(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
0(1(1(2(x)))) → 1(3(0(1(2(x)))))
0(1(1(2(x)))) → 1(3(1(0(2(x)))))
0(1(1(2(x)))) → 2(3(1(3(0(1(x))))))
0(1(2(0(x)))) → 1(0(0(2(2(x)))))
0(1(2(4(x)))) → 0(2(3(4(1(x)))))
0(1(2(4(x)))) → 1(0(4(2(3(x)))))
0(1(2(4(x)))) → 1(2(3(0(4(x)))))
0(1(2(4(x)))) → 2(1(4(0(3(x)))))
0(1(2(4(x)))) → 1(2(3(4(0(5(x))))))
0(1(2(4(x)))) → 2(1(1(0(3(4(x))))))
0(1(2(4(x)))) → 4(1(2(2(3(0(x))))))
0(1(2(4(x)))) → 4(5(0(2(3(1(x))))))
0(4(2(0(x)))) → 0(4(2(3(0(x)))))
0(4(2(0(x)))) → 2(3(0(4(0(0(x))))))
0(4(2(0(x)))) → 3(4(0(2(3(0(x))))))
0(4(2(0(x)))) → 4(2(3(0(4(0(x))))))
0(4(2(0(x)))) → 4(3(0(0(5(2(x))))))
0(4(2(4(x)))) → 4(0(2(3(1(4(x))))))
0(4(2(4(x)))) → 4(0(4(2(0(3(x))))))
5(1(2(0(x)))) → 2(1(3(5(0(x)))))
5(1(2(0(x)))) → 3(1(0(2(5(x)))))
5(1(2(0(x)))) → 2(3(0(0(1(5(x))))))
5(1(2(4(x)))) → 3(2(5(1(4(x)))))
5(1(2(4(x)))) → 5(2(1(3(4(x)))))
5(1(2(4(x)))) → 5(5(2(1(4(x)))))
5(1(2(4(x)))) → 0(3(4(5(2(1(x))))))
5(1(4(2(x)))) → 3(4(5(2(1(x)))))
5(1(4(2(x)))) → 2(1(3(4(5(4(x))))))
5(1(4(2(x)))) → 3(3(4(2(1(5(x))))))
5(4(1(4(x)))) → 3(4(4(1(5(4(x))))))
5(4(1(4(x)))) → 4(1(3(5(0(4(x))))))
5(4(1(4(x)))) → 5(1(3(4(5(4(x))))))
5(4(1(4(x)))) → 5(1(5(3(4(4(x))))))
5(4(2(0(x)))) → 5(4(2(3(0(x)))))
5(4(2(0(x)))) → 0(1(2(3(4(5(x))))))
5(4(2(0(x)))) → 4(5(3(3(0(2(x))))))
0(1(2(0(4(x))))) → 0(2(4(1(3(0(x))))))
0(1(2(0(4(x))))) → 2(0(3(4(0(1(x))))))
0(1(2(0(4(x))))) → 4(0(2(3(1(0(x))))))
0(1(4(2(2(x))))) → 1(2(3(4(0(2(x))))))
5(0(1(2(4(x))))) → 3(0(2(1(4(5(x))))))
5(1(2(2(4(x))))) → 5(2(2(1(4(5(x))))))
5(1(2(4(0(x))))) → 5(0(2(1(3(4(x))))))
5(1(2(4(0(x))))) → 5(0(3(2(1(4(x))))))
5(1(3(1(4(x))))) → 1(5(1(3(4(0(x))))))
5(1(4(1(2(x))))) → 2(1(5(3(4(1(x))))))
5(4(1(1(4(x))))) → 1(1(3(4(5(4(x))))))
5(4(1(4(0(x))))) → 3(4(0(4(5(1(x))))))
5(4(3(2(0(x))))) → 5(4(0(3(2(3(x))))))
5(4(5(2(0(x))))) → 5(0(5(4(4(2(x))))))
Q is empty.
(1) QTRS Reverse (EQUIVALENT transformation)
We applied the QTRS Reverse Processor [REVERSE].
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
2(1(1(0(x)))) → 2(1(0(3(1(x)))))
2(1(1(0(x)))) → 2(0(1(3(1(x)))))
2(1(1(0(x)))) → 1(0(3(1(3(2(x))))))
0(2(1(0(x)))) → 2(2(0(0(1(x)))))
4(2(1(0(x)))) → 1(4(3(2(0(x)))))
4(2(1(0(x)))) → 3(2(4(0(1(x)))))
4(2(1(0(x)))) → 4(0(3(2(1(x)))))
4(2(1(0(x)))) → 3(0(4(1(2(x)))))
4(2(1(0(x)))) → 5(0(4(3(2(1(x))))))
4(2(1(0(x)))) → 4(3(0(1(1(2(x))))))
4(2(1(0(x)))) → 0(3(2(2(1(4(x))))))
4(2(1(0(x)))) → 1(3(2(0(5(4(x))))))
0(2(4(0(x)))) → 0(3(2(4(0(x)))))
0(2(4(0(x)))) → 0(0(4(0(3(2(x))))))
0(2(4(0(x)))) → 0(3(2(0(4(3(x))))))
0(2(4(0(x)))) → 0(4(0(3(2(4(x))))))
0(2(4(0(x)))) → 2(5(0(0(3(4(x))))))
4(2(4(0(x)))) → 4(1(3(2(0(4(x))))))
4(2(4(0(x)))) → 3(0(2(4(0(4(x))))))
0(2(1(5(x)))) → 0(5(3(1(2(x)))))
0(2(1(5(x)))) → 5(2(0(1(3(x)))))
0(2(1(5(x)))) → 5(1(0(0(3(2(x))))))
4(2(1(5(x)))) → 4(1(5(2(3(x)))))
4(2(1(5(x)))) → 4(3(1(2(5(x)))))
4(2(1(5(x)))) → 4(1(2(5(5(x)))))
4(2(1(5(x)))) → 1(2(5(4(3(0(x))))))
2(4(1(5(x)))) → 1(2(5(4(3(x)))))
2(4(1(5(x)))) → 4(5(4(3(1(2(x))))))
2(4(1(5(x)))) → 5(1(2(4(3(3(x))))))
4(1(4(5(x)))) → 4(5(1(4(4(3(x))))))
4(1(4(5(x)))) → 4(0(5(3(1(4(x))))))
4(1(4(5(x)))) → 4(5(4(3(1(5(x))))))
4(1(4(5(x)))) → 4(4(3(5(1(5(x))))))
0(2(4(5(x)))) → 0(3(2(4(5(x)))))
0(2(4(5(x)))) → 5(4(3(2(1(0(x))))))
0(2(4(5(x)))) → 2(0(3(3(5(4(x))))))
4(0(2(1(0(x))))) → 0(3(1(4(2(0(x))))))
4(0(2(1(0(x))))) → 1(0(4(3(0(2(x))))))
4(0(2(1(0(x))))) → 0(1(3(2(0(4(x))))))
2(2(4(1(0(x))))) → 2(0(4(3(2(1(x))))))
4(2(1(0(5(x))))) → 5(4(1(2(0(3(x))))))
4(2(2(1(5(x))))) → 5(4(1(2(2(5(x))))))
0(4(2(1(5(x))))) → 4(3(1(2(0(5(x))))))
0(4(2(1(5(x))))) → 4(1(2(3(0(5(x))))))
4(1(3(1(5(x))))) → 0(4(3(1(5(1(x))))))
2(1(4(1(5(x))))) → 1(4(3(5(1(2(x))))))
4(1(1(4(5(x))))) → 4(5(4(3(1(1(x))))))
0(4(1(4(5(x))))) → 1(5(4(0(4(3(x))))))
0(2(3(4(5(x))))) → 3(2(3(0(4(5(x))))))
0(2(5(4(5(x))))) → 2(4(4(5(0(5(x))))))
Q is empty.
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
21(1(1(0(x)))) → 21(1(0(3(1(x)))))
21(1(1(0(x)))) → 01(3(1(x)))
21(1(1(0(x)))) → 21(0(1(3(1(x)))))
21(1(1(0(x)))) → 01(1(3(1(x))))
21(1(1(0(x)))) → 01(3(1(3(2(x)))))
21(1(1(0(x)))) → 21(x)
01(2(1(0(x)))) → 21(2(0(0(1(x)))))
01(2(1(0(x)))) → 21(0(0(1(x))))
01(2(1(0(x)))) → 01(0(1(x)))
01(2(1(0(x)))) → 01(1(x))
41(2(1(0(x)))) → 41(3(2(0(x))))
41(2(1(0(x)))) → 21(0(x))
41(2(1(0(x)))) → 21(4(0(1(x))))
41(2(1(0(x)))) → 41(0(1(x)))
41(2(1(0(x)))) → 01(1(x))
41(2(1(0(x)))) → 41(0(3(2(1(x)))))
41(2(1(0(x)))) → 01(3(2(1(x))))
41(2(1(0(x)))) → 21(1(x))
41(2(1(0(x)))) → 01(4(1(2(x))))
41(2(1(0(x)))) → 41(1(2(x)))
41(2(1(0(x)))) → 21(x)
41(2(1(0(x)))) → 01(4(3(2(1(x)))))
41(2(1(0(x)))) → 41(3(2(1(x))))
41(2(1(0(x)))) → 41(3(0(1(1(2(x))))))
41(2(1(0(x)))) → 01(1(1(2(x))))
41(2(1(0(x)))) → 01(3(2(2(1(4(x))))))
41(2(1(0(x)))) → 21(2(1(4(x))))
41(2(1(0(x)))) → 21(1(4(x)))
41(2(1(0(x)))) → 41(x)
41(2(1(0(x)))) → 21(0(5(4(x))))
41(2(1(0(x)))) → 01(5(4(x)))
01(2(4(0(x)))) → 01(3(2(4(0(x)))))
01(2(4(0(x)))) → 01(0(4(0(3(2(x))))))
01(2(4(0(x)))) → 01(4(0(3(2(x)))))
01(2(4(0(x)))) → 41(0(3(2(x))))
01(2(4(0(x)))) → 01(3(2(x)))
01(2(4(0(x)))) → 21(x)
01(2(4(0(x)))) → 01(3(2(0(4(3(x))))))
01(2(4(0(x)))) → 21(0(4(3(x))))
01(2(4(0(x)))) → 01(4(3(x)))
01(2(4(0(x)))) → 41(3(x))
01(2(4(0(x)))) → 01(4(0(3(2(4(x))))))
01(2(4(0(x)))) → 41(0(3(2(4(x)))))
01(2(4(0(x)))) → 01(3(2(4(x))))
01(2(4(0(x)))) → 21(4(x))
01(2(4(0(x)))) → 41(x)
01(2(4(0(x)))) → 21(5(0(0(3(4(x))))))
01(2(4(0(x)))) → 01(0(3(4(x))))
01(2(4(0(x)))) → 01(3(4(x)))
41(2(4(0(x)))) → 41(1(3(2(0(4(x))))))
41(2(4(0(x)))) → 21(0(4(x)))
41(2(4(0(x)))) → 01(4(x))
41(2(4(0(x)))) → 41(x)
41(2(4(0(x)))) → 01(2(4(0(4(x)))))
41(2(4(0(x)))) → 21(4(0(4(x))))
41(2(4(0(x)))) → 41(0(4(x)))
01(2(1(5(x)))) → 01(5(3(1(2(x)))))
01(2(1(5(x)))) → 21(x)
01(2(1(5(x)))) → 21(0(1(3(x))))
01(2(1(5(x)))) → 01(1(3(x)))
01(2(1(5(x)))) → 01(0(3(2(x))))
01(2(1(5(x)))) → 01(3(2(x)))
41(2(1(5(x)))) → 41(1(5(2(3(x)))))
41(2(1(5(x)))) → 21(3(x))
41(2(1(5(x)))) → 41(3(1(2(5(x)))))
41(2(1(5(x)))) → 21(5(x))
41(2(1(5(x)))) → 41(1(2(5(5(x)))))
41(2(1(5(x)))) → 21(5(5(x)))
41(2(1(5(x)))) → 21(5(4(3(0(x)))))
41(2(1(5(x)))) → 41(3(0(x)))
41(2(1(5(x)))) → 01(x)
21(4(1(5(x)))) → 21(5(4(3(x))))
21(4(1(5(x)))) → 41(3(x))
21(4(1(5(x)))) → 41(5(4(3(1(2(x))))))
21(4(1(5(x)))) → 41(3(1(2(x))))
21(4(1(5(x)))) → 21(x)
21(4(1(5(x)))) → 21(4(3(3(x))))
21(4(1(5(x)))) → 41(3(3(x)))
41(1(4(5(x)))) → 41(5(1(4(4(3(x))))))
41(1(4(5(x)))) → 41(4(3(x)))
41(1(4(5(x)))) → 41(3(x))
41(1(4(5(x)))) → 41(0(5(3(1(4(x))))))
41(1(4(5(x)))) → 01(5(3(1(4(x)))))
41(1(4(5(x)))) → 41(x)
41(1(4(5(x)))) → 41(5(4(3(1(5(x))))))
41(1(4(5(x)))) → 41(3(1(5(x))))
41(1(4(5(x)))) → 41(4(3(5(1(5(x))))))
41(1(4(5(x)))) → 41(3(5(1(5(x)))))
01(2(4(5(x)))) → 01(3(2(4(5(x)))))
01(2(4(5(x)))) → 41(3(2(1(0(x)))))
01(2(4(5(x)))) → 21(1(0(x)))
01(2(4(5(x)))) → 01(x)
01(2(4(5(x)))) → 21(0(3(3(5(4(x))))))
01(2(4(5(x)))) → 01(3(3(5(4(x)))))
01(2(4(5(x)))) → 41(x)
41(0(2(1(0(x))))) → 01(3(1(4(2(0(x))))))
41(0(2(1(0(x))))) → 41(2(0(x)))
41(0(2(1(0(x))))) → 21(0(x))
41(0(2(1(0(x))))) → 01(4(3(0(2(x)))))
41(0(2(1(0(x))))) → 41(3(0(2(x))))
41(0(2(1(0(x))))) → 01(2(x))
41(0(2(1(0(x))))) → 21(x)
41(0(2(1(0(x))))) → 01(1(3(2(0(4(x))))))
41(0(2(1(0(x))))) → 21(0(4(x)))
41(0(2(1(0(x))))) → 01(4(x))
41(0(2(1(0(x))))) → 41(x)
21(2(4(1(0(x))))) → 21(0(4(3(2(1(x))))))
21(2(4(1(0(x))))) → 01(4(3(2(1(x)))))
21(2(4(1(0(x))))) → 41(3(2(1(x))))
21(2(4(1(0(x))))) → 21(1(x))
41(2(1(0(5(x))))) → 41(1(2(0(3(x)))))
41(2(1(0(5(x))))) → 21(0(3(x)))
41(2(1(0(5(x))))) → 01(3(x))
41(2(2(1(5(x))))) → 41(1(2(2(5(x)))))
41(2(2(1(5(x))))) → 21(2(5(x)))
41(2(2(1(5(x))))) → 21(5(x))
01(4(2(1(5(x))))) → 41(3(1(2(0(5(x))))))
01(4(2(1(5(x))))) → 21(0(5(x)))
01(4(2(1(5(x))))) → 01(5(x))
01(4(2(1(5(x))))) → 41(1(2(3(0(5(x))))))
01(4(2(1(5(x))))) → 21(3(0(5(x))))
41(1(3(1(5(x))))) → 01(4(3(1(5(1(x))))))
41(1(3(1(5(x))))) → 41(3(1(5(1(x)))))
21(1(4(1(5(x))))) → 41(3(5(1(2(x)))))
21(1(4(1(5(x))))) → 21(x)
41(1(1(4(5(x))))) → 41(5(4(3(1(1(x))))))
41(1(1(4(5(x))))) → 41(3(1(1(x))))
01(4(1(4(5(x))))) → 41(0(4(3(x))))
01(4(1(4(5(x))))) → 01(4(3(x)))
01(4(1(4(5(x))))) → 41(3(x))
01(2(3(4(5(x))))) → 21(3(0(4(5(x)))))
01(2(3(4(5(x))))) → 01(4(5(x)))
01(2(5(4(5(x))))) → 21(4(4(5(0(5(x))))))
01(2(5(4(5(x))))) → 41(4(5(0(5(x)))))
01(2(5(4(5(x))))) → 41(5(0(5(x))))
01(2(5(4(5(x))))) → 01(5(x))
The TRS R consists of the following rules:
2(1(1(0(x)))) → 2(1(0(3(1(x)))))
2(1(1(0(x)))) → 2(0(1(3(1(x)))))
2(1(1(0(x)))) → 1(0(3(1(3(2(x))))))
0(2(1(0(x)))) → 2(2(0(0(1(x)))))
4(2(1(0(x)))) → 1(4(3(2(0(x)))))
4(2(1(0(x)))) → 3(2(4(0(1(x)))))
4(2(1(0(x)))) → 4(0(3(2(1(x)))))
4(2(1(0(x)))) → 3(0(4(1(2(x)))))
4(2(1(0(x)))) → 5(0(4(3(2(1(x))))))
4(2(1(0(x)))) → 4(3(0(1(1(2(x))))))
4(2(1(0(x)))) → 0(3(2(2(1(4(x))))))
4(2(1(0(x)))) → 1(3(2(0(5(4(x))))))
0(2(4(0(x)))) → 0(3(2(4(0(x)))))
0(2(4(0(x)))) → 0(0(4(0(3(2(x))))))
0(2(4(0(x)))) → 0(3(2(0(4(3(x))))))
0(2(4(0(x)))) → 0(4(0(3(2(4(x))))))
0(2(4(0(x)))) → 2(5(0(0(3(4(x))))))
4(2(4(0(x)))) → 4(1(3(2(0(4(x))))))
4(2(4(0(x)))) → 3(0(2(4(0(4(x))))))
0(2(1(5(x)))) → 0(5(3(1(2(x)))))
0(2(1(5(x)))) → 5(2(0(1(3(x)))))
0(2(1(5(x)))) → 5(1(0(0(3(2(x))))))
4(2(1(5(x)))) → 4(1(5(2(3(x)))))
4(2(1(5(x)))) → 4(3(1(2(5(x)))))
4(2(1(5(x)))) → 4(1(2(5(5(x)))))
4(2(1(5(x)))) → 1(2(5(4(3(0(x))))))
2(4(1(5(x)))) → 1(2(5(4(3(x)))))
2(4(1(5(x)))) → 4(5(4(3(1(2(x))))))
2(4(1(5(x)))) → 5(1(2(4(3(3(x))))))
4(1(4(5(x)))) → 4(5(1(4(4(3(x))))))
4(1(4(5(x)))) → 4(0(5(3(1(4(x))))))
4(1(4(5(x)))) → 4(5(4(3(1(5(x))))))
4(1(4(5(x)))) → 4(4(3(5(1(5(x))))))
0(2(4(5(x)))) → 0(3(2(4(5(x)))))
0(2(4(5(x)))) → 5(4(3(2(1(0(x))))))
0(2(4(5(x)))) → 2(0(3(3(5(4(x))))))
4(0(2(1(0(x))))) → 0(3(1(4(2(0(x))))))
4(0(2(1(0(x))))) → 1(0(4(3(0(2(x))))))
4(0(2(1(0(x))))) → 0(1(3(2(0(4(x))))))
2(2(4(1(0(x))))) → 2(0(4(3(2(1(x))))))
4(2(1(0(5(x))))) → 5(4(1(2(0(3(x))))))
4(2(2(1(5(x))))) → 5(4(1(2(2(5(x))))))
0(4(2(1(5(x))))) → 4(3(1(2(0(5(x))))))
0(4(2(1(5(x))))) → 4(1(2(3(0(5(x))))))
4(1(3(1(5(x))))) → 0(4(3(1(5(1(x))))))
2(1(4(1(5(x))))) → 1(4(3(5(1(2(x))))))
4(1(1(4(5(x))))) → 4(5(4(3(1(1(x))))))
0(4(1(4(5(x))))) → 1(5(4(0(4(3(x))))))
0(2(3(4(5(x))))) → 3(2(3(0(4(5(x))))))
0(2(5(4(5(x))))) → 2(4(4(5(0(5(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 116 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
21(4(1(5(x)))) → 21(x)
21(1(1(0(x)))) → 21(x)
21(2(4(1(0(x))))) → 21(1(x))
21(1(4(1(5(x))))) → 21(x)
The TRS R consists of the following rules:
2(1(1(0(x)))) → 2(1(0(3(1(x)))))
2(1(1(0(x)))) → 2(0(1(3(1(x)))))
2(1(1(0(x)))) → 1(0(3(1(3(2(x))))))
0(2(1(0(x)))) → 2(2(0(0(1(x)))))
4(2(1(0(x)))) → 1(4(3(2(0(x)))))
4(2(1(0(x)))) → 3(2(4(0(1(x)))))
4(2(1(0(x)))) → 4(0(3(2(1(x)))))
4(2(1(0(x)))) → 3(0(4(1(2(x)))))
4(2(1(0(x)))) → 5(0(4(3(2(1(x))))))
4(2(1(0(x)))) → 4(3(0(1(1(2(x))))))
4(2(1(0(x)))) → 0(3(2(2(1(4(x))))))
4(2(1(0(x)))) → 1(3(2(0(5(4(x))))))
0(2(4(0(x)))) → 0(3(2(4(0(x)))))
0(2(4(0(x)))) → 0(0(4(0(3(2(x))))))
0(2(4(0(x)))) → 0(3(2(0(4(3(x))))))
0(2(4(0(x)))) → 0(4(0(3(2(4(x))))))
0(2(4(0(x)))) → 2(5(0(0(3(4(x))))))
4(2(4(0(x)))) → 4(1(3(2(0(4(x))))))
4(2(4(0(x)))) → 3(0(2(4(0(4(x))))))
0(2(1(5(x)))) → 0(5(3(1(2(x)))))
0(2(1(5(x)))) → 5(2(0(1(3(x)))))
0(2(1(5(x)))) → 5(1(0(0(3(2(x))))))
4(2(1(5(x)))) → 4(1(5(2(3(x)))))
4(2(1(5(x)))) → 4(3(1(2(5(x)))))
4(2(1(5(x)))) → 4(1(2(5(5(x)))))
4(2(1(5(x)))) → 1(2(5(4(3(0(x))))))
2(4(1(5(x)))) → 1(2(5(4(3(x)))))
2(4(1(5(x)))) → 4(5(4(3(1(2(x))))))
2(4(1(5(x)))) → 5(1(2(4(3(3(x))))))
4(1(4(5(x)))) → 4(5(1(4(4(3(x))))))
4(1(4(5(x)))) → 4(0(5(3(1(4(x))))))
4(1(4(5(x)))) → 4(5(4(3(1(5(x))))))
4(1(4(5(x)))) → 4(4(3(5(1(5(x))))))
0(2(4(5(x)))) → 0(3(2(4(5(x)))))
0(2(4(5(x)))) → 5(4(3(2(1(0(x))))))
0(2(4(5(x)))) → 2(0(3(3(5(4(x))))))
4(0(2(1(0(x))))) → 0(3(1(4(2(0(x))))))
4(0(2(1(0(x))))) → 1(0(4(3(0(2(x))))))
4(0(2(1(0(x))))) → 0(1(3(2(0(4(x))))))
2(2(4(1(0(x))))) → 2(0(4(3(2(1(x))))))
4(2(1(0(5(x))))) → 5(4(1(2(0(3(x))))))
4(2(2(1(5(x))))) → 5(4(1(2(2(5(x))))))
0(4(2(1(5(x))))) → 4(3(1(2(0(5(x))))))
0(4(2(1(5(x))))) → 4(1(2(3(0(5(x))))))
4(1(3(1(5(x))))) → 0(4(3(1(5(1(x))))))
2(1(4(1(5(x))))) → 1(4(3(5(1(2(x))))))
4(1(1(4(5(x))))) → 4(5(4(3(1(1(x))))))
0(4(1(4(5(x))))) → 1(5(4(0(4(3(x))))))
0(2(3(4(5(x))))) → 3(2(3(0(4(5(x))))))
0(2(5(4(5(x))))) → 2(4(4(5(0(5(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
21(4(1(5(x)))) → 21(x)
21(1(1(0(x)))) → 21(x)
21(2(4(1(0(x))))) → 21(1(x))
21(1(4(1(5(x))))) → 21(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
21(4(1(5(x)))) → 21(x)
21(1(1(0(x)))) → 21(x)
21(2(4(1(0(x))))) → 21(1(x))
21(1(4(1(5(x))))) → 21(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0(x1)) = 1 + x1
POL(1(x1)) = 1 + x1
POL(2(x1)) = 1 + x1
POL(21(x1)) = x1
POL(4(x1)) = 1 + x1
POL(5(x1)) = 1 + x1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(11) Obligation:
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
41(2(1(0(x)))) → 01(4(1(2(x))))
01(2(4(0(x)))) → 41(x)
41(2(1(0(x)))) → 41(1(2(x)))
41(1(4(5(x)))) → 41(x)
41(2(1(0(x)))) → 41(x)
41(2(4(0(x)))) → 01(4(x))
01(2(4(5(x)))) → 01(x)
01(2(4(5(x)))) → 41(x)
41(2(4(0(x)))) → 41(x)
41(2(4(0(x)))) → 01(2(4(0(4(x)))))
41(2(4(0(x)))) → 41(0(4(x)))
41(2(1(5(x)))) → 01(x)
41(0(2(1(0(x))))) → 41(2(0(x)))
41(0(2(1(0(x))))) → 01(2(x))
41(0(2(1(0(x))))) → 01(4(x))
41(0(2(1(0(x))))) → 41(x)
The TRS R consists of the following rules:
2(1(1(0(x)))) → 2(1(0(3(1(x)))))
2(1(1(0(x)))) → 2(0(1(3(1(x)))))
2(1(1(0(x)))) → 1(0(3(1(3(2(x))))))
0(2(1(0(x)))) → 2(2(0(0(1(x)))))
4(2(1(0(x)))) → 1(4(3(2(0(x)))))
4(2(1(0(x)))) → 3(2(4(0(1(x)))))
4(2(1(0(x)))) → 4(0(3(2(1(x)))))
4(2(1(0(x)))) → 3(0(4(1(2(x)))))
4(2(1(0(x)))) → 5(0(4(3(2(1(x))))))
4(2(1(0(x)))) → 4(3(0(1(1(2(x))))))
4(2(1(0(x)))) → 0(3(2(2(1(4(x))))))
4(2(1(0(x)))) → 1(3(2(0(5(4(x))))))
0(2(4(0(x)))) → 0(3(2(4(0(x)))))
0(2(4(0(x)))) → 0(0(4(0(3(2(x))))))
0(2(4(0(x)))) → 0(3(2(0(4(3(x))))))
0(2(4(0(x)))) → 0(4(0(3(2(4(x))))))
0(2(4(0(x)))) → 2(5(0(0(3(4(x))))))
4(2(4(0(x)))) → 4(1(3(2(0(4(x))))))
4(2(4(0(x)))) → 3(0(2(4(0(4(x))))))
0(2(1(5(x)))) → 0(5(3(1(2(x)))))
0(2(1(5(x)))) → 5(2(0(1(3(x)))))
0(2(1(5(x)))) → 5(1(0(0(3(2(x))))))
4(2(1(5(x)))) → 4(1(5(2(3(x)))))
4(2(1(5(x)))) → 4(3(1(2(5(x)))))
4(2(1(5(x)))) → 4(1(2(5(5(x)))))
4(2(1(5(x)))) → 1(2(5(4(3(0(x))))))
2(4(1(5(x)))) → 1(2(5(4(3(x)))))
2(4(1(5(x)))) → 4(5(4(3(1(2(x))))))
2(4(1(5(x)))) → 5(1(2(4(3(3(x))))))
4(1(4(5(x)))) → 4(5(1(4(4(3(x))))))
4(1(4(5(x)))) → 4(0(5(3(1(4(x))))))
4(1(4(5(x)))) → 4(5(4(3(1(5(x))))))
4(1(4(5(x)))) → 4(4(3(5(1(5(x))))))
0(2(4(5(x)))) → 0(3(2(4(5(x)))))
0(2(4(5(x)))) → 5(4(3(2(1(0(x))))))
0(2(4(5(x)))) → 2(0(3(3(5(4(x))))))
4(0(2(1(0(x))))) → 0(3(1(4(2(0(x))))))
4(0(2(1(0(x))))) → 1(0(4(3(0(2(x))))))
4(0(2(1(0(x))))) → 0(1(3(2(0(4(x))))))
2(2(4(1(0(x))))) → 2(0(4(3(2(1(x))))))
4(2(1(0(5(x))))) → 5(4(1(2(0(3(x))))))
4(2(2(1(5(x))))) → 5(4(1(2(2(5(x))))))
0(4(2(1(5(x))))) → 4(3(1(2(0(5(x))))))
0(4(2(1(5(x))))) → 4(1(2(3(0(5(x))))))
4(1(3(1(5(x))))) → 0(4(3(1(5(1(x))))))
2(1(4(1(5(x))))) → 1(4(3(5(1(2(x))))))
4(1(1(4(5(x))))) → 4(5(4(3(1(1(x))))))
0(4(1(4(5(x))))) → 1(5(4(0(4(3(x))))))
0(2(3(4(5(x))))) → 3(2(3(0(4(5(x))))))
0(2(5(4(5(x))))) → 2(4(4(5(0(5(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
01(2(4(0(x)))) → 41(x)
41(2(1(0(x)))) → 41(x)
41(2(4(0(x)))) → 01(4(x))
01(2(4(5(x)))) → 01(x)
01(2(4(5(x)))) → 41(x)
41(2(4(0(x)))) → 41(x)
41(2(4(0(x)))) → 41(0(4(x)))
41(2(1(5(x)))) → 01(x)
41(0(2(1(0(x))))) → 41(2(0(x)))
41(0(2(1(0(x))))) → 01(2(x))
41(0(2(1(0(x))))) → 01(4(x))
41(0(2(1(0(x))))) → 41(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 3(x1) ) = max{0, -2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
2(1(1(0(x)))) → 2(1(0(3(1(x)))))
2(1(1(0(x)))) → 2(0(1(3(1(x)))))
2(1(1(0(x)))) → 1(0(3(1(3(2(x))))))
2(4(1(5(x)))) → 1(2(5(4(3(x)))))
2(4(1(5(x)))) → 4(5(4(3(1(2(x))))))
2(4(1(5(x)))) → 5(1(2(4(3(3(x))))))
2(2(4(1(0(x))))) → 2(0(4(3(2(1(x))))))
2(1(4(1(5(x))))) → 1(4(3(5(1(2(x))))))
4(1(4(5(x)))) → 4(5(1(4(4(3(x))))))
4(1(4(5(x)))) → 4(0(5(3(1(4(x))))))
4(1(4(5(x)))) → 4(5(4(3(1(5(x))))))
4(1(4(5(x)))) → 4(4(3(5(1(5(x))))))
4(1(3(1(5(x))))) → 0(4(3(1(5(1(x))))))
4(1(1(4(5(x))))) → 4(5(4(3(1(1(x))))))
4(2(1(0(x)))) → 1(4(3(2(0(x)))))
4(2(1(0(x)))) → 3(2(4(0(1(x)))))
4(2(1(0(x)))) → 4(0(3(2(1(x)))))
4(2(1(0(x)))) → 3(0(4(1(2(x)))))
4(2(1(0(x)))) → 5(0(4(3(2(1(x))))))
4(2(1(0(x)))) → 4(3(0(1(1(2(x))))))
4(2(1(0(x)))) → 0(3(2(2(1(4(x))))))
4(2(1(0(x)))) → 1(3(2(0(5(4(x))))))
4(2(4(0(x)))) → 4(1(3(2(0(4(x))))))
4(2(4(0(x)))) → 3(0(2(4(0(4(x))))))
4(2(1(5(x)))) → 4(1(5(2(3(x)))))
4(2(1(5(x)))) → 4(3(1(2(5(x)))))
4(2(1(5(x)))) → 4(1(2(5(5(x)))))
4(2(1(5(x)))) → 1(2(5(4(3(0(x))))))
4(0(2(1(0(x))))) → 0(3(1(4(2(0(x))))))
4(0(2(1(0(x))))) → 1(0(4(3(0(2(x))))))
4(0(2(1(0(x))))) → 0(1(3(2(0(4(x))))))
4(2(1(0(5(x))))) → 5(4(1(2(0(3(x))))))
4(2(2(1(5(x))))) → 5(4(1(2(2(5(x))))))
0(2(1(0(x)))) → 2(2(0(0(1(x)))))
0(2(4(0(x)))) → 0(3(2(4(0(x)))))
0(2(4(0(x)))) → 0(0(4(0(3(2(x))))))
0(2(4(0(x)))) → 0(3(2(0(4(3(x))))))
0(2(4(0(x)))) → 0(4(0(3(2(4(x))))))
0(2(4(0(x)))) → 2(5(0(0(3(4(x))))))
0(2(1(5(x)))) → 0(5(3(1(2(x)))))
0(2(1(5(x)))) → 5(2(0(1(3(x)))))
0(2(1(5(x)))) → 5(1(0(0(3(2(x))))))
0(2(4(5(x)))) → 0(3(2(4(5(x)))))
0(2(4(5(x)))) → 5(4(3(2(1(0(x))))))
0(2(4(5(x)))) → 2(0(3(3(5(4(x))))))
0(4(2(1(5(x))))) → 4(3(1(2(0(5(x))))))
0(4(2(1(5(x))))) → 4(1(2(3(0(5(x))))))
0(4(1(4(5(x))))) → 1(5(4(0(4(3(x))))))
0(2(3(4(5(x))))) → 3(2(3(0(4(5(x))))))
0(2(5(4(5(x))))) → 2(4(4(5(0(5(x))))))
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
41(2(1(0(x)))) → 01(4(1(2(x))))
41(2(1(0(x)))) → 41(1(2(x)))
41(1(4(5(x)))) → 41(x)
41(2(4(0(x)))) → 01(2(4(0(4(x)))))
The TRS R consists of the following rules:
2(1(1(0(x)))) → 2(1(0(3(1(x)))))
2(1(1(0(x)))) → 2(0(1(3(1(x)))))
2(1(1(0(x)))) → 1(0(3(1(3(2(x))))))
0(2(1(0(x)))) → 2(2(0(0(1(x)))))
4(2(1(0(x)))) → 1(4(3(2(0(x)))))
4(2(1(0(x)))) → 3(2(4(0(1(x)))))
4(2(1(0(x)))) → 4(0(3(2(1(x)))))
4(2(1(0(x)))) → 3(0(4(1(2(x)))))
4(2(1(0(x)))) → 5(0(4(3(2(1(x))))))
4(2(1(0(x)))) → 4(3(0(1(1(2(x))))))
4(2(1(0(x)))) → 0(3(2(2(1(4(x))))))
4(2(1(0(x)))) → 1(3(2(0(5(4(x))))))
0(2(4(0(x)))) → 0(3(2(4(0(x)))))
0(2(4(0(x)))) → 0(0(4(0(3(2(x))))))
0(2(4(0(x)))) → 0(3(2(0(4(3(x))))))
0(2(4(0(x)))) → 0(4(0(3(2(4(x))))))
0(2(4(0(x)))) → 2(5(0(0(3(4(x))))))
4(2(4(0(x)))) → 4(1(3(2(0(4(x))))))
4(2(4(0(x)))) → 3(0(2(4(0(4(x))))))
0(2(1(5(x)))) → 0(5(3(1(2(x)))))
0(2(1(5(x)))) → 5(2(0(1(3(x)))))
0(2(1(5(x)))) → 5(1(0(0(3(2(x))))))
4(2(1(5(x)))) → 4(1(5(2(3(x)))))
4(2(1(5(x)))) → 4(3(1(2(5(x)))))
4(2(1(5(x)))) → 4(1(2(5(5(x)))))
4(2(1(5(x)))) → 1(2(5(4(3(0(x))))))
2(4(1(5(x)))) → 1(2(5(4(3(x)))))
2(4(1(5(x)))) → 4(5(4(3(1(2(x))))))
2(4(1(5(x)))) → 5(1(2(4(3(3(x))))))
4(1(4(5(x)))) → 4(5(1(4(4(3(x))))))
4(1(4(5(x)))) → 4(0(5(3(1(4(x))))))
4(1(4(5(x)))) → 4(5(4(3(1(5(x))))))
4(1(4(5(x)))) → 4(4(3(5(1(5(x))))))
0(2(4(5(x)))) → 0(3(2(4(5(x)))))
0(2(4(5(x)))) → 5(4(3(2(1(0(x))))))
0(2(4(5(x)))) → 2(0(3(3(5(4(x))))))
4(0(2(1(0(x))))) → 0(3(1(4(2(0(x))))))
4(0(2(1(0(x))))) → 1(0(4(3(0(2(x))))))
4(0(2(1(0(x))))) → 0(1(3(2(0(4(x))))))
2(2(4(1(0(x))))) → 2(0(4(3(2(1(x))))))
4(2(1(0(5(x))))) → 5(4(1(2(0(3(x))))))
4(2(2(1(5(x))))) → 5(4(1(2(2(5(x))))))
0(4(2(1(5(x))))) → 4(3(1(2(0(5(x))))))
0(4(2(1(5(x))))) → 4(1(2(3(0(5(x))))))
4(1(3(1(5(x))))) → 0(4(3(1(5(1(x))))))
2(1(4(1(5(x))))) → 1(4(3(5(1(2(x))))))
4(1(1(4(5(x))))) → 4(5(4(3(1(1(x))))))
0(4(1(4(5(x))))) → 1(5(4(0(4(3(x))))))
0(2(3(4(5(x))))) → 3(2(3(0(4(5(x))))))
0(2(5(4(5(x))))) → 2(4(4(5(0(5(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
41(2(1(0(x)))) → 41(1(2(x)))
41(1(4(5(x)))) → 41(x)
The TRS R consists of the following rules:
2(1(1(0(x)))) → 2(1(0(3(1(x)))))
2(1(1(0(x)))) → 2(0(1(3(1(x)))))
2(1(1(0(x)))) → 1(0(3(1(3(2(x))))))
0(2(1(0(x)))) → 2(2(0(0(1(x)))))
4(2(1(0(x)))) → 1(4(3(2(0(x)))))
4(2(1(0(x)))) → 3(2(4(0(1(x)))))
4(2(1(0(x)))) → 4(0(3(2(1(x)))))
4(2(1(0(x)))) → 3(0(4(1(2(x)))))
4(2(1(0(x)))) → 5(0(4(3(2(1(x))))))
4(2(1(0(x)))) → 4(3(0(1(1(2(x))))))
4(2(1(0(x)))) → 0(3(2(2(1(4(x))))))
4(2(1(0(x)))) → 1(3(2(0(5(4(x))))))
0(2(4(0(x)))) → 0(3(2(4(0(x)))))
0(2(4(0(x)))) → 0(0(4(0(3(2(x))))))
0(2(4(0(x)))) → 0(3(2(0(4(3(x))))))
0(2(4(0(x)))) → 0(4(0(3(2(4(x))))))
0(2(4(0(x)))) → 2(5(0(0(3(4(x))))))
4(2(4(0(x)))) → 4(1(3(2(0(4(x))))))
4(2(4(0(x)))) → 3(0(2(4(0(4(x))))))
0(2(1(5(x)))) → 0(5(3(1(2(x)))))
0(2(1(5(x)))) → 5(2(0(1(3(x)))))
0(2(1(5(x)))) → 5(1(0(0(3(2(x))))))
4(2(1(5(x)))) → 4(1(5(2(3(x)))))
4(2(1(5(x)))) → 4(3(1(2(5(x)))))
4(2(1(5(x)))) → 4(1(2(5(5(x)))))
4(2(1(5(x)))) → 1(2(5(4(3(0(x))))))
2(4(1(5(x)))) → 1(2(5(4(3(x)))))
2(4(1(5(x)))) → 4(5(4(3(1(2(x))))))
2(4(1(5(x)))) → 5(1(2(4(3(3(x))))))
4(1(4(5(x)))) → 4(5(1(4(4(3(x))))))
4(1(4(5(x)))) → 4(0(5(3(1(4(x))))))
4(1(4(5(x)))) → 4(5(4(3(1(5(x))))))
4(1(4(5(x)))) → 4(4(3(5(1(5(x))))))
0(2(4(5(x)))) → 0(3(2(4(5(x)))))
0(2(4(5(x)))) → 5(4(3(2(1(0(x))))))
0(2(4(5(x)))) → 2(0(3(3(5(4(x))))))
4(0(2(1(0(x))))) → 0(3(1(4(2(0(x))))))
4(0(2(1(0(x))))) → 1(0(4(3(0(2(x))))))
4(0(2(1(0(x))))) → 0(1(3(2(0(4(x))))))
2(2(4(1(0(x))))) → 2(0(4(3(2(1(x))))))
4(2(1(0(5(x))))) → 5(4(1(2(0(3(x))))))
4(2(2(1(5(x))))) → 5(4(1(2(2(5(x))))))
0(4(2(1(5(x))))) → 4(3(1(2(0(5(x))))))
0(4(2(1(5(x))))) → 4(1(2(3(0(5(x))))))
4(1(3(1(5(x))))) → 0(4(3(1(5(1(x))))))
2(1(4(1(5(x))))) → 1(4(3(5(1(2(x))))))
4(1(1(4(5(x))))) → 4(5(4(3(1(1(x))))))
0(4(1(4(5(x))))) → 1(5(4(0(4(3(x))))))
0(2(3(4(5(x))))) → 3(2(3(0(4(5(x))))))
0(2(5(4(5(x))))) → 2(4(4(5(0(5(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
41(2(1(0(x)))) → 41(1(2(x)))
41(1(4(5(x)))) → 41(x)
The TRS R consists of the following rules:
2(1(1(0(x)))) → 2(1(0(3(1(x)))))
2(1(1(0(x)))) → 2(0(1(3(1(x)))))
2(1(1(0(x)))) → 1(0(3(1(3(2(x))))))
2(4(1(5(x)))) → 1(2(5(4(3(x)))))
2(4(1(5(x)))) → 4(5(4(3(1(2(x))))))
2(4(1(5(x)))) → 5(1(2(4(3(3(x))))))
2(2(4(1(0(x))))) → 2(0(4(3(2(1(x))))))
2(1(4(1(5(x))))) → 1(4(3(5(1(2(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
41(2(1(0(x)))) → 41(1(2(x)))
41(1(4(5(x)))) → 41(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0(x1)) = 1 + x1
POL(1(x1)) = x1
POL(2(x1)) = 1 + x1
POL(3(x1)) = 0
POL(4(x1)) = x1
POL(41(x1)) = x1
POL(5(x1)) = 1 + x1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
2(1(1(0(x)))) → 2(1(0(3(1(x)))))
2(1(1(0(x)))) → 2(0(1(3(1(x)))))
2(1(1(0(x)))) → 1(0(3(1(3(2(x))))))
2(4(1(5(x)))) → 1(2(5(4(3(x)))))
2(4(1(5(x)))) → 4(5(4(3(1(2(x))))))
2(4(1(5(x)))) → 5(1(2(4(3(3(x))))))
2(2(4(1(0(x))))) → 2(0(4(3(2(1(x))))))
2(1(4(1(5(x))))) → 1(4(3(5(1(2(x))))))
(22) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
2(1(1(0(x)))) → 2(1(0(3(1(x)))))
2(1(1(0(x)))) → 2(0(1(3(1(x)))))
2(1(1(0(x)))) → 1(0(3(1(3(2(x))))))
2(4(1(5(x)))) → 1(2(5(4(3(x)))))
2(4(1(5(x)))) → 4(5(4(3(1(2(x))))))
2(4(1(5(x)))) → 5(1(2(4(3(3(x))))))
2(2(4(1(0(x))))) → 2(0(4(3(2(1(x))))))
2(1(4(1(5(x))))) → 1(4(3(5(1(2(x))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(24) YES