 | → | 19 |
43 | → | 19 |
163 | → | 81 |
56 | → | 19 |
155 | → | 91 |
155 | → | 19 |
94 | → | 24 |
30(74) | → | 75 |
30(16) | → | 15 |
30(65) | → | 66 |
30(53) | → | 52 |
30(144) | → | 143 |
30(112) | → | 113 |
30(3) | → | 105 |
30(24) | → | 115 |
30(87) | → | 86 |
30(9) | → | 14 |
30(83) | → | 84 |
30(99) | → | 96 |
30(6) | → | 55 |
30(39) | → | 151 |
30(81) | → | 146 |
30(107) | → | 108 |
30(10) | → | 7 |
30(4) | → | 5 |
30(124) | → | 123 |
30(139) | → | 140 |
30(2) | → | 39 |
30(57) | → | 142 |
30(147) | → | 148 |
30(12) | → | 11 |
00(73) | → | 74 |
00(20) | → | 49 |
00(2) | → | 3 |
00(25) | → | 26 |
00(82) | → | 83 |
00(120) | → | 121 |
00(19) | → | 20 |
00(44) | → | 45 |
00(16) | → | 124 |
00(24) | → | 30 |
00(34) | → | 139 |
00(164) | → | 165 |
00(8) | → | 65 |
00(91) | → | 92 |
00(60) | → | 61 |
00(106) | → | 107 |
00(105) | → | 156 |
00(9) | → | 10 |
00(57) | → | 58 |
00(116) | → | 117 |
00(39) | → | 40 |
00(146) | → | 147 |
00(3) | → | 4 |
00(81) | → | 110 |
00(22) | → | 53 |
00(151) | → | 152 |
10(148) | → | 149 |
10(41) | → | 69 |
10(14) | → | 13 |
10(63) | → | 59 |
10(85) | → | 80 |
10(118) | → | 114 |
10(51) | → | 48 |
10(8) | → | 9 |
10(84) | → | 85 |
10(105) | → | 106 |
10(77) | → | 78 |
10(75) | → | 71 |
10(69) | → | 126 |
10(140) | → | 138 |
10(111) | → | 112 |
10(9) | → | 12 |
10(50) | → | 51 |
10(102) | → | 103 |
10(27) | → | 28 |
10(21) | → | 22 |
10(31) | → | 32 |
10(62) | → | 63 |
10(5) | → | 6 |
10(93) | → | 90 |
10(153) | → | 154 |
10(44) | → | 164 |
10(39) | → | 130 |
10(66) | → | 67 |
40(101) | → | 102 |
40(142) | → | 141 |
40(61) | → | 62 |
40(117) | → | 118 |
40(152) | → | 153 |
40(26) | → | 27 |
40(4) | → | 77 |
40(22) | → | 18 |
40(92) | → | 93 |
40(20) | → | 21 |
40(67) | → | 64 |
40(156) | → | 157 |
40(49) | → | 50 |
40(40) | → | 41 |
40(16) | → | 87 |
40(3) | → | 8 |
40(165) | → | 166 |
40(30) | → | 31 |
40(133) | → | 129 |
40(70) | → | 68 |
40(110) | → | 111 |
40(121) | → | 122 |
40(24) | → | 72 |
40(45) | → | 46 |
40(130) | → | 135 |
40(55) | → | 54 |
40(105) | → | 120 |
40(2) | → | 81 |
50(132) | → | 133 |
50(135) | → | 136 |
50(16) | → | 89 |
50(137) | → | 134 |
50(72) | → | 73 |
50(79) | → | 76 |
50(128) | → | 127 |
50(24) | → | 25 |
50(34) | → | 37 |
50(19) | → | 60 |
50(98) | → | 99 |
50(7) | → | 47 |
50(32) | → | 95 |
50(9) | → | 57 |
50(69) | → | 70 |
50(126) | → | 125 |
50(4) | → | 101 |
50(14) | → | 128 |
50(162) | → | 159 |
50(2) | → | 24 |
50(41) | → | 42 |
50(35) | → | 33 |
50(8) | → | 97 |
50(149) | → | 145 |
50(39) | → | 44 |
50(158) | → | 155 |
50(81) | → | 82 |
50(57) | → | 144 |
50(160) | → | 161 |
f60 | → | 2 |
20(2) | → | 19 |
20(157) | → | 158 |
20(46) | → | 43 |
20(28) | → | 23 |
20(9) | → | 16 |
20(105) | → | 160 |
20(95) | → | 94 |
20(166) | → | 163 |
20(113) | → | 109 |
20(30) | → | 91 |
20(131) | → | 132 |
20(8) | → | 34 |
20(37) | → | 36 |
20(89) | → | 88 |
20(6) | → | 1 |
20(14) | → | 17 |
20(136) | → | 137 |
20(32) | → | 29 |
20(161) | → | 162 |
20(130) | → | 131 |
20(103) | → | 100 |
20(42) | → | 38 |
20(97) | → | 98 |
20(154) | → | 150 |
20(108) | → | 104 |
20(34) | → | 35 |
20(78) | → | 79 |
20(58) | → | 56 |
20(115) | → | 116 |
20(122) | → | 119 |