YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
0(1(1(x0))) | → | 1(2(1(2(0(x0))))) |
0(3(1(x0))) | → | 1(3(2(2(0(x0))))) |
0(3(1(x0))) | → | 3(2(1(2(0(x0))))) |
0(3(1(x0))) | → | 1(3(3(3(2(0(x0)))))) |
0(4(1(x0))) | → | 2(1(2(0(4(x0))))) |
0(0(4(5(x0)))) | → | 0(0(2(5(4(x0))))) |
0(1(4(1(x0)))) | → | 0(1(2(2(4(1(x0)))))) |
0(1(4(5(x0)))) | → | 4(0(1(2(5(4(x0)))))) |
0(1(5(1(x0)))) | → | 1(2(2(5(0(1(x0)))))) |
0(1(5(3(x0)))) | → | 0(5(3(2(1(x0))))) |
0(2(4(1(x0)))) | → | 1(3(3(2(0(4(x0)))))) |
0(2(4(1(x0)))) | → | 4(2(1(2(0(4(x0)))))) |
0(2(4(5(x0)))) | → | 0(2(2(5(0(4(x0)))))) |
0(3(1(5(x0)))) | → | 0(1(2(5(3(x0))))) |
0(3(1(5(x0)))) | → | 1(2(5(3(0(4(x0)))))) |
0(3(5(1(x0)))) | → | 1(2(5(3(0(x0))))) |
0(3(5(1(x0)))) | → | 0(5(2(1(2(3(x0)))))) |
0(3(5(5(x0)))) | → | 0(3(2(5(5(x0))))) |
0(4(0(1(x0)))) | → | 2(0(4(4(0(1(x0)))))) |
0(4(1(5(x0)))) | → | 1(2(5(0(4(x0))))) |
0(4(3(5(x0)))) | → | 0(4(3(2(5(4(x0)))))) |
0(4(5(1(x0)))) | → | 2(5(4(4(0(1(x0)))))) |
3(0(1(5(x0)))) | → | 3(1(4(0(5(4(x0)))))) |
3(0(3(1(x0)))) | → | 1(3(3(2(0(x0))))) |
3(0(3(5(x0)))) | → | 3(2(5(0(2(3(x0)))))) |
3(3(0(1(x0)))) | → | 0(1(3(2(2(3(x0)))))) |
3(4(5(1(x0)))) | → | 3(2(5(4(2(1(x0)))))) |
4(1(3(5(x0)))) | → | 1(2(5(3(4(4(x0)))))) |
4(1(5(1(x0)))) | → | 4(4(5(1(2(1(x0)))))) |
4(4(1(5(x0)))) | → | 4(1(2(5(4(x0))))) |
0(1(4(5(5(x0))))) | → | 0(5(1(4(2(5(x0)))))) |
0(2(1(4(5(x0))))) | → | 0(0(1(2(5(4(x0)))))) |
0(2(1(5(5(x0))))) | → | 0(1(2(2(5(5(x0)))))) |
0(4(2(4(1(x0))))) | → | 1(3(2(0(4(4(x0)))))) |
0(4(5(4(3(x0))))) | → | 2(5(0(4(4(3(x0)))))) |
0(5(1(5(1(x0))))) | → | 0(5(1(1(2(5(x0)))))) |
0(5(2(1(5(x0))))) | → | 1(2(5(5(0(4(x0)))))) |
0(5(2(4(1(x0))))) | → | 4(5(2(1(2(0(x0)))))) |
3(0(1(4(1(x0))))) | → | 0(4(4(1(3(1(x0)))))) |
3(0(1(4(1(x0))))) | → | 4(3(2(0(1(1(x0)))))) |
3(0(3(5(5(x0))))) | → | 3(3(2(5(0(5(x0)))))) |
3(0(5(3(1(x0))))) | → | 1(0(3(3(2(5(x0)))))) |
4(0(1(4(1(x0))))) | → | 4(4(0(1(3(1(x0)))))) |
4(0(1(5(1(x0))))) | → | 0(1(2(5(4(1(x0)))))) |
4(0(2(4(5(x0))))) | → | 4(0(2(5(0(4(x0)))))) |
4(1(1(5(1(x0))))) | → | 1(1(2(5(4(1(x0)))))) |
4(5(1(4(1(x0))))) | → | 4(4(1(2(1(5(x0)))))) |
4(5(2(3(1(x0))))) | → | 4(3(1(2(2(5(x0)))))) |
4(5(4(3(1(x0))))) | → | 4(1(2(5(3(4(x0)))))) |
4(5(5(3(1(x0))))) | → | 1(3(2(5(5(4(x0)))))) |
1(1(0(x0))) | → | 0(2(1(2(1(x0))))) |
1(3(0(x0))) | → | 0(2(2(3(1(x0))))) |
1(3(0(x0))) | → | 0(2(1(2(3(x0))))) |
1(3(0(x0))) | → | 0(2(3(3(3(1(x0)))))) |
1(4(0(x0))) | → | 4(0(2(1(2(x0))))) |
5(4(0(0(x0)))) | → | 4(5(2(0(0(x0))))) |
1(4(1(0(x0)))) | → | 1(4(2(2(1(0(x0)))))) |
5(4(1(0(x0)))) | → | 4(5(2(1(0(4(x0)))))) |
1(5(1(0(x0)))) | → | 1(0(5(2(2(1(x0)))))) |
3(5(1(0(x0)))) | → | 1(2(3(5(0(x0))))) |
1(4(2(0(x0)))) | → | 4(0(2(3(3(1(x0)))))) |
1(4(2(0(x0)))) | → | 4(0(2(1(2(4(x0)))))) |
5(4(2(0(x0)))) | → | 4(0(5(2(2(0(x0)))))) |
5(1(3(0(x0)))) | → | 3(5(2(1(0(x0))))) |
5(1(3(0(x0)))) | → | 4(0(3(5(2(1(x0)))))) |
1(5(3(0(x0)))) | → | 0(3(5(2(1(x0))))) |
1(5(3(0(x0)))) | → | 3(2(1(2(5(0(x0)))))) |
5(5(3(0(x0)))) | → | 5(5(2(3(0(x0))))) |
1(0(4(0(x0)))) | → | 1(0(4(4(0(2(x0)))))) |
5(1(4(0(x0)))) | → | 4(0(5(2(1(x0))))) |
5(3(4(0(x0)))) | → | 4(5(2(3(4(0(x0)))))) |
1(5(4(0(x0)))) | → | 1(0(4(4(5(2(x0)))))) |
5(1(0(3(x0)))) | → | 4(5(0(4(1(3(x0)))))) |
1(3(0(3(x0)))) | → | 0(2(3(3(1(x0))))) |
5(3(0(3(x0)))) | → | 3(2(0(5(2(3(x0)))))) |
1(0(3(3(x0)))) | → | 3(2(2(3(1(0(x0)))))) |
1(5(4(3(x0)))) | → | 1(2(4(5(2(3(x0)))))) |
5(3(1(4(x0)))) | → | 4(4(3(5(2(1(x0)))))) |
1(5(1(4(x0)))) | → | 1(2(1(5(4(4(x0)))))) |
5(1(4(4(x0)))) | → | 4(5(2(1(4(x0))))) |
5(5(4(1(0(x0))))) | → | 5(2(4(1(5(0(x0)))))) |
5(4(1(2(0(x0))))) | → | 4(5(2(1(0(0(x0)))))) |
5(5(1(2(0(x0))))) | → | 5(5(2(2(1(0(x0)))))) |
1(4(2(4(0(x0))))) | → | 4(4(0(2(3(1(x0)))))) |
3(4(5(4(0(x0))))) | → | 3(4(4(0(5(2(x0)))))) |
1(5(1(5(0(x0))))) | → | 5(2(1(1(5(0(x0)))))) |
5(1(2(5(0(x0))))) | → | 4(0(5(5(2(1(x0)))))) |
1(4(2(5(0(x0))))) | → | 0(2(1(2(5(4(x0)))))) |
1(4(1(0(3(x0))))) | → | 1(3(1(4(4(0(x0)))))) |
1(4(1(0(3(x0))))) | → | 1(1(0(2(3(4(x0)))))) |
5(5(3(0(3(x0))))) | → | 5(0(5(2(3(3(x0)))))) |
1(3(5(0(3(x0))))) | → | 5(2(3(3(0(1(x0)))))) |
1(4(1(0(4(x0))))) | → | 1(3(1(0(4(4(x0)))))) |
1(5(1(0(4(x0))))) | → | 1(4(5(2(1(0(x0)))))) |
5(4(2(0(4(x0))))) | → | 4(0(5(2(0(4(x0)))))) |
1(5(1(1(4(x0))))) | → | 1(4(5(2(1(1(x0)))))) |
1(4(1(5(4(x0))))) | → | 5(1(2(1(4(4(x0)))))) |
1(3(2(5(4(x0))))) | → | 5(2(2(1(3(4(x0)))))) |
1(3(4(5(4(x0))))) | → | 4(3(5(2(1(4(x0)))))) |
1(3(5(5(4(x0))))) | → | 4(5(5(2(3(1(x0)))))) |
final states:
{192, 190, 186, 182, 177, 173, 171, 167, 162, 157, 152, 148, 143, 140, 137, 133, 130, 128, 124, 120, 116, 111, 109, 106, 102, 98, 51, 93, 88, 83, 81, 76, 72, 68, 67, 64, 62, 57, 52, 49, 45, 41, 35, 30, 25, 20, 16, 11, 7, 1}
transitions:
23 | → | 207 |
111 | → | 3 |
25 | → | 144 |
102 | → | 31 |
102 | → | 3 |
152 | → | 117 |
152 | → | 3 |
51 | → | 94 |
51 | → | 3 |
167 | → | 117 |
167 | → | 3 |
133 | → | 153 |
133 | → | 12 |
41 | → | 3 |
50 | → | 231 |
57 | → | 144 |
55 | → | 237 |
130 | → | 117 |
130 | → | 3 |
20 | → | 117 |
20 | → | 3 |
224 | → | 178 |
49 | → | 117 |
49 | → | 3 |
1 | → | 178 |
1 | → | 3 |
76 | → | 38 |
76 | → | 31 |
76 | → | 3 |
79 | → | 239 |
91 | → | 243 |
177 | → | 3 |
186 | → | 94 |
186 | → | 3 |
173 | → | 144 |
171 | → | 3 |
88 | → | 3 |
52 | → | 117 |
52 | → | 3 |
124 | → | 144 |
67 | → | 3 |
143 | → | 117 |
143 | → | 3 |
11 | → | 94 |
11 | → | 3 |
232 | → | 208 |
244 | → | 220 |
212 | → | 178 |
45 | → | 12 |
106 | → | 3 |
16 | → | 94 |
16 | → | 3 |
7 | → | 94 |
7 | → | 3 |
182 | → | 117 |
182 | → | 3 |
30 | → | 117 |
30 | → | 3 |
137 | → | 3 |
162 | → | 94 |
162 | → | 3 |
35 | → | 144 |
240 | → | 220 |
190 | → | 187 |
190 | → | 94 |
190 | → | 3 |
154 | → | 201 |
68 | → | 3 |
206 | → | 152 |
148 | → | 117 |
148 | → | 3 |
43 | → | 219 |
192 | → | 94 |
192 | → | 3 |
238 | → | 208 |
f60 | → | 2 |
50(179) | → | 180 |
50(59) | → | 60 |
50(123) | → | 120 |
50(96) | → | 97 |
50(65) | → | 141 |
50(189) | → | 186 |
50(185) | → | 182 |
50(193) | → | 194 |
50(166) | → | 162 |
50(21) | → | 89 |
50(118) | → | 119 |
50(139) | → | 137 |
50(32) | → | 63 |
50(9) | → | 193 |
50(42) | → | 43 |
50(126) | → | 127 |
50(74) | → | 75 |
50(4) | → | 65 |
50(174) | → | 175 |
50(26) | → | 46 |
50(36) | → | 144 |
50(75) | → | 72 |
50(129) | → | 128 |
50(28) | → | 29 |
50(161) | → | 157 |
50(33) | → | 129 |
50(13) | → | 99 |
50(39) | → | 40 |
50(86) | → | 87 |
50(159) | → | 160 |
50(112) | → | 113 |
41(211) | → | 212 |
20(114) | → | 115 |
20(73) | → | 74 |
20(100) | → | 101 |
20(70) | → | 71 |
20(165) | → | 166 |
20(26) | → | 58 |
20(14) | → | 15 |
20(183) | → | 184 |
20(144) | → | 145 |
20(37) | → | 174 |
20(85) | → | 86 |
20(58) | → | 59 |
20(178) | → | 179 |
20(8) | → | 9 |
20(125) | → | 126 |
20(32) | → | 33 |
20(38) | → | 39 |
20(107) | → | 108 |
20(187) | → | 188 |
20(158) | → | 159 |
20(46) | → | 69 |
20(36) | → | 53 |
20(18) | → | 19 |
20(3) | → | 4 |
20(47) | → | 48 |
20(104) | → | 105 |
20(9) | → | 10 |
20(54) | → | 55 |
20(12) | → | 13 |
20(146) | → | 147 |
20(27) | → | 28 |
20(117) | → | 118 |
20(31) | → | 32 |
20(5) | → | 6 |
20(103) | → | 104 |
20(17) | → | 50 |
20(122) | → | 123 |
20(2) | → | 21 |
20(4) | → | 42 |
20(153) | → | 154 |
20(188) | → | 189 |
20(138) | → | 139 |
20(22) | → | 23 |
10(115) | → | 111 |
10(53) | → | 54 |
10(46) | → | 121 |
10(92) | → | 88 |
10(37) | → | 38 |
10(112) | → | 183 |
10(3) | → | 178 |
10(44) | → | 41 |
10(48) | → | 45 |
10(121) | → | 138 |
10(184) | → | 185 |
10(21) | → | 22 |
10(26) | → | 31 |
10(80) | → | 76 |
10(170) | → | 167 |
10(108) | → | 106 |
10(155) | → | 156 |
10(113) | → | 114 |
10(151) | → | 148 |
10(27) | → | 125 |
10(145) | → | 146 |
10(149) | → | 150 |
10(13) | → | 14 |
10(4) | → | 5 |
10(181) | → | 177 |
10(36) | → | 117 |
10(2) | → | 3 |
10(172) | → | 171 |
10(34) | → | 30 |
10(168) | → | 169 |
10(69) | → | 70 |
10(156) | → | 152 |
10(12) | → | 94 |
10(153) | → | 187 |
01(223) | → | 224 |
01(205) | → | 206 |
01(210) | → | 211 |
30(2) | → | 12 |
30(31) | → | 103 |
30(71) | → | 68 |
30(26) | → | 73 |
30(136) | → | 133 |
30(46) | → | 47 |
30(119) | → | 191 |
30(164) | → | 165 |
30(150) | → | 151 |
30(12) | → | 158 |
30(8) | → | 17 |
30(105) | → | 102 |
30(36) | → | 153 |
30(163) | → | 164 |
30(17) | → | 18 |
30(169) | → | 170 |
30(63) | → | 62 |
30(84) | → | 85 |
30(3) | → | 8 |
30(101) | → | 98 |
30(65) | → | 66 |
00(2) | → | 26 |
00(91) | → | 92 |
00(9) | → | 131 |
00(65) | → | 82 |
00(10) | → | 7 |
00(175) | → | 176 |
00(50) | → | 51 |
00(95) | → | 96 |
00(99) | → | 100 |
00(79) | → | 80 |
00(19) | → | 16 |
00(36) | → | 37 |
00(55) | → | 56 |
00(43) | → | 44 |
00(21) | → | 77 |
00(26) | → | 27 |
00(89) | → | 134 |
00(3) | → | 163 |
00(147) | → | 143 |
00(6) | → | 1 |
00(141) | → | 142 |
00(66) | → | 67 |
00(23) | → | 24 |
00(112) | → | 168 |
00(15) | → | 11 |
00(154) | → | 155 |
00(60) | → | 61 |
00(160) | → | 161 |
21(231) | → | 232 |
21(207) | → | 208 |
21(204) | → | 205 |
21(209) | → | 210 |
21(202) | → | 203 |
21(220) | → | 221 |
21(222) | → | 223 |
21(237) | → | 238 |
11(221) | → | 222 |
11(219) | → | 220 |
11(239) | → | 240 |
11(203) | → | 204 |
11(243) | → | 244 |
11(208) | → | 209 |
11(201) | → | 202 |
40(87) | → | 83 |
40(29) | → | 25 |
40(191) | → | 190 |
40(132) | → | 130 |
40(142) | → | 140 |
40(97) | → | 93 |
40(135) | → | 136 |
40(78) | → | 79 |
40(99) | → | 107 |
40(82) | → | 81 |
40(61) | → | 57 |
40(63) | → | 172 |
40(94) | → | 95 |
40(26) | → | 84 |
40(66) | → | 110 |
40(36) | → | 112 |
40(84) | → | 149 |
40(56) | → | 52 |
40(90) | → | 91 |
40(67) | → | 64 |
40(89) | → | 90 |
40(194) | → | 192 |
40(119) | → | 116 |
40(40) | → | 35 |
40(176) | → | 173 |
40(110) | → | 109 |
40(121) | → | 122 |
40(131) | → | 132 |
40(24) | → | 20 |
40(180) | → | 181 |
40(134) | → | 135 |
40(51) | → | 49 |
40(77) | → | 78 |
40(33) | → | 34 |
40(127) | → | 124 |
40(2) | → | 36 |