(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
0(1(1(x))) → 0(1(2(3(4(1(x))))))
0(1(1(x))) → 1(3(1(3(4(0(x))))))
0(1(1(x))) → 5(1(3(0(3(1(x))))))
0(1(4(x))) → 0(1(3(4(x))))
0(1(4(x))) → 1(3(4(2(0(x)))))
0(1(4(x))) → 1(5(3(4(0(x)))))
0(1(4(x))) → 3(1(3(4(0(x)))))
0(1(4(x))) → 1(1(5(3(4(0(x))))))
0(1(4(x))) → 1(2(3(4(3(0(x))))))
0(1(4(x))) → 1(3(3(4(4(0(x))))))
0(1(4(x))) → 1(3(4(5(0(5(x))))))
0(1(4(x))) → 3(4(5(5(0(1(x))))))
1(2(4(x))) → 1(2(3(4(1(x)))))
1(2(4(x))) → 5(3(4(1(2(x)))))
1(2(4(x))) → 1(5(2(3(4(3(x))))))
1(2(4(x))) → 2(3(3(4(5(1(x))))))
5(2(1(x))) → 1(2(2(3(5(4(x))))))
5(2(1(x))) → 1(3(2(5(3(4(x))))))
5(2(4(x))) → 0(5(2(3(4(x)))))
5(2(4(x))) → 5(5(3(4(2(x)))))
5(2(4(x))) → 0(3(4(4(5(2(x))))))
5(2(4(x))) → 2(2(5(3(4(4(x))))))
5(2(4(x))) → 2(3(3(4(5(5(x))))))
5(2(4(x))) → 2(3(4(3(5(3(x))))))
5(2(4(x))) → 2(5(3(4(0(5(x))))))
5(2(4(x))) → 3(1(2(5(3(4(x))))))
5(2(4(x))) → 5(2(3(4(0(3(x))))))
0(0(2(4(x)))) → 0(4(3(0(2(x)))))
0(1(1(5(x)))) → 0(1(3(5(1(2(x))))))
0(1(2(4(x)))) → 0(1(2(3(3(4(x))))))
0(1(4(5(x)))) → 3(4(0(5(1(x)))))
0(1(4(5(x)))) → 3(4(5(3(0(1(x))))))
0(4(2(1(x)))) → 0(4(1(2(3(4(x))))))
0(5(1(4(x)))) → 0(0(3(5(4(1(x))))))
1(0(1(4(x)))) → 3(4(0(1(2(1(x))))))
1(1(2(4(x)))) → 1(3(4(1(2(x)))))
1(2(2(4(x)))) → 2(2(2(3(4(1(x))))))
1(2(4(2(x)))) → 1(2(3(4(2(3(x))))))
1(5(2(1(x)))) → 1(0(3(5(1(2(x))))))
1(5(2(4(x)))) → 3(2(3(5(1(4(x))))))
1(5(2(4(x)))) → 5(2(3(3(1(4(x))))))
5(0(1(4(x)))) → 3(4(0(5(3(1(x))))))
5(2(5(1(x)))) → 3(5(1(5(2(x)))))
0(1(1(5(4(x))))) → 0(0(5(4(1(1(x))))))
1(0(0(2(4(x))))) → 0(2(0(4(4(1(x))))))
1(0(4(2(1(x))))) → 1(2(3(4(1(0(x))))))
1(2(5(0(1(x))))) → 2(3(5(1(0(1(x))))))
1(5(3(0(4(x))))) → 5(1(3(4(0(4(x))))))
5(0(5(2(4(x))))) → 4(0(0(5(5(2(x))))))
5(3(2(4(2(x))))) → 2(1(5(3(4(2(x))))))
Q is empty.
(1) QTRS Reverse (EQUIVALENT transformation)
We applied the QTRS Reverse Processor [REVERSE].
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
1(1(0(x))) → 1(4(3(2(1(0(x))))))
1(1(0(x))) → 0(4(3(1(3(1(x))))))
1(1(0(x))) → 1(3(0(3(1(5(x))))))
4(1(0(x))) → 4(3(1(0(x))))
4(1(0(x))) → 0(2(4(3(1(x)))))
4(1(0(x))) → 0(4(3(5(1(x)))))
4(1(0(x))) → 0(4(3(1(3(x)))))
4(1(0(x))) → 0(4(3(5(1(1(x))))))
4(1(0(x))) → 0(3(4(3(2(1(x))))))
4(1(0(x))) → 0(4(4(3(3(1(x))))))
4(1(0(x))) → 5(0(5(4(3(1(x))))))
4(1(0(x))) → 1(0(5(5(4(3(x))))))
4(2(1(x))) → 1(4(3(2(1(x)))))
4(2(1(x))) → 2(1(4(3(5(x)))))
4(2(1(x))) → 3(4(3(2(5(1(x))))))
4(2(1(x))) → 1(5(4(3(3(2(x))))))
1(2(5(x))) → 4(5(3(2(2(1(x))))))
1(2(5(x))) → 4(3(5(2(3(1(x))))))
4(2(5(x))) → 4(3(2(5(0(x)))))
4(2(5(x))) → 2(4(3(5(5(x)))))
4(2(5(x))) → 2(5(4(4(3(0(x))))))
4(2(5(x))) → 4(4(3(5(2(2(x))))))
4(2(5(x))) → 5(5(4(3(3(2(x))))))
4(2(5(x))) → 3(5(3(4(3(2(x))))))
4(2(5(x))) → 5(0(4(3(5(2(x))))))
4(2(5(x))) → 4(3(5(2(1(3(x))))))
4(2(5(x))) → 3(0(4(3(2(5(x))))))
4(2(0(0(x)))) → 2(0(3(4(0(x)))))
5(1(1(0(x)))) → 2(1(5(3(1(0(x))))))
4(2(1(0(x)))) → 4(3(3(2(1(0(x))))))
5(4(1(0(x)))) → 1(5(0(4(3(x)))))
5(4(1(0(x)))) → 1(0(3(5(4(3(x))))))
1(2(4(0(x)))) → 4(3(2(1(4(0(x))))))
4(1(5(0(x)))) → 1(4(5(3(0(0(x))))))
4(1(0(1(x)))) → 1(2(1(0(4(3(x))))))
4(2(1(1(x)))) → 2(1(4(3(1(x)))))
4(2(2(1(x)))) → 1(4(3(2(2(2(x))))))
2(4(2(1(x)))) → 3(2(4(3(2(1(x))))))
1(2(5(1(x)))) → 2(1(5(3(0(1(x))))))
4(2(5(1(x)))) → 4(1(5(3(2(3(x))))))
4(2(5(1(x)))) → 4(1(3(3(2(5(x))))))
4(1(0(5(x)))) → 1(3(5(0(4(3(x))))))
1(5(2(5(x)))) → 2(5(1(5(3(x)))))
4(5(1(1(0(x))))) → 1(1(4(5(0(0(x))))))
4(2(0(0(1(x))))) → 1(4(4(0(2(0(x))))))
1(2(4(0(1(x))))) → 0(1(4(3(2(1(x))))))
1(0(5(2(1(x))))) → 1(0(1(5(3(2(x))))))
4(0(3(5(1(x))))) → 4(0(4(3(1(5(x))))))
4(2(5(0(5(x))))) → 2(5(5(0(0(4(x))))))
2(4(2(3(5(x))))) → 2(4(3(5(1(2(x))))))
Q is empty.
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
11(1(0(x))) → 11(4(3(2(1(0(x))))))
11(1(0(x))) → 41(3(2(1(0(x)))))
11(1(0(x))) → 21(1(0(x)))
11(1(0(x))) → 41(3(1(3(1(x)))))
11(1(0(x))) → 11(3(1(x)))
11(1(0(x))) → 11(x)
11(1(0(x))) → 11(3(0(3(1(5(x))))))
11(1(0(x))) → 11(5(x))
11(1(0(x))) → 51(x)
41(1(0(x))) → 41(3(1(0(x))))
41(1(0(x))) → 21(4(3(1(x))))
41(1(0(x))) → 41(3(1(x)))
41(1(0(x))) → 11(x)
41(1(0(x))) → 41(3(5(1(x))))
41(1(0(x))) → 51(1(x))
41(1(0(x))) → 41(3(1(3(x))))
41(1(0(x))) → 11(3(x))
41(1(0(x))) → 41(3(5(1(1(x)))))
41(1(0(x))) → 51(1(1(x)))
41(1(0(x))) → 11(1(x))
41(1(0(x))) → 41(3(2(1(x))))
41(1(0(x))) → 21(1(x))
41(1(0(x))) → 41(4(3(3(1(x)))))
41(1(0(x))) → 41(3(3(1(x))))
41(1(0(x))) → 51(0(5(4(3(1(x))))))
41(1(0(x))) → 51(4(3(1(x))))
41(1(0(x))) → 11(0(5(5(4(3(x))))))
41(1(0(x))) → 51(5(4(3(x))))
41(1(0(x))) → 51(4(3(x)))
41(1(0(x))) → 41(3(x))
41(2(1(x))) → 11(4(3(2(1(x)))))
41(2(1(x))) → 41(3(2(1(x))))
41(2(1(x))) → 21(1(4(3(5(x)))))
41(2(1(x))) → 11(4(3(5(x))))
41(2(1(x))) → 41(3(5(x)))
41(2(1(x))) → 51(x)
41(2(1(x))) → 41(3(2(5(1(x)))))
41(2(1(x))) → 21(5(1(x)))
41(2(1(x))) → 51(1(x))
41(2(1(x))) → 11(5(4(3(3(2(x))))))
41(2(1(x))) → 51(4(3(3(2(x)))))
41(2(1(x))) → 41(3(3(2(x))))
41(2(1(x))) → 21(x)
11(2(5(x))) → 41(5(3(2(2(1(x))))))
11(2(5(x))) → 51(3(2(2(1(x)))))
11(2(5(x))) → 21(2(1(x)))
11(2(5(x))) → 21(1(x))
11(2(5(x))) → 11(x)
11(2(5(x))) → 41(3(5(2(3(1(x))))))
11(2(5(x))) → 51(2(3(1(x))))
11(2(5(x))) → 21(3(1(x)))
41(2(5(x))) → 41(3(2(5(0(x)))))
41(2(5(x))) → 21(5(0(x)))
41(2(5(x))) → 51(0(x))
41(2(5(x))) → 21(4(3(5(5(x)))))
41(2(5(x))) → 41(3(5(5(x))))
41(2(5(x))) → 51(5(x))
41(2(5(x))) → 21(5(4(4(3(0(x))))))
41(2(5(x))) → 51(4(4(3(0(x)))))
41(2(5(x))) → 41(4(3(0(x))))
41(2(5(x))) → 41(3(0(x)))
41(2(5(x))) → 41(4(3(5(2(2(x))))))
41(2(5(x))) → 41(3(5(2(2(x)))))
41(2(5(x))) → 51(2(2(x)))
41(2(5(x))) → 21(2(x))
41(2(5(x))) → 21(x)
41(2(5(x))) → 51(5(4(3(3(2(x))))))
41(2(5(x))) → 51(4(3(3(2(x)))))
41(2(5(x))) → 41(3(3(2(x))))
41(2(5(x))) → 51(3(4(3(2(x)))))
41(2(5(x))) → 41(3(2(x)))
41(2(5(x))) → 51(0(4(3(5(2(x))))))
41(2(5(x))) → 41(3(5(2(x))))
41(2(5(x))) → 51(2(x))
41(2(5(x))) → 41(3(5(2(1(3(x))))))
41(2(5(x))) → 51(2(1(3(x))))
41(2(5(x))) → 21(1(3(x)))
41(2(5(x))) → 11(3(x))
41(2(5(x))) → 41(3(2(5(x))))
41(2(0(0(x)))) → 21(0(3(4(0(x)))))
41(2(0(0(x)))) → 41(0(x))
51(1(1(0(x)))) → 21(1(5(3(1(0(x))))))
51(1(1(0(x)))) → 11(5(3(1(0(x)))))
51(1(1(0(x)))) → 51(3(1(0(x))))
41(2(1(0(x)))) → 41(3(3(2(1(0(x))))))
51(4(1(0(x)))) → 11(5(0(4(3(x)))))
51(4(1(0(x)))) → 51(0(4(3(x))))
51(4(1(0(x)))) → 41(3(x))
51(4(1(0(x)))) → 11(0(3(5(4(3(x))))))
51(4(1(0(x)))) → 51(4(3(x)))
11(2(4(0(x)))) → 41(3(2(1(4(0(x))))))
11(2(4(0(x)))) → 21(1(4(0(x))))
11(2(4(0(x)))) → 11(4(0(x)))
41(1(5(0(x)))) → 11(4(5(3(0(0(x))))))
41(1(5(0(x)))) → 41(5(3(0(0(x)))))
41(1(5(0(x)))) → 51(3(0(0(x))))
41(1(0(1(x)))) → 11(2(1(0(4(3(x))))))
41(1(0(1(x)))) → 21(1(0(4(3(x)))))
41(1(0(1(x)))) → 11(0(4(3(x))))
41(1(0(1(x)))) → 41(3(x))
41(2(1(1(x)))) → 21(1(4(3(1(x)))))
41(2(1(1(x)))) → 11(4(3(1(x))))
41(2(1(1(x)))) → 41(3(1(x)))
41(2(2(1(x)))) → 11(4(3(2(2(2(x))))))
41(2(2(1(x)))) → 41(3(2(2(2(x)))))
41(2(2(1(x)))) → 21(2(2(x)))
41(2(2(1(x)))) → 21(2(x))
41(2(2(1(x)))) → 21(x)
21(4(2(1(x)))) → 21(4(3(2(1(x)))))
21(4(2(1(x)))) → 41(3(2(1(x))))
11(2(5(1(x)))) → 21(1(5(3(0(1(x))))))
11(2(5(1(x)))) → 11(5(3(0(1(x)))))
11(2(5(1(x)))) → 51(3(0(1(x))))
41(2(5(1(x)))) → 41(1(5(3(2(3(x))))))
41(2(5(1(x)))) → 11(5(3(2(3(x)))))
41(2(5(1(x)))) → 51(3(2(3(x))))
41(2(5(1(x)))) → 21(3(x))
41(2(5(1(x)))) → 41(1(3(3(2(5(x))))))
41(2(5(1(x)))) → 11(3(3(2(5(x)))))
41(2(5(1(x)))) → 21(5(x))
41(2(5(1(x)))) → 51(x)
41(1(0(5(x)))) → 11(3(5(0(4(3(x))))))
41(1(0(5(x)))) → 51(0(4(3(x))))
41(1(0(5(x)))) → 41(3(x))
11(5(2(5(x)))) → 21(5(1(5(3(x)))))
11(5(2(5(x)))) → 51(1(5(3(x))))
11(5(2(5(x)))) → 11(5(3(x)))
11(5(2(5(x)))) → 51(3(x))
41(5(1(1(0(x))))) → 11(1(4(5(0(0(x))))))
41(5(1(1(0(x))))) → 11(4(5(0(0(x)))))
41(5(1(1(0(x))))) → 41(5(0(0(x))))
41(5(1(1(0(x))))) → 51(0(0(x)))
41(2(0(0(1(x))))) → 11(4(4(0(2(0(x))))))
41(2(0(0(1(x))))) → 41(4(0(2(0(x)))))
41(2(0(0(1(x))))) → 41(0(2(0(x))))
41(2(0(0(1(x))))) → 21(0(x))
11(2(4(0(1(x))))) → 11(4(3(2(1(x)))))
11(2(4(0(1(x))))) → 41(3(2(1(x))))
11(2(4(0(1(x))))) → 21(1(x))
11(0(5(2(1(x))))) → 11(0(1(5(3(2(x))))))
11(0(5(2(1(x))))) → 11(5(3(2(x))))
11(0(5(2(1(x))))) → 51(3(2(x)))
11(0(5(2(1(x))))) → 21(x)
41(0(3(5(1(x))))) → 41(0(4(3(1(5(x))))))
41(0(3(5(1(x))))) → 41(3(1(5(x))))
41(0(3(5(1(x))))) → 11(5(x))
41(0(3(5(1(x))))) → 51(x)
41(2(5(0(5(x))))) → 21(5(5(0(0(4(x))))))
41(2(5(0(5(x))))) → 51(5(0(0(4(x)))))
41(2(5(0(5(x))))) → 51(0(0(4(x))))
41(2(5(0(5(x))))) → 41(x)
21(4(2(3(5(x))))) → 21(4(3(5(1(2(x))))))
21(4(2(3(5(x))))) → 41(3(5(1(2(x)))))
21(4(2(3(5(x))))) → 51(1(2(x)))
21(4(2(3(5(x))))) → 11(2(x))
21(4(2(3(5(x))))) → 21(x)
The TRS R consists of the following rules:
1(1(0(x))) → 1(4(3(2(1(0(x))))))
1(1(0(x))) → 0(4(3(1(3(1(x))))))
1(1(0(x))) → 1(3(0(3(1(5(x))))))
4(1(0(x))) → 4(3(1(0(x))))
4(1(0(x))) → 0(2(4(3(1(x)))))
4(1(0(x))) → 0(4(3(5(1(x)))))
4(1(0(x))) → 0(4(3(1(3(x)))))
4(1(0(x))) → 0(4(3(5(1(1(x))))))
4(1(0(x))) → 0(3(4(3(2(1(x))))))
4(1(0(x))) → 0(4(4(3(3(1(x))))))
4(1(0(x))) → 5(0(5(4(3(1(x))))))
4(1(0(x))) → 1(0(5(5(4(3(x))))))
4(2(1(x))) → 1(4(3(2(1(x)))))
4(2(1(x))) → 2(1(4(3(5(x)))))
4(2(1(x))) → 3(4(3(2(5(1(x))))))
4(2(1(x))) → 1(5(4(3(3(2(x))))))
1(2(5(x))) → 4(5(3(2(2(1(x))))))
1(2(5(x))) → 4(3(5(2(3(1(x))))))
4(2(5(x))) → 4(3(2(5(0(x)))))
4(2(5(x))) → 2(4(3(5(5(x)))))
4(2(5(x))) → 2(5(4(4(3(0(x))))))
4(2(5(x))) → 4(4(3(5(2(2(x))))))
4(2(5(x))) → 5(5(4(3(3(2(x))))))
4(2(5(x))) → 3(5(3(4(3(2(x))))))
4(2(5(x))) → 5(0(4(3(5(2(x))))))
4(2(5(x))) → 4(3(5(2(1(3(x))))))
4(2(5(x))) → 3(0(4(3(2(5(x))))))
4(2(0(0(x)))) → 2(0(3(4(0(x)))))
5(1(1(0(x)))) → 2(1(5(3(1(0(x))))))
4(2(1(0(x)))) → 4(3(3(2(1(0(x))))))
5(4(1(0(x)))) → 1(5(0(4(3(x)))))
5(4(1(0(x)))) → 1(0(3(5(4(3(x))))))
1(2(4(0(x)))) → 4(3(2(1(4(0(x))))))
4(1(5(0(x)))) → 1(4(5(3(0(0(x))))))
4(1(0(1(x)))) → 1(2(1(0(4(3(x))))))
4(2(1(1(x)))) → 2(1(4(3(1(x)))))
4(2(2(1(x)))) → 1(4(3(2(2(2(x))))))
2(4(2(1(x)))) → 3(2(4(3(2(1(x))))))
1(2(5(1(x)))) → 2(1(5(3(0(1(x))))))
4(2(5(1(x)))) → 4(1(5(3(2(3(x))))))
4(2(5(1(x)))) → 4(1(3(3(2(5(x))))))
4(1(0(5(x)))) → 1(3(5(0(4(3(x))))))
1(5(2(5(x)))) → 2(5(1(5(3(x)))))
4(5(1(1(0(x))))) → 1(1(4(5(0(0(x))))))
4(2(0(0(1(x))))) → 1(4(4(0(2(0(x))))))
1(2(4(0(1(x))))) → 0(1(4(3(2(1(x))))))
1(0(5(2(1(x))))) → 1(0(1(5(3(2(x))))))
4(0(3(5(1(x))))) → 4(0(4(3(1(5(x))))))
4(2(5(0(5(x))))) → 2(5(5(0(0(4(x))))))
2(4(2(3(5(x))))) → 2(4(3(5(1(2(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 143 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
11(1(0(x))) → 21(1(0(x)))
21(4(2(3(5(x))))) → 11(2(x))
11(1(0(x))) → 11(x)
11(1(0(x))) → 11(5(x))
11(2(5(x))) → 21(2(1(x)))
21(4(2(3(5(x))))) → 21(x)
11(2(5(x))) → 21(1(x))
11(2(5(x))) → 11(x)
11(2(4(0(x)))) → 21(1(4(0(x))))
11(2(4(0(x)))) → 11(4(0(x)))
11(2(4(0(1(x))))) → 21(1(x))
11(0(5(2(1(x))))) → 21(x)
The TRS R consists of the following rules:
1(1(0(x))) → 1(4(3(2(1(0(x))))))
1(1(0(x))) → 0(4(3(1(3(1(x))))))
1(1(0(x))) → 1(3(0(3(1(5(x))))))
4(1(0(x))) → 4(3(1(0(x))))
4(1(0(x))) → 0(2(4(3(1(x)))))
4(1(0(x))) → 0(4(3(5(1(x)))))
4(1(0(x))) → 0(4(3(1(3(x)))))
4(1(0(x))) → 0(4(3(5(1(1(x))))))
4(1(0(x))) → 0(3(4(3(2(1(x))))))
4(1(0(x))) → 0(4(4(3(3(1(x))))))
4(1(0(x))) → 5(0(5(4(3(1(x))))))
4(1(0(x))) → 1(0(5(5(4(3(x))))))
4(2(1(x))) → 1(4(3(2(1(x)))))
4(2(1(x))) → 2(1(4(3(5(x)))))
4(2(1(x))) → 3(4(3(2(5(1(x))))))
4(2(1(x))) → 1(5(4(3(3(2(x))))))
1(2(5(x))) → 4(5(3(2(2(1(x))))))
1(2(5(x))) → 4(3(5(2(3(1(x))))))
4(2(5(x))) → 4(3(2(5(0(x)))))
4(2(5(x))) → 2(4(3(5(5(x)))))
4(2(5(x))) → 2(5(4(4(3(0(x))))))
4(2(5(x))) → 4(4(3(5(2(2(x))))))
4(2(5(x))) → 5(5(4(3(3(2(x))))))
4(2(5(x))) → 3(5(3(4(3(2(x))))))
4(2(5(x))) → 5(0(4(3(5(2(x))))))
4(2(5(x))) → 4(3(5(2(1(3(x))))))
4(2(5(x))) → 3(0(4(3(2(5(x))))))
4(2(0(0(x)))) → 2(0(3(4(0(x)))))
5(1(1(0(x)))) → 2(1(5(3(1(0(x))))))
4(2(1(0(x)))) → 4(3(3(2(1(0(x))))))
5(4(1(0(x)))) → 1(5(0(4(3(x)))))
5(4(1(0(x)))) → 1(0(3(5(4(3(x))))))
1(2(4(0(x)))) → 4(3(2(1(4(0(x))))))
4(1(5(0(x)))) → 1(4(5(3(0(0(x))))))
4(1(0(1(x)))) → 1(2(1(0(4(3(x))))))
4(2(1(1(x)))) → 2(1(4(3(1(x)))))
4(2(2(1(x)))) → 1(4(3(2(2(2(x))))))
2(4(2(1(x)))) → 3(2(4(3(2(1(x))))))
1(2(5(1(x)))) → 2(1(5(3(0(1(x))))))
4(2(5(1(x)))) → 4(1(5(3(2(3(x))))))
4(2(5(1(x)))) → 4(1(3(3(2(5(x))))))
4(1(0(5(x)))) → 1(3(5(0(4(3(x))))))
1(5(2(5(x)))) → 2(5(1(5(3(x)))))
4(5(1(1(0(x))))) → 1(1(4(5(0(0(x))))))
4(2(0(0(1(x))))) → 1(4(4(0(2(0(x))))))
1(2(4(0(1(x))))) → 0(1(4(3(2(1(x))))))
1(0(5(2(1(x))))) → 1(0(1(5(3(2(x))))))
4(0(3(5(1(x))))) → 4(0(4(3(1(5(x))))))
4(2(5(0(5(x))))) → 2(5(5(0(0(4(x))))))
2(4(2(3(5(x))))) → 2(4(3(5(1(2(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
11(1(0(x))) → 21(1(0(x)))
21(4(2(3(5(x))))) → 11(2(x))
11(1(0(x))) → 11(x)
11(1(0(x))) → 11(5(x))
11(2(5(x))) → 21(2(1(x)))
21(4(2(3(5(x))))) → 21(x)
11(2(5(x))) → 21(1(x))
11(2(5(x))) → 11(x)
11(2(4(0(x)))) → 21(1(4(0(x))))
11(2(4(0(x)))) → 11(4(0(x)))
11(2(4(0(1(x))))) → 21(1(x))
11(0(5(2(1(x))))) → 21(x)
The TRS R consists of the following rules:
1(1(0(x))) → 1(4(3(2(1(0(x))))))
1(1(0(x))) → 0(4(3(1(3(1(x))))))
1(1(0(x))) → 1(3(0(3(1(5(x))))))
1(2(5(x))) → 4(5(3(2(2(1(x))))))
1(2(5(x))) → 4(3(5(2(3(1(x))))))
1(2(4(0(x)))) → 4(3(2(1(4(0(x))))))
1(2(5(1(x)))) → 2(1(5(3(0(1(x))))))
1(5(2(5(x)))) → 2(5(1(5(3(x)))))
1(2(4(0(1(x))))) → 0(1(4(3(2(1(x))))))
1(0(5(2(1(x))))) → 1(0(1(5(3(2(x))))))
2(4(2(1(x)))) → 3(2(4(3(2(1(x))))))
2(4(2(3(5(x))))) → 2(4(3(5(1(2(x))))))
5(1(1(0(x)))) → 2(1(5(3(1(0(x))))))
5(4(1(0(x)))) → 1(5(0(4(3(x)))))
5(4(1(0(x)))) → 1(0(3(5(4(3(x))))))
4(0(3(5(1(x))))) → 4(0(4(3(1(5(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
11(1(0(x))) → 11(x)
11(1(0(x))) → 11(5(x))
11(2(5(x))) → 11(x)
11(2(4(0(x)))) → 11(4(0(x)))
11(0(5(2(1(x))))) → 21(x)
21(4(2(3(5(x))))) → 11(2(x))
21(4(2(3(5(x))))) → 21(x)
The TRS R consists of the following rules:
1(1(0(x))) → 1(4(3(2(1(0(x))))))
1(1(0(x))) → 0(4(3(1(3(1(x))))))
1(1(0(x))) → 1(3(0(3(1(5(x))))))
1(2(5(x))) → 4(5(3(2(2(1(x))))))
1(2(5(x))) → 4(3(5(2(3(1(x))))))
1(2(4(0(x)))) → 4(3(2(1(4(0(x))))))
1(2(5(1(x)))) → 2(1(5(3(0(1(x))))))
1(5(2(5(x)))) → 2(5(1(5(3(x)))))
1(2(4(0(1(x))))) → 0(1(4(3(2(1(x))))))
1(0(5(2(1(x))))) → 1(0(1(5(3(2(x))))))
2(4(2(1(x)))) → 3(2(4(3(2(1(x))))))
2(4(2(3(5(x))))) → 2(4(3(5(1(2(x))))))
5(1(1(0(x)))) → 2(1(5(3(1(0(x))))))
5(4(1(0(x)))) → 1(5(0(4(3(x)))))
5(4(1(0(x)))) → 1(0(3(5(4(3(x))))))
4(0(3(5(1(x))))) → 4(0(4(3(1(5(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
11(1(0(x))) → 11(x)
11(2(5(x))) → 11(x)
11(2(4(0(x)))) → 11(4(0(x)))
11(0(5(2(1(x))))) → 21(x)
21(4(2(3(5(x))))) → 11(2(x))
21(4(2(3(5(x))))) → 21(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 11(x1) ) = max{0, 2x1 - 2} |
POL( 3(x1) ) = max{0, x1 - 2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
5(1(1(0(x)))) → 2(1(5(3(1(0(x))))))
5(4(1(0(x)))) → 1(5(0(4(3(x)))))
5(4(1(0(x)))) → 1(0(3(5(4(3(x))))))
4(0(3(5(1(x))))) → 4(0(4(3(1(5(x))))))
2(4(2(1(x)))) → 3(2(4(3(2(1(x))))))
2(4(2(3(5(x))))) → 2(4(3(5(1(2(x))))))
1(1(0(x))) → 1(4(3(2(1(0(x))))))
1(1(0(x))) → 0(4(3(1(3(1(x))))))
1(1(0(x))) → 1(3(0(3(1(5(x))))))
1(2(5(x))) → 4(5(3(2(2(1(x))))))
1(2(5(x))) → 4(3(5(2(3(1(x))))))
1(2(4(0(x)))) → 4(3(2(1(4(0(x))))))
1(2(5(1(x)))) → 2(1(5(3(0(1(x))))))
1(2(4(0(1(x))))) → 0(1(4(3(2(1(x))))))
1(0(5(2(1(x))))) → 1(0(1(5(3(2(x))))))
1(5(2(5(x)))) → 2(5(1(5(3(x)))))
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
11(1(0(x))) → 11(5(x))
The TRS R consists of the following rules:
1(1(0(x))) → 1(4(3(2(1(0(x))))))
1(1(0(x))) → 0(4(3(1(3(1(x))))))
1(1(0(x))) → 1(3(0(3(1(5(x))))))
1(2(5(x))) → 4(5(3(2(2(1(x))))))
1(2(5(x))) → 4(3(5(2(3(1(x))))))
1(2(4(0(x)))) → 4(3(2(1(4(0(x))))))
1(2(5(1(x)))) → 2(1(5(3(0(1(x))))))
1(5(2(5(x)))) → 2(5(1(5(3(x)))))
1(2(4(0(1(x))))) → 0(1(4(3(2(1(x))))))
1(0(5(2(1(x))))) → 1(0(1(5(3(2(x))))))
2(4(2(1(x)))) → 3(2(4(3(2(1(x))))))
2(4(2(3(5(x))))) → 2(4(3(5(1(2(x))))))
5(1(1(0(x)))) → 2(1(5(3(1(0(x))))))
5(4(1(0(x)))) → 1(5(0(4(3(x)))))
5(4(1(0(x)))) → 1(0(3(5(4(3(x))))))
4(0(3(5(1(x))))) → 4(0(4(3(1(5(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(14) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
11(1(0(x))) → 11(5(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0(x1)) = 1 + x1
POL(1(x1)) = x1
POL(11(x1)) = x1
POL(2(x1)) = 0
POL(3(x1)) = 0
POL(4(x1)) = x1
POL(5(x1)) = x1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
5(1(1(0(x)))) → 2(1(5(3(1(0(x))))))
5(4(1(0(x)))) → 1(5(0(4(3(x)))))
5(4(1(0(x)))) → 1(0(3(5(4(3(x))))))
(15) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
1(1(0(x))) → 1(4(3(2(1(0(x))))))
1(1(0(x))) → 0(4(3(1(3(1(x))))))
1(1(0(x))) → 1(3(0(3(1(5(x))))))
1(2(5(x))) → 4(5(3(2(2(1(x))))))
1(2(5(x))) → 4(3(5(2(3(1(x))))))
1(2(4(0(x)))) → 4(3(2(1(4(0(x))))))
1(2(5(1(x)))) → 2(1(5(3(0(1(x))))))
1(5(2(5(x)))) → 2(5(1(5(3(x)))))
1(2(4(0(1(x))))) → 0(1(4(3(2(1(x))))))
1(0(5(2(1(x))))) → 1(0(1(5(3(2(x))))))
2(4(2(1(x)))) → 3(2(4(3(2(1(x))))))
2(4(2(3(5(x))))) → 2(4(3(5(1(2(x))))))
5(1(1(0(x)))) → 2(1(5(3(1(0(x))))))
5(4(1(0(x)))) → 1(5(0(4(3(x)))))
5(4(1(0(x)))) → 1(0(3(5(4(3(x))))))
4(0(3(5(1(x))))) → 4(0(4(3(1(5(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(17) YES
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
41(2(5(0(5(x))))) → 41(x)
The TRS R consists of the following rules:
1(1(0(x))) → 1(4(3(2(1(0(x))))))
1(1(0(x))) → 0(4(3(1(3(1(x))))))
1(1(0(x))) → 1(3(0(3(1(5(x))))))
4(1(0(x))) → 4(3(1(0(x))))
4(1(0(x))) → 0(2(4(3(1(x)))))
4(1(0(x))) → 0(4(3(5(1(x)))))
4(1(0(x))) → 0(4(3(1(3(x)))))
4(1(0(x))) → 0(4(3(5(1(1(x))))))
4(1(0(x))) → 0(3(4(3(2(1(x))))))
4(1(0(x))) → 0(4(4(3(3(1(x))))))
4(1(0(x))) → 5(0(5(4(3(1(x))))))
4(1(0(x))) → 1(0(5(5(4(3(x))))))
4(2(1(x))) → 1(4(3(2(1(x)))))
4(2(1(x))) → 2(1(4(3(5(x)))))
4(2(1(x))) → 3(4(3(2(5(1(x))))))
4(2(1(x))) → 1(5(4(3(3(2(x))))))
1(2(5(x))) → 4(5(3(2(2(1(x))))))
1(2(5(x))) → 4(3(5(2(3(1(x))))))
4(2(5(x))) → 4(3(2(5(0(x)))))
4(2(5(x))) → 2(4(3(5(5(x)))))
4(2(5(x))) → 2(5(4(4(3(0(x))))))
4(2(5(x))) → 4(4(3(5(2(2(x))))))
4(2(5(x))) → 5(5(4(3(3(2(x))))))
4(2(5(x))) → 3(5(3(4(3(2(x))))))
4(2(5(x))) → 5(0(4(3(5(2(x))))))
4(2(5(x))) → 4(3(5(2(1(3(x))))))
4(2(5(x))) → 3(0(4(3(2(5(x))))))
4(2(0(0(x)))) → 2(0(3(4(0(x)))))
5(1(1(0(x)))) → 2(1(5(3(1(0(x))))))
4(2(1(0(x)))) → 4(3(3(2(1(0(x))))))
5(4(1(0(x)))) → 1(5(0(4(3(x)))))
5(4(1(0(x)))) → 1(0(3(5(4(3(x))))))
1(2(4(0(x)))) → 4(3(2(1(4(0(x))))))
4(1(5(0(x)))) → 1(4(5(3(0(0(x))))))
4(1(0(1(x)))) → 1(2(1(0(4(3(x))))))
4(2(1(1(x)))) → 2(1(4(3(1(x)))))
4(2(2(1(x)))) → 1(4(3(2(2(2(x))))))
2(4(2(1(x)))) → 3(2(4(3(2(1(x))))))
1(2(5(1(x)))) → 2(1(5(3(0(1(x))))))
4(2(5(1(x)))) → 4(1(5(3(2(3(x))))))
4(2(5(1(x)))) → 4(1(3(3(2(5(x))))))
4(1(0(5(x)))) → 1(3(5(0(4(3(x))))))
1(5(2(5(x)))) → 2(5(1(5(3(x)))))
4(5(1(1(0(x))))) → 1(1(4(5(0(0(x))))))
4(2(0(0(1(x))))) → 1(4(4(0(2(0(x))))))
1(2(4(0(1(x))))) → 0(1(4(3(2(1(x))))))
1(0(5(2(1(x))))) → 1(0(1(5(3(2(x))))))
4(0(3(5(1(x))))) → 4(0(4(3(1(5(x))))))
4(2(5(0(5(x))))) → 2(5(5(0(0(4(x))))))
2(4(2(3(5(x))))) → 2(4(3(5(1(2(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
41(2(5(0(5(x))))) → 41(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- 41(2(5(0(5(x))))) → 41(x)
The graph contains the following edges 1 > 1
(22) YES