YES Termination w.r.t. Q proof of /home/cern_httpd/provide/research/cycsrs/tpdb/TPDB-d9b80194f163/SRS_Standard/ICFP_2010/212892.srs

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

0(0(x)) → 1(0(2(0(2(x)))))
0(0(x)) → 0(2(3(4(0(2(x))))))
0(3(x)) → 0(2(3(2(x))))
0(3(x)) → 2(0(2(1(3(x)))))
0(3(x)) → 2(3(0(2(2(x)))))
0(3(x)) → 0(2(2(2(3(2(x))))))
0(0(0(x))) → 0(2(0(0(x))))
0(0(4(x))) → 2(4(0(0(3(2(x))))))
0(0(5(x))) → 0(5(2(0(x))))
0(1(3(x))) → 3(2(2(1(0(x)))))
0(3(0(x))) → 2(0(2(3(4(0(x))))))
0(4(3(x))) → 3(0(2(4(x))))
0(4(3(x))) → 1(0(2(1(3(4(x))))))
0(4(3(x))) → 2(2(4(3(4(0(x))))))
0(4(5(x))) → 2(4(0(5(2(5(x))))))
0(4(5(x))) → 5(3(2(4(4(0(x))))))
0(5(0(x))) → 0(5(2(4(0(x)))))
0(5(0(x))) → 5(0(2(3(2(0(x))))))
0(5(3(x))) → 3(2(5(3(2(0(x))))))
1(0(0(x))) → 1(0(2(5(0(2(x))))))
1(0(3(x))) → 2(1(3(0(5(2(x))))))
1(0(4(x))) → 3(0(2(1(4(x)))))
1(0(4(x))) → 2(1(2(1(4(0(x))))))
3(0(0(x))) → 3(0(2(0(x))))
3(0(3(x))) → 3(0(2(3(x))))
3(0(3(x))) → 3(3(2(2(0(x)))))
3(0(4(x))) → 2(2(3(4(0(x)))))
3(0(4(x))) → 2(3(4(2(0(3(x))))))
3(0(4(x))) → 5(5(2(4(0(3(x))))))
3(3(4(x))) → 3(2(1(3(2(4(x))))))
3(5(0(x))) → 3(5(1(0(2(1(x))))))
4(0(4(x))) → 0(2(4(4(0(x)))))
4(0(4(x))) → 1(4(0(2(4(0(x))))))
0(0(4(3(x)))) → 3(0(0(2(1(4(x))))))
0(0(5(3(x)))) → 0(5(2(5(0(3(x))))))
0(1(0(3(x)))) → 2(1(0(3(0(x)))))
0(1(1(0(x)))) → 2(1(0(0(1(2(x))))))
0(4(0(0(x)))) → 0(4(0(2(1(0(x))))))
0(4(1(3(x)))) → 2(1(4(2(0(3(x))))))
0(4(5(3(x)))) → 4(3(2(5(0(x)))))
0(4(5(3(x)))) → 4(3(5(0(2(4(x))))))
0(5(0(4(x)))) → 5(0(0(2(4(x)))))
0(5(5(3(x)))) → 2(3(5(5(0(x)))))
1(3(0(4(x)))) → 4(0(1(2(3(x)))))
4(0(3(5(x)))) → 5(2(3(4(2(0(x))))))
0(0(1(0(4(x))))) → 0(0(0(1(4(2(x))))))
0(0(5(5(3(x))))) → 0(5(0(3(2(5(x))))))
3(0(4(3(4(x))))) → 3(0(3(4(2(4(x))))))
3(3(0(4(5(x))))) → 1(4(5(3(0(3(x))))))
3(4(2(0(3(x))))) → 2(3(0(2(3(4(x))))))

Q is empty.

(1) QTRS Reverse (EQUIVALENT transformation)

We applied the QTRS Reverse Processor [REVERSE].

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

0(0(x)) → 2(0(2(0(1(x)))))
0(0(x)) → 2(0(4(3(2(0(x))))))
3(0(x)) → 2(3(2(0(x))))
3(0(x)) → 3(1(2(0(2(x)))))
3(0(x)) → 2(2(0(3(2(x)))))
3(0(x)) → 2(3(2(2(2(0(x))))))
0(0(0(x))) → 0(0(2(0(x))))
4(0(0(x))) → 2(3(0(0(4(2(x))))))
5(0(0(x))) → 0(2(5(0(x))))
3(1(0(x))) → 0(1(2(2(3(x)))))
0(3(0(x))) → 0(4(3(2(0(2(x))))))
3(4(0(x))) → 4(2(0(3(x))))
3(4(0(x))) → 4(3(1(2(0(1(x))))))
3(4(0(x))) → 0(4(3(4(2(2(x))))))
5(4(0(x))) → 5(2(5(0(4(2(x))))))
5(4(0(x))) → 0(4(4(2(3(5(x))))))
0(5(0(x))) → 0(4(2(5(0(x)))))
0(5(0(x))) → 0(2(3(2(0(5(x))))))
3(5(0(x))) → 0(2(3(5(2(3(x))))))
0(0(1(x))) → 2(0(5(2(0(1(x))))))
3(0(1(x))) → 2(5(0(3(1(2(x))))))
4(0(1(x))) → 4(1(2(0(3(x)))))
4(0(1(x))) → 0(4(1(2(1(2(x))))))
0(0(3(x))) → 0(2(0(3(x))))
3(0(3(x))) → 3(2(0(3(x))))
3(0(3(x))) → 0(2(2(3(3(x)))))
4(0(3(x))) → 0(4(3(2(2(x)))))
4(0(3(x))) → 3(0(2(4(3(2(x))))))
4(0(3(x))) → 3(0(4(2(5(5(x))))))
4(3(3(x))) → 4(2(3(1(2(3(x))))))
0(5(3(x))) → 1(2(0(1(5(3(x))))))
4(0(4(x))) → 0(4(4(2(0(x)))))
4(0(4(x))) → 0(4(2(0(4(1(x))))))
3(4(0(0(x)))) → 4(1(2(0(0(3(x))))))
3(5(0(0(x)))) → 3(0(5(2(5(0(x))))))
3(0(1(0(x)))) → 0(3(0(1(2(x)))))
0(1(1(0(x)))) → 2(1(0(0(1(2(x))))))
0(0(4(0(x)))) → 0(1(2(0(4(0(x))))))
3(1(4(0(x)))) → 3(0(2(4(1(2(x))))))
3(5(4(0(x)))) → 0(5(2(3(4(x)))))
3(5(4(0(x)))) → 4(2(0(5(3(4(x))))))
4(0(5(0(x)))) → 4(2(0(0(5(x)))))
3(5(5(0(x)))) → 0(5(5(3(2(x)))))
4(0(3(1(x)))) → 3(2(1(0(4(x)))))
5(3(0(4(x)))) → 0(2(4(3(2(5(x))))))
4(0(1(0(0(x))))) → 2(4(1(0(0(0(x))))))
3(5(5(0(0(x))))) → 5(2(3(0(5(0(x))))))
4(3(4(0(3(x))))) → 4(2(4(3(0(3(x))))))
5(4(0(3(3(x))))) → 3(0(3(5(4(1(x))))))
3(0(2(4(3(x))))) → 4(3(2(0(3(2(x))))))

Q is empty.

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

01(0(x)) → 01(2(0(1(x))))
01(0(x)) → 01(1(x))
01(0(x)) → 01(4(3(2(0(x)))))
01(0(x)) → 41(3(2(0(x))))
01(0(x)) → 31(2(0(x)))
31(0(x)) → 31(2(0(x)))
31(0(x)) → 31(1(2(0(2(x)))))
31(0(x)) → 01(2(x))
31(0(x)) → 01(3(2(x)))
31(0(x)) → 31(2(x))
31(0(x)) → 31(2(2(2(0(x)))))
01(0(0(x))) → 01(0(2(0(x))))
01(0(0(x))) → 01(2(0(x)))
41(0(0(x))) → 31(0(0(4(2(x)))))
41(0(0(x))) → 01(0(4(2(x))))
41(0(0(x))) → 01(4(2(x)))
41(0(0(x))) → 41(2(x))
51(0(0(x))) → 01(2(5(0(x))))
51(0(0(x))) → 51(0(x))
31(1(0(x))) → 01(1(2(2(3(x)))))
31(1(0(x))) → 31(x)
01(3(0(x))) → 01(4(3(2(0(2(x))))))
01(3(0(x))) → 41(3(2(0(2(x)))))
01(3(0(x))) → 31(2(0(2(x))))
01(3(0(x))) → 01(2(x))
31(4(0(x))) → 41(2(0(3(x))))
31(4(0(x))) → 01(3(x))
31(4(0(x))) → 31(x)
31(4(0(x))) → 41(3(1(2(0(1(x))))))
31(4(0(x))) → 31(1(2(0(1(x)))))
31(4(0(x))) → 01(1(x))
31(4(0(x))) → 01(4(3(4(2(2(x))))))
31(4(0(x))) → 41(3(4(2(2(x)))))
31(4(0(x))) → 31(4(2(2(x))))
31(4(0(x))) → 41(2(2(x)))
51(4(0(x))) → 51(2(5(0(4(2(x))))))
51(4(0(x))) → 51(0(4(2(x))))
51(4(0(x))) → 01(4(2(x)))
51(4(0(x))) → 41(2(x))
51(4(0(x))) → 01(4(4(2(3(5(x))))))
51(4(0(x))) → 41(4(2(3(5(x)))))
51(4(0(x))) → 41(2(3(5(x))))
51(4(0(x))) → 31(5(x))
51(4(0(x))) → 51(x)
01(5(0(x))) → 01(4(2(5(0(x)))))
01(5(0(x))) → 41(2(5(0(x))))
01(5(0(x))) → 01(2(3(2(0(5(x))))))
01(5(0(x))) → 31(2(0(5(x))))
01(5(0(x))) → 01(5(x))
01(5(0(x))) → 51(x)
31(5(0(x))) → 01(2(3(5(2(3(x))))))
31(5(0(x))) → 31(5(2(3(x))))
31(5(0(x))) → 51(2(3(x)))
31(5(0(x))) → 31(x)
01(0(1(x))) → 01(5(2(0(1(x)))))
01(0(1(x))) → 51(2(0(1(x))))
31(0(1(x))) → 51(0(3(1(2(x)))))
31(0(1(x))) → 01(3(1(2(x))))
31(0(1(x))) → 31(1(2(x)))
41(0(1(x))) → 41(1(2(0(3(x)))))
41(0(1(x))) → 01(3(x))
41(0(1(x))) → 31(x)
41(0(1(x))) → 01(4(1(2(1(2(x))))))
41(0(1(x))) → 41(1(2(1(2(x)))))
01(0(3(x))) → 01(2(0(3(x))))
31(0(3(x))) → 31(2(0(3(x))))
31(0(3(x))) → 01(2(2(3(3(x)))))
31(0(3(x))) → 31(3(x))
41(0(3(x))) → 01(4(3(2(2(x)))))
41(0(3(x))) → 41(3(2(2(x))))
41(0(3(x))) → 31(2(2(x)))
41(0(3(x))) → 31(0(2(4(3(2(x))))))
41(0(3(x))) → 01(2(4(3(2(x)))))
41(0(3(x))) → 41(3(2(x)))
41(0(3(x))) → 31(2(x))
41(0(3(x))) → 31(0(4(2(5(5(x))))))
41(0(3(x))) → 01(4(2(5(5(x)))))
41(0(3(x))) → 41(2(5(5(x))))
41(0(3(x))) → 51(5(x))
41(0(3(x))) → 51(x)
41(3(3(x))) → 41(2(3(1(2(3(x))))))
41(3(3(x))) → 31(1(2(3(x))))
01(5(3(x))) → 01(1(5(3(x))))
41(0(4(x))) → 01(4(4(2(0(x)))))
41(0(4(x))) → 41(4(2(0(x))))
41(0(4(x))) → 41(2(0(x)))
41(0(4(x))) → 01(x)
41(0(4(x))) → 01(4(2(0(4(1(x))))))
41(0(4(x))) → 41(2(0(4(1(x)))))
41(0(4(x))) → 01(4(1(x)))
41(0(4(x))) → 41(1(x))
31(4(0(0(x)))) → 41(1(2(0(0(3(x))))))
31(4(0(0(x)))) → 01(0(3(x)))
31(4(0(0(x)))) → 01(3(x))
31(4(0(0(x)))) → 31(x)
31(5(0(0(x)))) → 31(0(5(2(5(0(x))))))
31(5(0(0(x)))) → 01(5(2(5(0(x)))))
31(5(0(0(x)))) → 51(2(5(0(x))))
31(5(0(0(x)))) → 51(0(x))
31(0(1(0(x)))) → 01(3(0(1(2(x)))))
31(0(1(0(x)))) → 31(0(1(2(x))))
31(0(1(0(x)))) → 01(1(2(x)))
01(1(1(0(x)))) → 01(0(1(2(x))))
01(1(1(0(x)))) → 01(1(2(x)))
01(0(4(0(x)))) → 01(1(2(0(4(0(x))))))
31(1(4(0(x)))) → 31(0(2(4(1(2(x))))))
31(1(4(0(x)))) → 01(2(4(1(2(x)))))
31(1(4(0(x)))) → 41(1(2(x)))
31(5(4(0(x)))) → 01(5(2(3(4(x)))))
31(5(4(0(x)))) → 51(2(3(4(x))))
31(5(4(0(x)))) → 31(4(x))
31(5(4(0(x)))) → 41(x)
31(5(4(0(x)))) → 41(2(0(5(3(4(x))))))
31(5(4(0(x)))) → 01(5(3(4(x))))
31(5(4(0(x)))) → 51(3(4(x)))
41(0(5(0(x)))) → 41(2(0(0(5(x)))))
41(0(5(0(x)))) → 01(0(5(x)))
41(0(5(0(x)))) → 01(5(x))
41(0(5(0(x)))) → 51(x)
31(5(5(0(x)))) → 01(5(5(3(2(x)))))
31(5(5(0(x)))) → 51(5(3(2(x))))
31(5(5(0(x)))) → 51(3(2(x)))
31(5(5(0(x)))) → 31(2(x))
41(0(3(1(x)))) → 31(2(1(0(4(x)))))
41(0(3(1(x)))) → 01(4(x))
41(0(3(1(x)))) → 41(x)
51(3(0(4(x)))) → 01(2(4(3(2(5(x))))))
51(3(0(4(x)))) → 41(3(2(5(x))))
51(3(0(4(x)))) → 31(2(5(x)))
51(3(0(4(x)))) → 51(x)
41(0(1(0(0(x))))) → 41(1(0(0(0(x)))))
41(0(1(0(0(x))))) → 01(0(0(x)))
31(5(5(0(0(x))))) → 51(2(3(0(5(0(x))))))
31(5(5(0(0(x))))) → 31(0(5(0(x))))
31(5(5(0(0(x))))) → 01(5(0(x)))
31(5(5(0(0(x))))) → 51(0(x))
41(3(4(0(3(x))))) → 41(2(4(3(0(3(x))))))
41(3(4(0(3(x))))) → 41(3(0(3(x))))
41(3(4(0(3(x))))) → 31(0(3(x)))
51(4(0(3(3(x))))) → 31(0(3(5(4(1(x))))))
51(4(0(3(3(x))))) → 01(3(5(4(1(x)))))
51(4(0(3(3(x))))) → 31(5(4(1(x))))
51(4(0(3(3(x))))) → 51(4(1(x)))
51(4(0(3(3(x))))) → 41(1(x))
31(0(2(4(3(x))))) → 41(3(2(0(3(2(x))))))
31(0(2(4(3(x))))) → 31(2(0(3(2(x)))))
31(0(2(4(3(x))))) → 01(3(2(x)))
31(0(2(4(3(x))))) → 31(2(x))

The TRS R consists of the following rules:

0(0(x)) → 2(0(2(0(1(x)))))
0(0(x)) → 2(0(4(3(2(0(x))))))
3(0(x)) → 2(3(2(0(x))))
3(0(x)) → 3(1(2(0(2(x)))))
3(0(x)) → 2(2(0(3(2(x)))))
3(0(x)) → 2(3(2(2(2(0(x))))))
0(0(0(x))) → 0(0(2(0(x))))
4(0(0(x))) → 2(3(0(0(4(2(x))))))
5(0(0(x))) → 0(2(5(0(x))))
3(1(0(x))) → 0(1(2(2(3(x)))))
0(3(0(x))) → 0(4(3(2(0(2(x))))))
3(4(0(x))) → 4(2(0(3(x))))
3(4(0(x))) → 4(3(1(2(0(1(x))))))
3(4(0(x))) → 0(4(3(4(2(2(x))))))
5(4(0(x))) → 5(2(5(0(4(2(x))))))
5(4(0(x))) → 0(4(4(2(3(5(x))))))
0(5(0(x))) → 0(4(2(5(0(x)))))
0(5(0(x))) → 0(2(3(2(0(5(x))))))
3(5(0(x))) → 0(2(3(5(2(3(x))))))
0(0(1(x))) → 2(0(5(2(0(1(x))))))
3(0(1(x))) → 2(5(0(3(1(2(x))))))
4(0(1(x))) → 4(1(2(0(3(x)))))
4(0(1(x))) → 0(4(1(2(1(2(x))))))
0(0(3(x))) → 0(2(0(3(x))))
3(0(3(x))) → 3(2(0(3(x))))
3(0(3(x))) → 0(2(2(3(3(x)))))
4(0(3(x))) → 0(4(3(2(2(x)))))
4(0(3(x))) → 3(0(2(4(3(2(x))))))
4(0(3(x))) → 3(0(4(2(5(5(x))))))
4(3(3(x))) → 4(2(3(1(2(3(x))))))
0(5(3(x))) → 1(2(0(1(5(3(x))))))
4(0(4(x))) → 0(4(4(2(0(x)))))
4(0(4(x))) → 0(4(2(0(4(1(x))))))
3(4(0(0(x)))) → 4(1(2(0(0(3(x))))))
3(5(0(0(x)))) → 3(0(5(2(5(0(x))))))
3(0(1(0(x)))) → 0(3(0(1(2(x)))))
0(1(1(0(x)))) → 2(1(0(0(1(2(x))))))
0(0(4(0(x)))) → 0(1(2(0(4(0(x))))))
3(1(4(0(x)))) → 3(0(2(4(1(2(x))))))
3(5(4(0(x)))) → 0(5(2(3(4(x)))))
3(5(4(0(x)))) → 4(2(0(5(3(4(x))))))
4(0(5(0(x)))) → 4(2(0(0(5(x)))))
3(5(5(0(x)))) → 0(5(5(3(2(x)))))
4(0(3(1(x)))) → 3(2(1(0(4(x)))))
5(3(0(4(x)))) → 0(2(4(3(2(5(x))))))
4(0(1(0(0(x))))) → 2(4(1(0(0(0(x))))))
3(5(5(0(0(x))))) → 5(2(3(0(5(0(x))))))
4(3(4(0(3(x))))) → 4(2(4(3(0(3(x))))))
5(4(0(3(3(x))))) → 3(0(3(5(4(1(x))))))
3(0(2(4(3(x))))) → 4(3(2(0(3(2(x))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 108 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

01(0(x)) → 01(1(x))
01(1(1(0(x)))) → 01(0(1(2(x))))

The TRS R consists of the following rules:

0(0(x)) → 2(0(2(0(1(x)))))
0(0(x)) → 2(0(4(3(2(0(x))))))
3(0(x)) → 2(3(2(0(x))))
3(0(x)) → 3(1(2(0(2(x)))))
3(0(x)) → 2(2(0(3(2(x)))))
3(0(x)) → 2(3(2(2(2(0(x))))))
0(0(0(x))) → 0(0(2(0(x))))
4(0(0(x))) → 2(3(0(0(4(2(x))))))
5(0(0(x))) → 0(2(5(0(x))))
3(1(0(x))) → 0(1(2(2(3(x)))))
0(3(0(x))) → 0(4(3(2(0(2(x))))))
3(4(0(x))) → 4(2(0(3(x))))
3(4(0(x))) → 4(3(1(2(0(1(x))))))
3(4(0(x))) → 0(4(3(4(2(2(x))))))
5(4(0(x))) → 5(2(5(0(4(2(x))))))
5(4(0(x))) → 0(4(4(2(3(5(x))))))
0(5(0(x))) → 0(4(2(5(0(x)))))
0(5(0(x))) → 0(2(3(2(0(5(x))))))
3(5(0(x))) → 0(2(3(5(2(3(x))))))
0(0(1(x))) → 2(0(5(2(0(1(x))))))
3(0(1(x))) → 2(5(0(3(1(2(x))))))
4(0(1(x))) → 4(1(2(0(3(x)))))
4(0(1(x))) → 0(4(1(2(1(2(x))))))
0(0(3(x))) → 0(2(0(3(x))))
3(0(3(x))) → 3(2(0(3(x))))
3(0(3(x))) → 0(2(2(3(3(x)))))
4(0(3(x))) → 0(4(3(2(2(x)))))
4(0(3(x))) → 3(0(2(4(3(2(x))))))
4(0(3(x))) → 3(0(4(2(5(5(x))))))
4(3(3(x))) → 4(2(3(1(2(3(x))))))
0(5(3(x))) → 1(2(0(1(5(3(x))))))
4(0(4(x))) → 0(4(4(2(0(x)))))
4(0(4(x))) → 0(4(2(0(4(1(x))))))
3(4(0(0(x)))) → 4(1(2(0(0(3(x))))))
3(5(0(0(x)))) → 3(0(5(2(5(0(x))))))
3(0(1(0(x)))) → 0(3(0(1(2(x)))))
0(1(1(0(x)))) → 2(1(0(0(1(2(x))))))
0(0(4(0(x)))) → 0(1(2(0(4(0(x))))))
3(1(4(0(x)))) → 3(0(2(4(1(2(x))))))
3(5(4(0(x)))) → 0(5(2(3(4(x)))))
3(5(4(0(x)))) → 4(2(0(5(3(4(x))))))
4(0(5(0(x)))) → 4(2(0(0(5(x)))))
3(5(5(0(x)))) → 0(5(5(3(2(x)))))
4(0(3(1(x)))) → 3(2(1(0(4(x)))))
5(3(0(4(x)))) → 0(2(4(3(2(5(x))))))
4(0(1(0(0(x))))) → 2(4(1(0(0(0(x))))))
3(5(5(0(0(x))))) → 5(2(3(0(5(0(x))))))
4(3(4(0(3(x))))) → 4(2(4(3(0(3(x))))))
5(4(0(3(3(x))))) → 3(0(3(5(4(1(x))))))
3(0(2(4(3(x))))) → 4(3(2(0(3(2(x))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

01(0(x)) → 01(1(x))
01(1(1(0(x)))) → 01(0(1(2(x))))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

01(1(1(0(x)))) → 01(0(1(2(x))))


Used ordering: Polynomial interpretation [POLO]:

POL(0(x1)) = 3 + 3·x1   
POL(01(x1)) = 2·x1   
POL(1(x1)) = 3 + 3·x1   
POL(2(x1)) = x1   

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

01(0(x)) → 01(1(x))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

01(5(0(x))) → 01(5(x))
01(5(0(x))) → 51(x)
51(0(0(x))) → 51(0(x))
51(4(0(x))) → 31(5(x))
31(1(0(x))) → 31(x)
31(4(0(x))) → 01(3(x))
31(4(0(x))) → 31(x)
31(5(0(x))) → 31(x)
31(0(3(x))) → 31(3(x))
31(4(0(0(x)))) → 01(0(3(x)))
31(4(0(0(x)))) → 01(3(x))
31(4(0(0(x)))) → 31(x)
31(5(0(0(x)))) → 51(0(x))
51(4(0(x))) → 51(x)
51(3(0(4(x)))) → 51(x)
51(4(0(3(3(x))))) → 31(0(3(5(4(1(x))))))
31(0(1(0(x)))) → 01(3(0(1(2(x)))))
31(5(4(0(x)))) → 31(4(x))
31(5(4(0(x)))) → 41(x)
41(0(0(x))) → 31(0(0(4(2(x)))))
31(5(4(0(x)))) → 01(5(3(4(x))))
31(5(4(0(x)))) → 51(3(4(x)))
31(5(5(0(0(x))))) → 31(0(5(0(x))))
31(5(5(0(0(x))))) → 01(5(0(x)))
31(5(5(0(0(x))))) → 51(0(x))
41(0(1(x))) → 01(3(x))
41(0(1(x))) → 31(x)
41(0(3(x))) → 51(5(x))
41(0(3(x))) → 51(x)
41(0(4(x))) → 01(x)
41(0(5(0(x)))) → 01(0(5(x)))
41(0(5(0(x)))) → 01(5(x))
41(0(5(0(x)))) → 51(x)
41(0(3(1(x)))) → 01(4(x))
41(0(3(1(x)))) → 41(x)
41(0(1(0(0(x))))) → 01(0(0(x)))
41(3(4(0(3(x))))) → 41(3(0(3(x))))
41(3(4(0(3(x))))) → 31(0(3(x)))

The TRS R consists of the following rules:

0(0(x)) → 2(0(2(0(1(x)))))
0(0(x)) → 2(0(4(3(2(0(x))))))
3(0(x)) → 2(3(2(0(x))))
3(0(x)) → 3(1(2(0(2(x)))))
3(0(x)) → 2(2(0(3(2(x)))))
3(0(x)) → 2(3(2(2(2(0(x))))))
0(0(0(x))) → 0(0(2(0(x))))
4(0(0(x))) → 2(3(0(0(4(2(x))))))
5(0(0(x))) → 0(2(5(0(x))))
3(1(0(x))) → 0(1(2(2(3(x)))))
0(3(0(x))) → 0(4(3(2(0(2(x))))))
3(4(0(x))) → 4(2(0(3(x))))
3(4(0(x))) → 4(3(1(2(0(1(x))))))
3(4(0(x))) → 0(4(3(4(2(2(x))))))
5(4(0(x))) → 5(2(5(0(4(2(x))))))
5(4(0(x))) → 0(4(4(2(3(5(x))))))
0(5(0(x))) → 0(4(2(5(0(x)))))
0(5(0(x))) → 0(2(3(2(0(5(x))))))
3(5(0(x))) → 0(2(3(5(2(3(x))))))
0(0(1(x))) → 2(0(5(2(0(1(x))))))
3(0(1(x))) → 2(5(0(3(1(2(x))))))
4(0(1(x))) → 4(1(2(0(3(x)))))
4(0(1(x))) → 0(4(1(2(1(2(x))))))
0(0(3(x))) → 0(2(0(3(x))))
3(0(3(x))) → 3(2(0(3(x))))
3(0(3(x))) → 0(2(2(3(3(x)))))
4(0(3(x))) → 0(4(3(2(2(x)))))
4(0(3(x))) → 3(0(2(4(3(2(x))))))
4(0(3(x))) → 3(0(4(2(5(5(x))))))
4(3(3(x))) → 4(2(3(1(2(3(x))))))
0(5(3(x))) → 1(2(0(1(5(3(x))))))
4(0(4(x))) → 0(4(4(2(0(x)))))
4(0(4(x))) → 0(4(2(0(4(1(x))))))
3(4(0(0(x)))) → 4(1(2(0(0(3(x))))))
3(5(0(0(x)))) → 3(0(5(2(5(0(x))))))
3(0(1(0(x)))) → 0(3(0(1(2(x)))))
0(1(1(0(x)))) → 2(1(0(0(1(2(x))))))
0(0(4(0(x)))) → 0(1(2(0(4(0(x))))))
3(1(4(0(x)))) → 3(0(2(4(1(2(x))))))
3(5(4(0(x)))) → 0(5(2(3(4(x)))))
3(5(4(0(x)))) → 4(2(0(5(3(4(x))))))
4(0(5(0(x)))) → 4(2(0(0(5(x)))))
3(5(5(0(x)))) → 0(5(5(3(2(x)))))
4(0(3(1(x)))) → 3(2(1(0(4(x)))))
5(3(0(4(x)))) → 0(2(4(3(2(5(x))))))
4(0(1(0(0(x))))) → 2(4(1(0(0(0(x))))))
3(5(5(0(0(x))))) → 5(2(3(0(5(0(x))))))
4(3(4(0(3(x))))) → 4(2(4(3(0(3(x))))))
5(4(0(3(3(x))))) → 3(0(3(5(4(1(x))))))
3(0(2(4(3(x))))) → 4(3(2(0(3(2(x))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


01(5(0(x))) → 01(5(x))
01(5(0(x))) → 51(x)
51(0(0(x))) → 51(0(x))
51(4(0(x))) → 31(5(x))
31(1(0(x))) → 31(x)
31(4(0(x))) → 01(3(x))
31(4(0(x))) → 31(x)
31(5(0(x))) → 31(x)
31(0(3(x))) → 31(3(x))
31(4(0(0(x)))) → 01(0(3(x)))
31(4(0(0(x)))) → 01(3(x))
31(4(0(0(x)))) → 31(x)
31(5(0(0(x)))) → 51(0(x))
51(4(0(x))) → 51(x)
51(3(0(4(x)))) → 51(x)
31(0(1(0(x)))) → 01(3(0(1(2(x)))))
31(5(4(0(x)))) → 31(4(x))
41(0(0(x))) → 31(0(0(4(2(x)))))
31(5(4(0(x)))) → 01(5(3(4(x))))
31(5(4(0(x)))) → 51(3(4(x)))
31(5(5(0(0(x))))) → 01(5(0(x)))
31(5(5(0(0(x))))) → 51(0(x))
41(0(1(x))) → 01(3(x))
41(0(1(x))) → 31(x)
41(0(3(x))) → 51(5(x))
41(0(3(x))) → 51(x)
41(0(4(x))) → 01(x)
41(0(5(0(x)))) → 01(0(5(x)))
41(0(5(0(x)))) → 01(5(x))
41(0(5(0(x)))) → 51(x)
41(0(3(1(x)))) → 01(4(x))
41(0(3(1(x)))) → 41(x)
41(0(1(0(0(x))))) → 01(0(0(x)))
41(3(4(0(3(x))))) → 31(0(3(x)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0(x1)) = 1 + x1   
POL(01(x1)) = x1   
POL(1(x1)) = x1   
POL(2(x1)) = 0   
POL(3(x1)) = x1   
POL(31(x1)) = x1   
POL(4(x1)) = x1   
POL(41(x1)) = 1 + x1   
POL(5(x1)) = x1   
POL(51(x1)) = x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

5(0(0(x))) → 0(2(5(0(x))))
5(4(0(x))) → 5(2(5(0(4(2(x))))))
5(4(0(x))) → 0(4(4(2(3(5(x))))))
5(3(0(4(x)))) → 0(2(4(3(2(5(x))))))
5(4(0(3(3(x))))) → 3(0(3(5(4(1(x))))))
0(0(x)) → 2(0(2(0(1(x)))))
0(0(x)) → 2(0(4(3(2(0(x))))))
0(0(0(x))) → 0(0(2(0(x))))
0(3(0(x))) → 0(4(3(2(0(2(x))))))
0(5(0(x))) → 0(4(2(5(0(x)))))
0(5(0(x))) → 0(2(3(2(0(5(x))))))
0(0(1(x))) → 2(0(5(2(0(1(x))))))
0(0(3(x))) → 0(2(0(3(x))))
0(5(3(x))) → 1(2(0(1(5(3(x))))))
0(1(1(0(x)))) → 2(1(0(0(1(2(x))))))
0(0(4(0(x)))) → 0(1(2(0(4(0(x))))))
3(0(x)) → 2(3(2(0(x))))
3(0(x)) → 3(1(2(0(2(x)))))
3(0(x)) → 2(2(0(3(2(x)))))
3(0(x)) → 2(3(2(2(2(0(x))))))
3(1(0(x))) → 0(1(2(2(3(x)))))
3(4(0(x))) → 4(2(0(3(x))))
3(4(0(x))) → 4(3(1(2(0(1(x))))))
3(4(0(x))) → 0(4(3(4(2(2(x))))))
3(5(0(x))) → 0(2(3(5(2(3(x))))))
3(0(1(x))) → 2(5(0(3(1(2(x))))))
3(0(3(x))) → 3(2(0(3(x))))
3(0(3(x))) → 0(2(2(3(3(x)))))
3(4(0(0(x)))) → 4(1(2(0(0(3(x))))))
3(5(0(0(x)))) → 3(0(5(2(5(0(x))))))
3(0(1(0(x)))) → 0(3(0(1(2(x)))))
3(1(4(0(x)))) → 3(0(2(4(1(2(x))))))
3(5(4(0(x)))) → 0(5(2(3(4(x)))))
3(5(4(0(x)))) → 4(2(0(5(3(4(x))))))
3(5(5(0(x)))) → 0(5(5(3(2(x)))))
3(5(5(0(0(x))))) → 5(2(3(0(5(0(x))))))
3(0(2(4(3(x))))) → 4(3(2(0(3(2(x))))))
4(0(0(x))) → 2(3(0(0(4(2(x))))))
4(0(1(x))) → 4(1(2(0(3(x)))))
4(0(1(x))) → 0(4(1(2(1(2(x))))))
4(0(3(x))) → 0(4(3(2(2(x)))))
4(0(3(x))) → 3(0(2(4(3(2(x))))))
4(0(3(x))) → 3(0(4(2(5(5(x))))))
4(3(3(x))) → 4(2(3(1(2(3(x))))))
4(0(4(x))) → 0(4(4(2(0(x)))))
4(0(4(x))) → 0(4(2(0(4(1(x))))))
4(0(5(0(x)))) → 4(2(0(0(5(x)))))
4(0(3(1(x)))) → 3(2(1(0(4(x)))))
4(0(1(0(0(x))))) → 2(4(1(0(0(0(x))))))
4(3(4(0(3(x))))) → 4(2(4(3(0(3(x))))))

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

51(4(0(3(3(x))))) → 31(0(3(5(4(1(x))))))
31(5(4(0(x)))) → 41(x)
31(5(5(0(0(x))))) → 31(0(5(0(x))))
41(3(4(0(3(x))))) → 41(3(0(3(x))))

The TRS R consists of the following rules:

0(0(x)) → 2(0(2(0(1(x)))))
0(0(x)) → 2(0(4(3(2(0(x))))))
3(0(x)) → 2(3(2(0(x))))
3(0(x)) → 3(1(2(0(2(x)))))
3(0(x)) → 2(2(0(3(2(x)))))
3(0(x)) → 2(3(2(2(2(0(x))))))
0(0(0(x))) → 0(0(2(0(x))))
4(0(0(x))) → 2(3(0(0(4(2(x))))))
5(0(0(x))) → 0(2(5(0(x))))
3(1(0(x))) → 0(1(2(2(3(x)))))
0(3(0(x))) → 0(4(3(2(0(2(x))))))
3(4(0(x))) → 4(2(0(3(x))))
3(4(0(x))) → 4(3(1(2(0(1(x))))))
3(4(0(x))) → 0(4(3(4(2(2(x))))))
5(4(0(x))) → 5(2(5(0(4(2(x))))))
5(4(0(x))) → 0(4(4(2(3(5(x))))))
0(5(0(x))) → 0(4(2(5(0(x)))))
0(5(0(x))) → 0(2(3(2(0(5(x))))))
3(5(0(x))) → 0(2(3(5(2(3(x))))))
0(0(1(x))) → 2(0(5(2(0(1(x))))))
3(0(1(x))) → 2(5(0(3(1(2(x))))))
4(0(1(x))) → 4(1(2(0(3(x)))))
4(0(1(x))) → 0(4(1(2(1(2(x))))))
0(0(3(x))) → 0(2(0(3(x))))
3(0(3(x))) → 3(2(0(3(x))))
3(0(3(x))) → 0(2(2(3(3(x)))))
4(0(3(x))) → 0(4(3(2(2(x)))))
4(0(3(x))) → 3(0(2(4(3(2(x))))))
4(0(3(x))) → 3(0(4(2(5(5(x))))))
4(3(3(x))) → 4(2(3(1(2(3(x))))))
0(5(3(x))) → 1(2(0(1(5(3(x))))))
4(0(4(x))) → 0(4(4(2(0(x)))))
4(0(4(x))) → 0(4(2(0(4(1(x))))))
3(4(0(0(x)))) → 4(1(2(0(0(3(x))))))
3(5(0(0(x)))) → 3(0(5(2(5(0(x))))))
3(0(1(0(x)))) → 0(3(0(1(2(x)))))
0(1(1(0(x)))) → 2(1(0(0(1(2(x))))))
0(0(4(0(x)))) → 0(1(2(0(4(0(x))))))
3(1(4(0(x)))) → 3(0(2(4(1(2(x))))))
3(5(4(0(x)))) → 0(5(2(3(4(x)))))
3(5(4(0(x)))) → 4(2(0(5(3(4(x))))))
4(0(5(0(x)))) → 4(2(0(0(5(x)))))
3(5(5(0(x)))) → 0(5(5(3(2(x)))))
4(0(3(1(x)))) → 3(2(1(0(4(x)))))
5(3(0(4(x)))) → 0(2(4(3(2(5(x))))))
4(0(1(0(0(x))))) → 2(4(1(0(0(0(x))))))
3(5(5(0(0(x))))) → 5(2(3(0(5(0(x))))))
4(3(4(0(3(x))))) → 4(2(4(3(0(3(x))))))
5(4(0(3(3(x))))) → 3(0(3(5(4(1(x))))))
3(0(2(4(3(x))))) → 4(3(2(0(3(2(x))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.

(18) Complex Obligation (AND)

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

41(3(4(0(3(x))))) → 41(3(0(3(x))))

The TRS R consists of the following rules:

0(0(x)) → 2(0(2(0(1(x)))))
0(0(x)) → 2(0(4(3(2(0(x))))))
3(0(x)) → 2(3(2(0(x))))
3(0(x)) → 3(1(2(0(2(x)))))
3(0(x)) → 2(2(0(3(2(x)))))
3(0(x)) → 2(3(2(2(2(0(x))))))
0(0(0(x))) → 0(0(2(0(x))))
4(0(0(x))) → 2(3(0(0(4(2(x))))))
5(0(0(x))) → 0(2(5(0(x))))
3(1(0(x))) → 0(1(2(2(3(x)))))
0(3(0(x))) → 0(4(3(2(0(2(x))))))
3(4(0(x))) → 4(2(0(3(x))))
3(4(0(x))) → 4(3(1(2(0(1(x))))))
3(4(0(x))) → 0(4(3(4(2(2(x))))))
5(4(0(x))) → 5(2(5(0(4(2(x))))))
5(4(0(x))) → 0(4(4(2(3(5(x))))))
0(5(0(x))) → 0(4(2(5(0(x)))))
0(5(0(x))) → 0(2(3(2(0(5(x))))))
3(5(0(x))) → 0(2(3(5(2(3(x))))))
0(0(1(x))) → 2(0(5(2(0(1(x))))))
3(0(1(x))) → 2(5(0(3(1(2(x))))))
4(0(1(x))) → 4(1(2(0(3(x)))))
4(0(1(x))) → 0(4(1(2(1(2(x))))))
0(0(3(x))) → 0(2(0(3(x))))
3(0(3(x))) → 3(2(0(3(x))))
3(0(3(x))) → 0(2(2(3(3(x)))))
4(0(3(x))) → 0(4(3(2(2(x)))))
4(0(3(x))) → 3(0(2(4(3(2(x))))))
4(0(3(x))) → 3(0(4(2(5(5(x))))))
4(3(3(x))) → 4(2(3(1(2(3(x))))))
0(5(3(x))) → 1(2(0(1(5(3(x))))))
4(0(4(x))) → 0(4(4(2(0(x)))))
4(0(4(x))) → 0(4(2(0(4(1(x))))))
3(4(0(0(x)))) → 4(1(2(0(0(3(x))))))
3(5(0(0(x)))) → 3(0(5(2(5(0(x))))))
3(0(1(0(x)))) → 0(3(0(1(2(x)))))
0(1(1(0(x)))) → 2(1(0(0(1(2(x))))))
0(0(4(0(x)))) → 0(1(2(0(4(0(x))))))
3(1(4(0(x)))) → 3(0(2(4(1(2(x))))))
3(5(4(0(x)))) → 0(5(2(3(4(x)))))
3(5(4(0(x)))) → 4(2(0(5(3(4(x))))))
4(0(5(0(x)))) → 4(2(0(0(5(x)))))
3(5(5(0(x)))) → 0(5(5(3(2(x)))))
4(0(3(1(x)))) → 3(2(1(0(4(x)))))
5(3(0(4(x)))) → 0(2(4(3(2(5(x))))))
4(0(1(0(0(x))))) → 2(4(1(0(0(0(x))))))
3(5(5(0(0(x))))) → 5(2(3(0(5(0(x))))))
4(3(4(0(3(x))))) → 4(2(4(3(0(3(x))))))
5(4(0(3(3(x))))) → 3(0(3(5(4(1(x))))))
3(0(2(4(3(x))))) → 4(3(2(0(3(2(x))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


41(3(4(0(3(x))))) → 41(3(0(3(x))))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0(x1)) = 0   
POL(1(x1)) = 0   
POL(2(x1)) = x1   
POL(3(x1)) = 1 + x1   
POL(4(x1)) = 1   
POL(41(x1)) = x1   
POL(5(x1)) = 1 + x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

3(0(x)) → 2(3(2(0(x))))
3(0(x)) → 3(1(2(0(2(x)))))
3(0(x)) → 2(2(0(3(2(x)))))
3(0(x)) → 2(3(2(2(2(0(x))))))
3(1(0(x))) → 0(1(2(2(3(x)))))
3(4(0(x))) → 4(2(0(3(x))))
3(4(0(x))) → 4(3(1(2(0(1(x))))))
3(4(0(x))) → 0(4(3(4(2(2(x))))))
3(5(0(x))) → 0(2(3(5(2(3(x))))))
3(0(1(x))) → 2(5(0(3(1(2(x))))))
3(0(3(x))) → 3(2(0(3(x))))
3(0(3(x))) → 0(2(2(3(3(x)))))
3(4(0(0(x)))) → 4(1(2(0(0(3(x))))))
3(5(0(0(x)))) → 3(0(5(2(5(0(x))))))
3(0(1(0(x)))) → 0(3(0(1(2(x)))))
3(1(4(0(x)))) → 3(0(2(4(1(2(x))))))
3(5(4(0(x)))) → 0(5(2(3(4(x)))))
3(5(4(0(x)))) → 4(2(0(5(3(4(x))))))
3(5(5(0(x)))) → 0(5(5(3(2(x)))))
3(5(5(0(0(x))))) → 5(2(3(0(5(0(x))))))
3(0(2(4(3(x))))) → 4(3(2(0(3(2(x))))))
0(0(x)) → 2(0(2(0(1(x)))))
0(0(x)) → 2(0(4(3(2(0(x))))))
0(0(0(x))) → 0(0(2(0(x))))
0(3(0(x))) → 0(4(3(2(0(2(x))))))
0(5(0(x))) → 0(4(2(5(0(x)))))
0(5(0(x))) → 0(2(3(2(0(5(x))))))
0(0(1(x))) → 2(0(5(2(0(1(x))))))
0(0(3(x))) → 0(2(0(3(x))))
0(5(3(x))) → 1(2(0(1(5(3(x))))))
0(1(1(0(x)))) → 2(1(0(0(1(2(x))))))
0(0(4(0(x)))) → 0(1(2(0(4(0(x))))))

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(0(x)) → 2(0(2(0(1(x)))))
0(0(x)) → 2(0(4(3(2(0(x))))))
3(0(x)) → 2(3(2(0(x))))
3(0(x)) → 3(1(2(0(2(x)))))
3(0(x)) → 2(2(0(3(2(x)))))
3(0(x)) → 2(3(2(2(2(0(x))))))
0(0(0(x))) → 0(0(2(0(x))))
4(0(0(x))) → 2(3(0(0(4(2(x))))))
5(0(0(x))) → 0(2(5(0(x))))
3(1(0(x))) → 0(1(2(2(3(x)))))
0(3(0(x))) → 0(4(3(2(0(2(x))))))
3(4(0(x))) → 4(2(0(3(x))))
3(4(0(x))) → 4(3(1(2(0(1(x))))))
3(4(0(x))) → 0(4(3(4(2(2(x))))))
5(4(0(x))) → 5(2(5(0(4(2(x))))))
5(4(0(x))) → 0(4(4(2(3(5(x))))))
0(5(0(x))) → 0(4(2(5(0(x)))))
0(5(0(x))) → 0(2(3(2(0(5(x))))))
3(5(0(x))) → 0(2(3(5(2(3(x))))))
0(0(1(x))) → 2(0(5(2(0(1(x))))))
3(0(1(x))) → 2(5(0(3(1(2(x))))))
4(0(1(x))) → 4(1(2(0(3(x)))))
4(0(1(x))) → 0(4(1(2(1(2(x))))))
0(0(3(x))) → 0(2(0(3(x))))
3(0(3(x))) → 3(2(0(3(x))))
3(0(3(x))) → 0(2(2(3(3(x)))))
4(0(3(x))) → 0(4(3(2(2(x)))))
4(0(3(x))) → 3(0(2(4(3(2(x))))))
4(0(3(x))) → 3(0(4(2(5(5(x))))))
4(3(3(x))) → 4(2(3(1(2(3(x))))))
0(5(3(x))) → 1(2(0(1(5(3(x))))))
4(0(4(x))) → 0(4(4(2(0(x)))))
4(0(4(x))) → 0(4(2(0(4(1(x))))))
3(4(0(0(x)))) → 4(1(2(0(0(3(x))))))
3(5(0(0(x)))) → 3(0(5(2(5(0(x))))))
3(0(1(0(x)))) → 0(3(0(1(2(x)))))
0(1(1(0(x)))) → 2(1(0(0(1(2(x))))))
0(0(4(0(x)))) → 0(1(2(0(4(0(x))))))
3(1(4(0(x)))) → 3(0(2(4(1(2(x))))))
3(5(4(0(x)))) → 0(5(2(3(4(x)))))
3(5(4(0(x)))) → 4(2(0(5(3(4(x))))))
4(0(5(0(x)))) → 4(2(0(0(5(x)))))
3(5(5(0(x)))) → 0(5(5(3(2(x)))))
4(0(3(1(x)))) → 3(2(1(0(4(x)))))
5(3(0(4(x)))) → 0(2(4(3(2(5(x))))))
4(0(1(0(0(x))))) → 2(4(1(0(0(0(x))))))
3(5(5(0(0(x))))) → 5(2(3(0(5(0(x))))))
4(3(4(0(3(x))))) → 4(2(4(3(0(3(x))))))
5(4(0(3(3(x))))) → 3(0(3(5(4(1(x))))))
3(0(2(4(3(x))))) → 4(3(2(0(3(2(x))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) YES

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

31(5(5(0(0(x))))) → 31(0(5(0(x))))

The TRS R consists of the following rules:

0(0(x)) → 2(0(2(0(1(x)))))
0(0(x)) → 2(0(4(3(2(0(x))))))
3(0(x)) → 2(3(2(0(x))))
3(0(x)) → 3(1(2(0(2(x)))))
3(0(x)) → 2(2(0(3(2(x)))))
3(0(x)) → 2(3(2(2(2(0(x))))))
0(0(0(x))) → 0(0(2(0(x))))
4(0(0(x))) → 2(3(0(0(4(2(x))))))
5(0(0(x))) → 0(2(5(0(x))))
3(1(0(x))) → 0(1(2(2(3(x)))))
0(3(0(x))) → 0(4(3(2(0(2(x))))))
3(4(0(x))) → 4(2(0(3(x))))
3(4(0(x))) → 4(3(1(2(0(1(x))))))
3(4(0(x))) → 0(4(3(4(2(2(x))))))
5(4(0(x))) → 5(2(5(0(4(2(x))))))
5(4(0(x))) → 0(4(4(2(3(5(x))))))
0(5(0(x))) → 0(4(2(5(0(x)))))
0(5(0(x))) → 0(2(3(2(0(5(x))))))
3(5(0(x))) → 0(2(3(5(2(3(x))))))
0(0(1(x))) → 2(0(5(2(0(1(x))))))
3(0(1(x))) → 2(5(0(3(1(2(x))))))
4(0(1(x))) → 4(1(2(0(3(x)))))
4(0(1(x))) → 0(4(1(2(1(2(x))))))
0(0(3(x))) → 0(2(0(3(x))))
3(0(3(x))) → 3(2(0(3(x))))
3(0(3(x))) → 0(2(2(3(3(x)))))
4(0(3(x))) → 0(4(3(2(2(x)))))
4(0(3(x))) → 3(0(2(4(3(2(x))))))
4(0(3(x))) → 3(0(4(2(5(5(x))))))
4(3(3(x))) → 4(2(3(1(2(3(x))))))
0(5(3(x))) → 1(2(0(1(5(3(x))))))
4(0(4(x))) → 0(4(4(2(0(x)))))
4(0(4(x))) → 0(4(2(0(4(1(x))))))
3(4(0(0(x)))) → 4(1(2(0(0(3(x))))))
3(5(0(0(x)))) → 3(0(5(2(5(0(x))))))
3(0(1(0(x)))) → 0(3(0(1(2(x)))))
0(1(1(0(x)))) → 2(1(0(0(1(2(x))))))
0(0(4(0(x)))) → 0(1(2(0(4(0(x))))))
3(1(4(0(x)))) → 3(0(2(4(1(2(x))))))
3(5(4(0(x)))) → 0(5(2(3(4(x)))))
3(5(4(0(x)))) → 4(2(0(5(3(4(x))))))
4(0(5(0(x)))) → 4(2(0(0(5(x)))))
3(5(5(0(x)))) → 0(5(5(3(2(x)))))
4(0(3(1(x)))) → 3(2(1(0(4(x)))))
5(3(0(4(x)))) → 0(2(4(3(2(5(x))))))
4(0(1(0(0(x))))) → 2(4(1(0(0(0(x))))))
3(5(5(0(0(x))))) → 5(2(3(0(5(0(x))))))
4(3(4(0(3(x))))) → 4(2(4(3(0(3(x))))))
5(4(0(3(3(x))))) → 3(0(3(5(4(1(x))))))
3(0(2(4(3(x))))) → 4(3(2(0(3(2(x))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


31(5(5(0(0(x))))) → 31(0(5(0(x))))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0(x1)) = 0   
POL(1(x1)) = 0   
POL(2(x1)) = 0   
POL(3(x1)) = 1 + x1   
POL(31(x1)) = x1   
POL(4(x1)) = 0   
POL(5(x1)) = 1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

0(0(x)) → 2(0(2(0(1(x)))))
0(0(x)) → 2(0(4(3(2(0(x))))))
0(0(0(x))) → 0(0(2(0(x))))
0(3(0(x))) → 0(4(3(2(0(2(x))))))
0(5(0(x))) → 0(4(2(5(0(x)))))
0(5(0(x))) → 0(2(3(2(0(5(x))))))
0(0(1(x))) → 2(0(5(2(0(1(x))))))
0(0(3(x))) → 0(2(0(3(x))))
0(5(3(x))) → 1(2(0(1(5(3(x))))))
0(1(1(0(x)))) → 2(1(0(0(1(2(x))))))
0(0(4(0(x)))) → 0(1(2(0(4(0(x))))))

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(0(x)) → 2(0(2(0(1(x)))))
0(0(x)) → 2(0(4(3(2(0(x))))))
3(0(x)) → 2(3(2(0(x))))
3(0(x)) → 3(1(2(0(2(x)))))
3(0(x)) → 2(2(0(3(2(x)))))
3(0(x)) → 2(3(2(2(2(0(x))))))
0(0(0(x))) → 0(0(2(0(x))))
4(0(0(x))) → 2(3(0(0(4(2(x))))))
5(0(0(x))) → 0(2(5(0(x))))
3(1(0(x))) → 0(1(2(2(3(x)))))
0(3(0(x))) → 0(4(3(2(0(2(x))))))
3(4(0(x))) → 4(2(0(3(x))))
3(4(0(x))) → 4(3(1(2(0(1(x))))))
3(4(0(x))) → 0(4(3(4(2(2(x))))))
5(4(0(x))) → 5(2(5(0(4(2(x))))))
5(4(0(x))) → 0(4(4(2(3(5(x))))))
0(5(0(x))) → 0(4(2(5(0(x)))))
0(5(0(x))) → 0(2(3(2(0(5(x))))))
3(5(0(x))) → 0(2(3(5(2(3(x))))))
0(0(1(x))) → 2(0(5(2(0(1(x))))))
3(0(1(x))) → 2(5(0(3(1(2(x))))))
4(0(1(x))) → 4(1(2(0(3(x)))))
4(0(1(x))) → 0(4(1(2(1(2(x))))))
0(0(3(x))) → 0(2(0(3(x))))
3(0(3(x))) → 3(2(0(3(x))))
3(0(3(x))) → 0(2(2(3(3(x)))))
4(0(3(x))) → 0(4(3(2(2(x)))))
4(0(3(x))) → 3(0(2(4(3(2(x))))))
4(0(3(x))) → 3(0(4(2(5(5(x))))))
4(3(3(x))) → 4(2(3(1(2(3(x))))))
0(5(3(x))) → 1(2(0(1(5(3(x))))))
4(0(4(x))) → 0(4(4(2(0(x)))))
4(0(4(x))) → 0(4(2(0(4(1(x))))))
3(4(0(0(x)))) → 4(1(2(0(0(3(x))))))
3(5(0(0(x)))) → 3(0(5(2(5(0(x))))))
3(0(1(0(x)))) → 0(3(0(1(2(x)))))
0(1(1(0(x)))) → 2(1(0(0(1(2(x))))))
0(0(4(0(x)))) → 0(1(2(0(4(0(x))))))
3(1(4(0(x)))) → 3(0(2(4(1(2(x))))))
3(5(4(0(x)))) → 0(5(2(3(4(x)))))
3(5(4(0(x)))) → 4(2(0(5(3(4(x))))))
4(0(5(0(x)))) → 4(2(0(0(5(x)))))
3(5(5(0(x)))) → 0(5(5(3(2(x)))))
4(0(3(1(x)))) → 3(2(1(0(4(x)))))
5(3(0(4(x)))) → 0(2(4(3(2(5(x))))))
4(0(1(0(0(x))))) → 2(4(1(0(0(0(x))))))
3(5(5(0(0(x))))) → 5(2(3(0(5(0(x))))))
4(3(4(0(3(x))))) → 4(2(4(3(0(3(x))))))
5(4(0(3(3(x))))) → 3(0(3(5(4(1(x))))))
3(0(2(4(3(x))))) → 4(3(2(0(3(2(x))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) YES