YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
0(1(2(x0))) | → | 0(1(3(2(x0)))) |
0(1(2(x0))) | → | 0(2(1(0(x0)))) |
0(1(2(x0))) | → | 0(2(1(3(x0)))) |
0(1(2(x0))) | → | 0(2(2(1(x0)))) |
0(1(2(x0))) | → | 0(2(2(1(4(x0))))) |
0(1(2(x0))) | → | 5(1(0(5(2(3(x0)))))) |
0(2(4(x0))) | → | 0(2(1(4(3(x0))))) |
0(4(2(x0))) | → | 4(0(2(3(x0)))) |
0(4(2(x0))) | → | 4(0(5(5(2(x0))))) |
0(0(4(2(x0)))) | → | 0(0(2(2(3(4(x0)))))) |
0(1(2(2(x0)))) | → | 0(2(1(0(2(x0))))) |
0(1(2(2(x0)))) | → | 1(3(0(2(2(x0))))) |
0(1(2(4(x0)))) | → | 0(1(4(2(3(x0))))) |
0(1(2(4(x0)))) | → | 4(0(2(2(1(1(x0)))))) |
0(1(2(4(x0)))) | → | 4(0(5(5(2(1(x0)))))) |
0(1(2(5(x0)))) | → | 3(5(5(2(1(0(x0)))))) |
0(1(4(2(x0)))) | → | 0(5(2(1(4(x0))))) |
0(1(5(2(x0)))) | → | 1(5(0(2(3(x0))))) |
0(1(5(2(x0)))) | → | 0(2(2(1(0(5(x0)))))) |
0(1(5(2(x0)))) | → | 5(5(0(2(1(3(x0)))))) |
0(2(4(2(x0)))) | → | 0(5(4(3(2(2(x0)))))) |
0(3(1(2(x0)))) | → | 0(2(1(3(2(x0))))) |
0(3(1(2(x0)))) | → | 1(0(2(5(3(x0))))) |
0(3(1(2(x0)))) | → | 1(5(0(2(3(x0))))) |
0(3(1(2(x0)))) | → | 3(0(2(2(1(x0))))) |
0(3(1(2(x0)))) | → | 3(2(2(1(0(x0))))) |
0(3(1(2(x0)))) | → | 0(3(2(3(1(3(x0)))))) |
0(3(4(2(x0)))) | → | 0(2(2(3(4(x0))))) |
5(0(1(2(x0)))) | → | 1(3(2(5(0(x0))))) |
5(0(1(2(x0)))) | → | 5(0(2(1(3(3(x0)))))) |
0(1(1(2(5(x0))))) | → | 5(0(2(5(1(1(x0)))))) |
0(2(3(4(2(x0))))) | → | 3(2(2(3(4(0(x0)))))) |
0(3(1(2(5(x0))))) | → | 2(3(1(3(0(5(x0)))))) |
0(3(1(5(2(x0))))) | → | 0(3(2(5(1(2(x0)))))) |
0(3(4(1(4(x0))))) | → | 0(5(3(1(4(4(x0)))))) |
0(3(5(1(2(x0))))) | → | 5(5(3(2(1(0(x0)))))) |
0(4(0(4(2(x0))))) | → | 4(4(0(0(2(2(x0)))))) |
0(4(1(1(2(x0))))) | → | 3(1(4(0(2(1(x0)))))) |
0(4(1(2(2(x0))))) | → | 4(1(0(2(2(3(x0)))))) |
0(4(1(2(5(x0))))) | → | 3(4(1(0(2(5(x0)))))) |
0(4(2(1(2(x0))))) | → | 4(1(3(2(0(2(x0)))))) |
0(4(2(1(4(x0))))) | → | 0(2(1(4(4(4(x0)))))) |
0(4(2(5(2(x0))))) | → | 5(4(3(2(2(0(x0)))))) |
0(4(5(1(2(x0))))) | → | 1(4(2(0(5(5(x0)))))) |
0(4(5(1(2(x0))))) | → | 4(0(2(5(1(1(x0)))))) |
5(0(1(2(2(x0))))) | → | 5(0(2(2(1(2(x0)))))) |
5(0(2(4(2(x0))))) | → | 0(2(2(5(1(4(x0)))))) |
5(0(4(4(2(x0))))) | → | 0(5(2(5(4(4(x0)))))) |
2(1(0(x0))) | → | 2(3(1(0(x0)))) |
2(1(0(x0))) | → | 0(1(2(0(x0)))) |
2(1(0(x0))) | → | 3(1(2(0(x0)))) |
2(1(0(x0))) | → | 1(2(2(0(x0)))) |
2(1(0(x0))) | → | 4(1(2(2(0(x0))))) |
2(1(0(x0))) | → | 3(2(5(0(1(5(x0)))))) |
4(2(0(x0))) | → | 3(4(1(2(0(x0))))) |
2(4(0(x0))) | → | 3(2(0(4(x0)))) |
2(4(0(x0))) | → | 2(5(5(0(4(x0))))) |
2(4(0(0(x0)))) | → | 4(3(2(2(0(0(x0)))))) |
2(2(1(0(x0)))) | → | 2(0(1(2(0(x0))))) |
2(2(1(0(x0)))) | → | 2(2(0(3(1(x0))))) |
4(2(1(0(x0)))) | → | 3(2(4(1(0(x0))))) |
4(2(1(0(x0)))) | → | 1(1(2(2(0(4(x0)))))) |
4(2(1(0(x0)))) | → | 1(2(5(5(0(4(x0)))))) |
5(2(1(0(x0)))) | → | 0(1(2(5(5(3(x0)))))) |
2(4(1(0(x0)))) | → | 4(1(2(5(0(x0))))) |
2(5(1(0(x0)))) | → | 3(2(0(5(1(x0))))) |
2(5(1(0(x0)))) | → | 5(0(1(2(2(0(x0)))))) |
2(5(1(0(x0)))) | → | 3(1(2(0(5(5(x0)))))) |
2(4(2(0(x0)))) | → | 2(2(3(4(5(0(x0)))))) |
2(1(3(0(x0)))) | → | 2(3(1(2(0(x0))))) |
2(1(3(0(x0)))) | → | 3(5(2(0(1(x0))))) |
2(1(3(0(x0)))) | → | 3(2(0(5(1(x0))))) |
2(1(3(0(x0)))) | → | 1(2(2(0(3(x0))))) |
2(1(3(0(x0)))) | → | 0(1(2(2(3(x0))))) |
2(1(3(0(x0)))) | → | 3(1(3(2(3(0(x0)))))) |
2(4(3(0(x0)))) | → | 4(3(2(2(0(x0))))) |
2(1(0(5(x0)))) | → | 0(5(2(3(1(x0))))) |
2(1(0(5(x0)))) | → | 3(3(1(2(0(5(x0)))))) |
5(2(1(1(0(x0))))) | → | 1(1(5(2(0(5(x0)))))) |
2(4(3(2(0(x0))))) | → | 0(4(3(2(2(3(x0)))))) |
5(2(1(3(0(x0))))) | → | 5(0(3(1(3(2(x0)))))) |
2(5(1(3(0(x0))))) | → | 2(1(5(2(3(0(x0)))))) |
4(1(4(3(0(x0))))) | → | 4(4(1(3(5(0(x0)))))) |
2(1(5(3(0(x0))))) | → | 0(1(2(3(5(5(x0)))))) |
2(4(0(4(0(x0))))) | → | 2(2(0(0(4(4(x0)))))) |
2(1(1(4(0(x0))))) | → | 1(2(0(4(1(3(x0)))))) |
2(2(1(4(0(x0))))) | → | 3(2(2(0(1(4(x0)))))) |
5(2(1(4(0(x0))))) | → | 5(2(0(1(4(3(x0)))))) |
2(1(2(4(0(x0))))) | → | 2(0(2(3(1(4(x0)))))) |
4(1(2(4(0(x0))))) | → | 4(4(4(1(2(0(x0)))))) |
2(5(2(4(0(x0))))) | → | 0(2(2(3(4(5(x0)))))) |
2(1(5(4(0(x0))))) | → | 5(5(0(2(4(1(x0)))))) |
2(1(5(4(0(x0))))) | → | 1(1(5(2(0(4(x0)))))) |
2(2(1(0(5(x0))))) | → | 2(1(2(2(0(5(x0)))))) |
2(4(2(0(5(x0))))) | → | 4(1(5(2(2(0(x0)))))) |
2(4(4(0(5(x0))))) | → | 4(4(5(2(5(0(x0)))))) |
final states:
{167, 164, 161, 158, 153, 148, 146, 142, 137, 132, 127, 122, 118, 114, 111, 105, 102, 99, 94, 91, 89, 84, 80, 76, 72, 71, 67, 62, 60, 56, 52, 46, 45, 42, 39, 34, 33, 28, 25, 21, 19, 13, 12, 10, 9, 6, 1}
transitions:
33 | → | 106 |
111 | → | 106 |
25 | → | 106 |
102 | → | 106 |
89 | → | 106 |
80 | → | 106 |
10 | → | 106 |
84 | → | 106 |
167 | → | 106 |
122 | → | 106 |
39 | → | 22 |
146 | → | 154 |
146 | → | 22 |
9 | → | 106 |
34 | → | 106 |
175 | → | 41 |
99 | → | 14 |
62 | → | 106 |
1 | → | 106 |
71 | → | 106 |
127 | → | 106 |
13 | → | 106 |
60 | → | 106 |
76 | → | 106 |
91 | → | 106 |
161 | → | 106 |
21 | → | 106 |
72 | → | 106 |
6 | → | 106 |
153 | → | 106 |
52 | → | 155 |
52 | → | 106 |
105 | → | 14 |
67 | → | 106 |
2 | → | 170 |
28 | → | 106 |
118 | → | 106 |
45 | → | 22 |
114 | → | 154 |
114 | → | 22 |
12 | → | 106 |
42 | → | 22 |
137 | → | 14 |
46 | → | 14 |
158 | → | 106 |
164 | → | 106 |
148 | → | 106 |
132 | → | 106 |
142 | → | 106 |
19 | → | 22 |
56 | → | 106 |
94 | → | 106 |
11(173) | → | 174 |
01(170) | → | 171 |
51(171) | → | 172 |
10(115) | → | 116 |
10(65) | → | 66 |
10(11) | → | 10 |
10(162) | → | 163 |
10(120) | → | 121 |
10(112) | → | 113 |
10(3) | → | 4 |
10(7) | → | 8 |
10(25) | → | 45 |
10(44) | → | 42 |
10(50) | → | 51 |
10(87) | → | 88 |
10(165) | → | 166 |
10(159) | → | 160 |
10(138) | → | 139 |
10(82) | → | 83 |
10(131) | → | 127 |
10(79) | → | 76 |
10(96) | → | 97 |
10(101) | → | 99 |
10(107) | → | 108 |
10(14) | → | 15 |
10(160) | → | 158 |
10(43) | → | 44 |
10(47) | → | 128 |
10(22) | → | 133 |
10(2) | → | 35 |
10(100) | → | 101 |
10(54) | → | 55 |
00(109) | → | 110 |
00(2) | → | 3 |
00(155) | → | 156 |
00(124) | → | 125 |
00(152) | → | 148 |
00(129) | → | 130 |
00(51) | → | 46 |
00(133) | → | 134 |
00(144) | → | 145 |
00(83) | → | 80 |
00(47) | → | 77 |
00(8) | → | 6 |
00(123) | → | 124 |
00(36) | → | 37 |
00(93) | → | 91 |
00(14) | → | 95 |
00(139) | → | 140 |
00(57) | → | 58 |
00(63) | → | 64 |
00(121) | → | 118 |
00(15) | → | 16 |
00(3) | → | 29 |
00(10) | → | 61 |
00(104) | → | 102 |
00(22) | → | 23 |
00(35) | → | 73 |
30(98) | → | 94 |
30(106) | → | 107 |
30(41) | → | 39 |
30(63) | → | 119 |
30(59) | → | 56 |
30(86) | → | 87 |
30(108) | → | 109 |
30(136) | → | 132 |
30(35) | → | 36 |
30(8) | → | 9 |
30(11) | → | 90 |
30(149) | → | 150 |
30(88) | → | 84 |
30(75) | → | 72 |
30(18) | → | 13 |
30(82) | → | 103 |
30(3) | → | 85 |
30(97) | → | 98 |
30(20) | → | 19 |
30(53) | → | 115 |
30(31) | → | 32 |
30(133) | → | 143 |
30(2) | → | 47 |
30(4) | → | 5 |
30(24) | → | 21 |
30(68) | → | 69 |
30(66) | → | 62 |
40(8) | → | 20 |
40(47) | → | 138 |
40(53) | → | 68 |
40(117) | → | 114 |
40(169) | → | 167 |
40(128) | → | 129 |
40(4) | → | 40 |
40(90) | → | 89 |
40(10) | → | 12 |
40(22) | → | 123 |
40(147) | → | 146 |
40(20) | → | 147 |
40(166) | → | 164 |
40(116) | → | 117 |
40(14) | → | 149 |
40(103) | → | 104 |
40(35) | → | 154 |
40(32) | → | 28 |
40(55) | → | 52 |
40(2) | → | 22 |
40(168) | → | 169 |
50(48) | → | 49 |
50(16) | → | 17 |
50(156) | → | 157 |
50(96) | → | 100 |
50(24) | → | 159 |
50(157) | → | 153 |
50(92) | → | 93 |
50(54) | → | 168 |
50(61) | → | 60 |
50(23) | → | 26 |
50(11) | → | 165 |
50(74) | → | 75 |
50(14) | → | 63 |
50(2) | → | 14 |
50(3) | → | 53 |
50(26) | → | 27 |
50(35) | → | 57 |
50(110) | → | 105 |
50(47) | → | 48 |
50(86) | → | 112 |
50(141) | → | 137 |
f60 | → | 2 |
20(2) | → | 106 |
20(163) | → | 161 |
20(9) | → | 71 |
20(134) | → | 135 |
20(49) | → | 50 |
20(95) | → | 96 |
20(64) | → | 65 |
20(113) | → | 111 |
20(30) | → | 31 |
20(36) | → | 92 |
20(24) | → | 43 |
20(37) | → | 38 |
20(151) | → | 152 |
20(150) | → | 151 |
20(38) | → | 34 |
20(96) | → | 162 |
20(3) | → | 7 |
20(17) | → | 18 |
20(135) | → | 136 |
20(6) | → | 33 |
20(53) | → | 54 |
20(140) | → | 141 |
20(70) | → | 67 |
20(23) | → | 24 |
20(125) | → | 126 |
20(81) | → | 82 |
20(29) | → | 30 |
20(130) | → | 131 |
20(7) | → | 11 |
20(27) | → | 25 |
20(85) | → | 86 |
20(40) | → | 41 |
20(126) | → | 122 |
20(73) | → | 74 |
20(143) | → | 144 |
20(154) | → | 155 |
20(78) | → | 79 |
20(58) | → | 59 |
20(5) | → | 1 |
20(145) | → | 142 |
20(77) | → | 78 |
20(119) | → | 120 |
20(47) | → | 81 |
20(69) | → | 70 |
21(172) | → | 173 |
41(174) | → | 175 |