YES Termination w.r.t. Q proof of /home/cern_httpd/provide/research/cycsrs/tpdb/TPDB-d9b80194f163/SRS_Standard/ICFP_2010/212043.srs

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

0(1(2(x))) → 1(0(0(2(x))))
0(1(2(x))) → 1(0(3(2(x))))
0(1(2(x))) → 1(0(0(3(2(x)))))
0(1(2(x))) → 4(5(1(0(2(x)))))
0(5(2(x))) → 5(0(0(2(x))))
0(5(2(x))) → 5(5(0(2(x))))
0(5(2(x))) → 5(0(3(3(2(x)))))
0(5(3(x))) → 5(0(0(3(x))))
0(5(3(x))) → 5(5(0(3(x))))
0(0(5(2(x)))) → 0(2(0(3(5(5(x))))))
0(1(2(3(x)))) → 1(3(2(0(3(x)))))
0(1(2(4(x)))) → 4(5(1(0(2(x)))))
0(1(4(2(x)))) → 4(4(1(0(2(x)))))
0(4(1(2(x)))) → 0(4(5(5(1(2(x))))))
0(5(2(3(x)))) → 5(0(3(2(3(x)))))
1(2(1(2(x)))) → 1(1(5(2(2(x)))))
4(0(1(2(x)))) → 4(1(0(0(2(x)))))
4(3(0(2(x)))) → 4(0(0(3(2(x)))))
4(3(1(2(x)))) → 3(2(5(4(1(1(x))))))
0(0(1(2(3(x))))) → 3(2(1(0(0(3(x))))))
0(0(1(3(2(x))))) → 1(0(2(0(0(3(x))))))
0(0(1(3(3(x))))) → 0(0(3(1(0(3(x))))))
0(0(1(5(2(x))))) → 1(5(0(0(3(2(x))))))
0(1(2(1(2(x))))) → 1(1(0(2(2(2(x))))))
0(1(4(5(2(x))))) → 4(1(0(3(2(5(x))))))
0(5(0(1(2(x))))) → 1(2(0(1(5(0(x))))))
0(5(1(0(2(x))))) → 1(5(0(0(3(2(x))))))
0(5(1(4(3(x))))) → 1(0(3(5(4(5(x))))))
0(5(1(4(3(x))))) → 4(5(5(1(0(3(x))))))
0(5(3(1(2(x))))) → 0(1(5(0(2(3(x))))))
0(5(3(1(2(x))))) → 5(0(1(4(3(2(x))))))
0(5(3(4(2(x))))) → 3(2(0(3(5(4(x))))))
0(5(4(3(2(x))))) → 0(0(4(3(2(5(x))))))
1(2(5(2(3(x))))) → 5(1(2(3(3(2(x))))))
1(3(0(5(2(x))))) → 0(5(1(0(3(2(x))))))
1(3(0(5(2(x))))) → 1(3(0(0(2(5(x))))))
1(3(3(4(2(x))))) → 5(1(3(3(2(4(x))))))
4(3(0(2(3(x))))) → 0(3(3(3(2(4(x))))))
4(3(0(5(3(x))))) → 5(4(3(5(0(3(x))))))
4(3(3(1(2(x))))) → 1(3(0(4(3(2(x))))))
5(2(3(0(2(x))))) → 4(5(0(2(3(2(x))))))
5(2(3(1(2(x))))) → 2(3(2(4(1(5(x))))))
5(3(0(2(2(x))))) → 5(3(3(2(0(2(x))))))
5(3(0(5(2(x))))) → 5(5(3(0(2(4(x))))))
5(3(1(2(2(x))))) → 5(1(3(2(2(2(x))))))
5(3(1(5(2(x))))) → 2(5(5(1(5(3(x))))))

Q is empty.

(1) QTRS Reverse (EQUIVALENT transformation)

We applied the QTRS Reverse Processor [REVERSE].

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

2(1(0(x))) → 2(0(0(1(x))))
2(1(0(x))) → 2(3(0(1(x))))
2(1(0(x))) → 2(3(0(0(1(x)))))
2(1(0(x))) → 2(0(1(5(4(x)))))
2(5(0(x))) → 2(0(0(5(x))))
2(5(0(x))) → 2(0(5(5(x))))
2(5(0(x))) → 2(3(3(0(5(x)))))
3(5(0(x))) → 3(0(0(5(x))))
3(5(0(x))) → 3(0(5(5(x))))
2(5(0(0(x)))) → 5(5(3(0(2(0(x))))))
3(2(1(0(x)))) → 3(0(2(3(1(x)))))
4(2(1(0(x)))) → 2(0(1(5(4(x)))))
2(4(1(0(x)))) → 2(0(1(4(4(x)))))
2(1(4(0(x)))) → 2(1(5(5(4(0(x))))))
3(2(5(0(x)))) → 3(2(3(0(5(x)))))
2(1(2(1(x)))) → 2(2(5(1(1(x)))))
2(1(0(4(x)))) → 2(0(0(1(4(x)))))
2(0(3(4(x)))) → 2(3(0(0(4(x)))))
2(1(3(4(x)))) → 1(1(4(5(2(3(x))))))
3(2(1(0(0(x))))) → 3(0(0(1(2(3(x))))))
2(3(1(0(0(x))))) → 3(0(0(2(0(1(x))))))
3(3(1(0(0(x))))) → 3(0(1(3(0(0(x))))))
2(5(1(0(0(x))))) → 2(3(0(0(5(1(x))))))
2(1(2(1(0(x))))) → 2(2(2(0(1(1(x))))))
2(5(4(1(0(x))))) → 5(2(3(0(1(4(x))))))
2(1(0(5(0(x))))) → 0(5(1(0(2(1(x))))))
2(0(1(5(0(x))))) → 2(3(0(0(5(1(x))))))
3(4(1(5(0(x))))) → 5(4(5(3(0(1(x))))))
3(4(1(5(0(x))))) → 3(0(1(5(5(4(x))))))
2(1(3(5(0(x))))) → 3(2(0(5(1(0(x))))))
2(1(3(5(0(x))))) → 2(3(4(1(0(5(x))))))
2(4(3(5(0(x))))) → 4(5(3(0(2(3(x))))))
2(3(4(5(0(x))))) → 5(2(3(4(0(0(x))))))
3(2(5(2(1(x))))) → 2(3(3(2(1(5(x))))))
2(5(0(3(1(x))))) → 2(3(0(1(5(0(x))))))
2(5(0(3(1(x))))) → 5(2(0(0(3(1(x))))))
2(4(3(3(1(x))))) → 4(2(3(3(1(5(x))))))
3(2(0(3(4(x))))) → 4(2(3(3(3(0(x))))))
3(5(0(3(4(x))))) → 3(0(5(3(4(5(x))))))
2(1(3(3(4(x))))) → 2(3(4(0(3(1(x))))))
2(0(3(2(5(x))))) → 2(3(2(0(5(4(x))))))
2(1(3(2(5(x))))) → 5(1(4(2(3(2(x))))))
2(2(0(3(5(x))))) → 2(0(2(3(3(5(x))))))
2(5(0(3(5(x))))) → 4(2(0(3(5(5(x))))))
2(2(1(3(5(x))))) → 2(2(2(3(1(5(x))))))
2(5(1(3(5(x))))) → 3(5(1(5(5(2(x))))))

Q is empty.

(3) FlatCCProof (EQUIVALENT transformation)

We used flat context closure [ROOTLAB] As Q is empty the flat context closure was sound AND complete.

(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

2(1(0(x))) → 2(0(0(1(x))))
2(1(0(x))) → 2(3(0(1(x))))
2(1(0(x))) → 2(3(0(0(1(x)))))
2(1(0(x))) → 2(0(1(5(4(x)))))
2(5(0(x))) → 2(0(0(5(x))))
2(5(0(x))) → 2(0(5(5(x))))
2(5(0(x))) → 2(3(3(0(5(x)))))
3(5(0(x))) → 3(0(0(5(x))))
3(5(0(x))) → 3(0(5(5(x))))
3(2(1(0(x)))) → 3(0(2(3(1(x)))))
2(4(1(0(x)))) → 2(0(1(4(4(x)))))
2(1(4(0(x)))) → 2(1(5(5(4(0(x))))))
3(2(5(0(x)))) → 3(2(3(0(5(x)))))
2(1(2(1(x)))) → 2(2(5(1(1(x)))))
2(1(0(4(x)))) → 2(0(0(1(4(x)))))
2(0(3(4(x)))) → 2(3(0(0(4(x)))))
3(2(1(0(0(x))))) → 3(0(0(1(2(3(x))))))
3(3(1(0(0(x))))) → 3(0(1(3(0(0(x))))))
2(5(1(0(0(x))))) → 2(3(0(0(5(1(x))))))
2(1(2(1(0(x))))) → 2(2(2(0(1(1(x))))))
2(0(1(5(0(x))))) → 2(3(0(0(5(1(x))))))
3(4(1(5(0(x))))) → 3(0(1(5(5(4(x))))))
2(1(3(5(0(x))))) → 2(3(4(1(0(5(x))))))
2(5(0(3(1(x))))) → 2(3(0(1(5(0(x))))))
3(5(0(3(4(x))))) → 3(0(5(3(4(5(x))))))
2(1(3(3(4(x))))) → 2(3(4(0(3(1(x))))))
2(0(3(2(5(x))))) → 2(3(2(0(5(4(x))))))
2(2(0(3(5(x))))) → 2(0(2(3(3(5(x))))))
2(2(1(3(5(x))))) → 2(2(2(3(1(5(x))))))
2(2(5(0(0(x))))) → 2(5(5(3(0(2(0(x)))))))
1(2(5(0(0(x))))) → 1(5(5(3(0(2(0(x)))))))
0(2(5(0(0(x))))) → 0(5(5(3(0(2(0(x)))))))
3(2(5(0(0(x))))) → 3(5(5(3(0(2(0(x)))))))
5(2(5(0(0(x))))) → 5(5(5(3(0(2(0(x)))))))
4(2(5(0(0(x))))) → 4(5(5(3(0(2(0(x)))))))
2(4(2(1(0(x))))) → 2(2(0(1(5(4(x))))))
1(4(2(1(0(x))))) → 1(2(0(1(5(4(x))))))
0(4(2(1(0(x))))) → 0(2(0(1(5(4(x))))))
3(4(2(1(0(x))))) → 3(2(0(1(5(4(x))))))
5(4(2(1(0(x))))) → 5(2(0(1(5(4(x))))))
4(4(2(1(0(x))))) → 4(2(0(1(5(4(x))))))
2(2(1(3(4(x))))) → 2(1(1(4(5(2(3(x)))))))
1(2(1(3(4(x))))) → 1(1(1(4(5(2(3(x)))))))
0(2(1(3(4(x))))) → 0(1(1(4(5(2(3(x)))))))
3(2(1(3(4(x))))) → 3(1(1(4(5(2(3(x)))))))
5(2(1(3(4(x))))) → 5(1(1(4(5(2(3(x)))))))
4(2(1(3(4(x))))) → 4(1(1(4(5(2(3(x)))))))
2(2(3(1(0(0(x)))))) → 2(3(0(0(2(0(1(x)))))))
1(2(3(1(0(0(x)))))) → 1(3(0(0(2(0(1(x)))))))
0(2(3(1(0(0(x)))))) → 0(3(0(0(2(0(1(x)))))))
3(2(3(1(0(0(x)))))) → 3(3(0(0(2(0(1(x)))))))
5(2(3(1(0(0(x)))))) → 5(3(0(0(2(0(1(x)))))))
4(2(3(1(0(0(x)))))) → 4(3(0(0(2(0(1(x)))))))
2(2(5(4(1(0(x)))))) → 2(5(2(3(0(1(4(x)))))))
1(2(5(4(1(0(x)))))) → 1(5(2(3(0(1(4(x)))))))
0(2(5(4(1(0(x)))))) → 0(5(2(3(0(1(4(x)))))))
3(2(5(4(1(0(x)))))) → 3(5(2(3(0(1(4(x)))))))
5(2(5(4(1(0(x)))))) → 5(5(2(3(0(1(4(x)))))))
4(2(5(4(1(0(x)))))) → 4(5(2(3(0(1(4(x)))))))
2(2(1(0(5(0(x)))))) → 2(0(5(1(0(2(1(x)))))))
1(2(1(0(5(0(x)))))) → 1(0(5(1(0(2(1(x)))))))
0(2(1(0(5(0(x)))))) → 0(0(5(1(0(2(1(x)))))))
3(2(1(0(5(0(x)))))) → 3(0(5(1(0(2(1(x)))))))
5(2(1(0(5(0(x)))))) → 5(0(5(1(0(2(1(x)))))))
4(2(1(0(5(0(x)))))) → 4(0(5(1(0(2(1(x)))))))
2(3(4(1(5(0(x)))))) → 2(5(4(5(3(0(1(x)))))))
1(3(4(1(5(0(x)))))) → 1(5(4(5(3(0(1(x)))))))
0(3(4(1(5(0(x)))))) → 0(5(4(5(3(0(1(x)))))))
3(3(4(1(5(0(x)))))) → 3(5(4(5(3(0(1(x)))))))
5(3(4(1(5(0(x)))))) → 5(5(4(5(3(0(1(x)))))))
4(3(4(1(5(0(x)))))) → 4(5(4(5(3(0(1(x)))))))
2(2(1(3(5(0(x)))))) → 2(3(2(0(5(1(0(x)))))))
1(2(1(3(5(0(x)))))) → 1(3(2(0(5(1(0(x)))))))
0(2(1(3(5(0(x)))))) → 0(3(2(0(5(1(0(x)))))))
3(2(1(3(5(0(x)))))) → 3(3(2(0(5(1(0(x)))))))
5(2(1(3(5(0(x)))))) → 5(3(2(0(5(1(0(x)))))))
4(2(1(3(5(0(x)))))) → 4(3(2(0(5(1(0(x)))))))
2(2(4(3(5(0(x)))))) → 2(4(5(3(0(2(3(x)))))))
1(2(4(3(5(0(x)))))) → 1(4(5(3(0(2(3(x)))))))
0(2(4(3(5(0(x)))))) → 0(4(5(3(0(2(3(x)))))))
3(2(4(3(5(0(x)))))) → 3(4(5(3(0(2(3(x)))))))
5(2(4(3(5(0(x)))))) → 5(4(5(3(0(2(3(x)))))))
4(2(4(3(5(0(x)))))) → 4(4(5(3(0(2(3(x)))))))
2(2(3(4(5(0(x)))))) → 2(5(2(3(4(0(0(x)))))))
1(2(3(4(5(0(x)))))) → 1(5(2(3(4(0(0(x)))))))
0(2(3(4(5(0(x)))))) → 0(5(2(3(4(0(0(x)))))))
3(2(3(4(5(0(x)))))) → 3(5(2(3(4(0(0(x)))))))
5(2(3(4(5(0(x)))))) → 5(5(2(3(4(0(0(x)))))))
4(2(3(4(5(0(x)))))) → 4(5(2(3(4(0(0(x)))))))
2(3(2(5(2(1(x)))))) → 2(2(3(3(2(1(5(x)))))))
1(3(2(5(2(1(x)))))) → 1(2(3(3(2(1(5(x)))))))
0(3(2(5(2(1(x)))))) → 0(2(3(3(2(1(5(x)))))))
3(3(2(5(2(1(x)))))) → 3(2(3(3(2(1(5(x)))))))
5(3(2(5(2(1(x)))))) → 5(2(3(3(2(1(5(x)))))))
4(3(2(5(2(1(x)))))) → 4(2(3(3(2(1(5(x)))))))
2(2(5(0(3(1(x)))))) → 2(5(2(0(0(3(1(x)))))))
1(2(5(0(3(1(x)))))) → 1(5(2(0(0(3(1(x)))))))
0(2(5(0(3(1(x)))))) → 0(5(2(0(0(3(1(x)))))))
3(2(5(0(3(1(x)))))) → 3(5(2(0(0(3(1(x)))))))
5(2(5(0(3(1(x)))))) → 5(5(2(0(0(3(1(x)))))))
4(2(5(0(3(1(x)))))) → 4(5(2(0(0(3(1(x)))))))
2(2(4(3(3(1(x)))))) → 2(4(2(3(3(1(5(x)))))))
1(2(4(3(3(1(x)))))) → 1(4(2(3(3(1(5(x)))))))
0(2(4(3(3(1(x)))))) → 0(4(2(3(3(1(5(x)))))))
3(2(4(3(3(1(x)))))) → 3(4(2(3(3(1(5(x)))))))
5(2(4(3(3(1(x)))))) → 5(4(2(3(3(1(5(x)))))))
4(2(4(3(3(1(x)))))) → 4(4(2(3(3(1(5(x)))))))
2(3(2(0(3(4(x)))))) → 2(4(2(3(3(3(0(x)))))))
1(3(2(0(3(4(x)))))) → 1(4(2(3(3(3(0(x)))))))
0(3(2(0(3(4(x)))))) → 0(4(2(3(3(3(0(x)))))))
3(3(2(0(3(4(x)))))) → 3(4(2(3(3(3(0(x)))))))
5(3(2(0(3(4(x)))))) → 5(4(2(3(3(3(0(x)))))))
4(3(2(0(3(4(x)))))) → 4(4(2(3(3(3(0(x)))))))
2(2(1(3(2(5(x)))))) → 2(5(1(4(2(3(2(x)))))))
1(2(1(3(2(5(x)))))) → 1(5(1(4(2(3(2(x)))))))
0(2(1(3(2(5(x)))))) → 0(5(1(4(2(3(2(x)))))))
3(2(1(3(2(5(x)))))) → 3(5(1(4(2(3(2(x)))))))
5(2(1(3(2(5(x)))))) → 5(5(1(4(2(3(2(x)))))))
4(2(1(3(2(5(x)))))) → 4(5(1(4(2(3(2(x)))))))
2(2(5(0(3(5(x)))))) → 2(4(2(0(3(5(5(x)))))))
1(2(5(0(3(5(x)))))) → 1(4(2(0(3(5(5(x)))))))
0(2(5(0(3(5(x)))))) → 0(4(2(0(3(5(5(x)))))))
3(2(5(0(3(5(x)))))) → 3(4(2(0(3(5(5(x)))))))
5(2(5(0(3(5(x)))))) → 5(4(2(0(3(5(5(x)))))))
4(2(5(0(3(5(x)))))) → 4(4(2(0(3(5(5(x)))))))
2(2(5(1(3(5(x)))))) → 2(3(5(1(5(5(2(x)))))))
1(2(5(1(3(5(x)))))) → 1(3(5(1(5(5(2(x)))))))
0(2(5(1(3(5(x)))))) → 0(3(5(1(5(5(2(x)))))))
3(2(5(1(3(5(x)))))) → 3(3(5(1(5(5(2(x)))))))
5(2(5(1(3(5(x)))))) → 5(3(5(1(5(5(2(x)))))))
4(2(5(1(3(5(x)))))) → 4(3(5(1(5(5(2(x)))))))

Q is empty.

(5) RootLabelingProof (EQUIVALENT transformation)

We used plain root labeling [ROOTLAB] with the following heuristic: LabelAll: All function symbols get labeled
As Q is empty the root labeling was sound AND complete.

(6) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

2_{1_1}(1_{0_1}(0_{2_1}(x))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(x))))
2_{1_1}(1_{0_1}(0_{1_1}(x))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{1_1}(x))))
2_{1_1}(1_{0_1}(0_{0_1}(x))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{0_1}(x))))
2_{1_1}(1_{0_1}(0_{3_1}(x))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{3_1}(x))))
2_{1_1}(1_{0_1}(0_{5_1}(x))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{5_1}(x))))
2_{1_1}(1_{0_1}(0_{4_1}(x))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(x))))
2_{1_1}(1_{0_1}(0_{2_1}(x))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x))))
2_{1_1}(1_{0_1}(0_{1_1}(x))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x))))
2_{1_1}(1_{0_1}(0_{0_1}(x))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x))))
2_{1_1}(1_{0_1}(0_{3_1}(x))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x))))
2_{1_1}(1_{0_1}(0_{5_1}(x))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x))))
2_{1_1}(1_{0_1}(0_{4_1}(x))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x))))
2_{1_1}(1_{0_1}(0_{2_1}(x))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(x)))))
2_{1_1}(1_{0_1}(0_{1_1}(x))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(1_{1_1}(x)))))
2_{1_1}(1_{0_1}(0_{0_1}(x))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(1_{0_1}(x)))))
2_{1_1}(1_{0_1}(0_{3_1}(x))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(1_{3_1}(x)))))
2_{1_1}(1_{0_1}(0_{5_1}(x))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(1_{5_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(x))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(x)))))
2_{1_1}(1_{0_1}(0_{2_1}(x))) → 2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x)))))
2_{1_1}(1_{0_1}(0_{1_1}(x))) → 2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x)))))
2_{1_1}(1_{0_1}(0_{0_1}(x))) → 2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x)))))
2_{1_1}(1_{0_1}(0_{3_1}(x))) → 2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x)))))
2_{1_1}(1_{0_1}(0_{5_1}(x))) → 2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(x))) → 2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x)))))
2_{5_1}(5_{0_1}(0_{2_1}(x))) → 2_{0_1}(0_{0_1}(0_{5_1}(5_{2_1}(x))))
2_{5_1}(5_{0_1}(0_{1_1}(x))) → 2_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(x))))
2_{5_1}(5_{0_1}(0_{0_1}(x))) → 2_{0_1}(0_{0_1}(0_{5_1}(5_{0_1}(x))))
2_{5_1}(5_{0_1}(0_{3_1}(x))) → 2_{0_1}(0_{0_1}(0_{5_1}(5_{3_1}(x))))
2_{5_1}(5_{0_1}(0_{5_1}(x))) → 2_{0_1}(0_{0_1}(0_{5_1}(5_{5_1}(x))))
2_{5_1}(5_{0_1}(0_{4_1}(x))) → 2_{0_1}(0_{0_1}(0_{5_1}(5_{4_1}(x))))
2_{5_1}(5_{0_1}(0_{2_1}(x))) → 2_{0_1}(0_{5_1}(5_{5_1}(5_{2_1}(x))))
2_{5_1}(5_{0_1}(0_{1_1}(x))) → 2_{0_1}(0_{5_1}(5_{5_1}(5_{1_1}(x))))
2_{5_1}(5_{0_1}(0_{0_1}(x))) → 2_{0_1}(0_{5_1}(5_{5_1}(5_{0_1}(x))))
2_{5_1}(5_{0_1}(0_{3_1}(x))) → 2_{0_1}(0_{5_1}(5_{5_1}(5_{3_1}(x))))
2_{5_1}(5_{0_1}(0_{5_1}(x))) → 2_{0_1}(0_{5_1}(5_{5_1}(5_{5_1}(x))))
2_{5_1}(5_{0_1}(0_{4_1}(x))) → 2_{0_1}(0_{5_1}(5_{5_1}(5_{4_1}(x))))
2_{5_1}(5_{0_1}(0_{2_1}(x))) → 2_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(5_{2_1}(x)))))
2_{5_1}(5_{0_1}(0_{1_1}(x))) → 2_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(5_{1_1}(x)))))
2_{5_1}(5_{0_1}(0_{0_1}(x))) → 2_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(5_{0_1}(x)))))
2_{5_1}(5_{0_1}(0_{3_1}(x))) → 2_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(5_{3_1}(x)))))
2_{5_1}(5_{0_1}(0_{5_1}(x))) → 2_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(5_{5_1}(x)))))
2_{5_1}(5_{0_1}(0_{4_1}(x))) → 2_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(5_{4_1}(x)))))
3_{5_1}(5_{0_1}(0_{2_1}(x))) → 3_{0_1}(0_{0_1}(0_{5_1}(5_{2_1}(x))))
3_{5_1}(5_{0_1}(0_{1_1}(x))) → 3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(x))))
3_{5_1}(5_{0_1}(0_{0_1}(x))) → 3_{0_1}(0_{0_1}(0_{5_1}(5_{0_1}(x))))
3_{5_1}(5_{0_1}(0_{3_1}(x))) → 3_{0_1}(0_{0_1}(0_{5_1}(5_{3_1}(x))))
3_{5_1}(5_{0_1}(0_{5_1}(x))) → 3_{0_1}(0_{0_1}(0_{5_1}(5_{5_1}(x))))
3_{5_1}(5_{0_1}(0_{4_1}(x))) → 3_{0_1}(0_{0_1}(0_{5_1}(5_{4_1}(x))))
3_{5_1}(5_{0_1}(0_{2_1}(x))) → 3_{0_1}(0_{5_1}(5_{5_1}(5_{2_1}(x))))
3_{5_1}(5_{0_1}(0_{1_1}(x))) → 3_{0_1}(0_{5_1}(5_{5_1}(5_{1_1}(x))))
3_{5_1}(5_{0_1}(0_{0_1}(x))) → 3_{0_1}(0_{5_1}(5_{5_1}(5_{0_1}(x))))
3_{5_1}(5_{0_1}(0_{3_1}(x))) → 3_{0_1}(0_{5_1}(5_{5_1}(5_{3_1}(x))))
3_{5_1}(5_{0_1}(0_{5_1}(x))) → 3_{0_1}(0_{5_1}(5_{5_1}(5_{5_1}(x))))
3_{5_1}(5_{0_1}(0_{4_1}(x))) → 3_{0_1}(0_{5_1}(5_{5_1}(5_{4_1}(x))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x)))) → 3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(1_{2_1}(x)))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x)))) → 3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(1_{1_1}(x)))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x)))) → 3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(x)))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x)))) → 3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(1_{3_1}(x)))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x)))) → 3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(x)))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x)))) → 3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(1_{4_1}(x)))))
2_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))) → 2_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(4_{2_1}(x)))))
2_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))) → 2_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(4_{1_1}(x)))))
2_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))) → 2_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(4_{0_1}(x)))))
2_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))) → 2_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(4_{3_1}(x)))))
2_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))) → 2_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(4_{5_1}(x)))))
2_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))) → 2_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(4_{4_1}(x)))))
2_{1_1}(1_{4_1}(4_{0_1}(0_{2_1}(x)))) → 2_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(0_{2_1}(x))))))
2_{1_1}(1_{4_1}(4_{0_1}(0_{1_1}(x)))) → 2_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(0_{1_1}(x))))))
2_{1_1}(1_{4_1}(4_{0_1}(0_{0_1}(x)))) → 2_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(0_{0_1}(x))))))
2_{1_1}(1_{4_1}(4_{0_1}(0_{3_1}(x)))) → 2_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(0_{3_1}(x))))))
2_{1_1}(1_{4_1}(4_{0_1}(0_{5_1}(x)))) → 2_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(0_{5_1}(x))))))
2_{1_1}(1_{4_1}(4_{0_1}(0_{4_1}(x)))) → 2_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(0_{4_1}(x))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{2_1}(x)))) → 3_{2_1}(2_{3_1}(3_{0_1}(0_{5_1}(5_{2_1}(x)))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{1_1}(x)))) → 3_{2_1}(2_{3_1}(3_{0_1}(0_{5_1}(5_{1_1}(x)))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(x)))) → 3_{2_1}(2_{3_1}(3_{0_1}(0_{5_1}(5_{0_1}(x)))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(x)))) → 3_{2_1}(2_{3_1}(3_{0_1}(0_{5_1}(5_{3_1}(x)))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{5_1}(x)))) → 3_{2_1}(2_{3_1}(3_{0_1}(0_{5_1}(5_{5_1}(x)))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{4_1}(x)))) → 3_{2_1}(2_{3_1}(3_{0_1}(0_{5_1}(5_{4_1}(x)))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{2_1}(x)))) → 2_{2_1}(2_{5_1}(5_{1_1}(1_{1_1}(1_{2_1}(x)))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{1_1}(x)))) → 2_{2_1}(2_{5_1}(5_{1_1}(1_{1_1}(1_{1_1}(x)))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(x)))) → 2_{2_1}(2_{5_1}(5_{1_1}(1_{1_1}(1_{0_1}(x)))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{3_1}(x)))) → 2_{2_1}(2_{5_1}(5_{1_1}(1_{1_1}(1_{3_1}(x)))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{5_1}(x)))) → 2_{2_1}(2_{5_1}(5_{1_1}(1_{1_1}(1_{5_1}(x)))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{4_1}(x)))) → 2_{2_1}(2_{5_1}(5_{1_1}(1_{1_1}(1_{4_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(4_{2_1}(x)))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(4_{1_1}(x)))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(4_{0_1}(x)))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(4_{3_1}(x)))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(4_{5_1}(x)))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(4_{4_1}(x)))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))
2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(4_{2_1}(x)))))
2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(4_{1_1}(x)))))
2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(4_{0_1}(x)))))
2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(4_{3_1}(x)))))
2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(4_{5_1}(x)))))
2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(4_{4_1}(x)))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x))))) → 3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(2_{3_1}(3_{2_1}(x))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x))))) → 3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(2_{3_1}(3_{1_1}(x))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x))))) → 3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(2_{3_1}(3_{0_1}(x))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x))))) → 3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(2_{3_1}(3_{3_1}(x))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x))))) → 3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(2_{3_1}(3_{5_1}(x))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x))))) → 3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(2_{3_1}(3_{4_1}(x))))))
3_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x))))) → 3_{0_1}(0_{1_1}(1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(x))))))
3_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x))))) → 3_{0_1}(0_{1_1}(1_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(x))))))
3_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x))))) → 3_{0_1}(0_{1_1}(1_{3_1}(3_{0_1}(0_{0_1}(0_{0_1}(x))))))
3_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x))))) → 3_{0_1}(0_{1_1}(1_{3_1}(3_{0_1}(0_{0_1}(0_{3_1}(x))))))
3_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x))))) → 3_{0_1}(0_{1_1}(1_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(x))))))
3_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x))))) → 3_{0_1}(0_{1_1}(1_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(x))))))
2_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{2_1}(x))))))
2_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{1_1}(x))))))
2_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(x))))))
2_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{3_1}(x))))))
2_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{5_1}(x))))))
2_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{4_1}(x))))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 2_{2_1}(2_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(1_{2_1}(x))))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 2_{2_1}(2_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(1_{1_1}(x))))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 2_{2_1}(2_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(1_{0_1}(x))))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 2_{2_1}(2_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(1_{3_1}(x))))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 2_{2_1}(2_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(1_{5_1}(x))))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 2_{2_1}(2_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(1_{4_1}(x))))))
2_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{2_1}(x))))))
2_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{1_1}(x))))))
2_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(x))))))
2_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{3_1}(x))))))
2_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{5_1}(x))))))
2_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{4_1}(x))))))
3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x))))) → 3_{0_1}(0_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{2_1}(x))))))
3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x))))) → 3_{0_1}(0_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{1_1}(x))))))
3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x))))) → 3_{0_1}(0_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(x))))))
3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x))))) → 3_{0_1}(0_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{3_1}(x))))))
3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x))))) → 3_{0_1}(0_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{5_1}(x))))))
3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x))))) → 3_{0_1}(0_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{4_1}(x))))))
2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x))))) → 2_{3_1}(3_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(5_{2_1}(x))))))
2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x))))) → 2_{3_1}(3_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(5_{1_1}(x))))))
2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x))))) → 2_{3_1}(3_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(x))))))
2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x))))) → 2_{3_1}(3_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(5_{3_1}(x))))))
2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x))))) → 2_{3_1}(3_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(5_{5_1}(x))))))
2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x))))) → 2_{3_1}(3_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(5_{4_1}(x))))))
2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x))))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x))))))
2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x))))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x))))))
2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x))))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x))))))
2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x))))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x))))))
2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x))))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x))))))
2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x))))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x))))))
3_{5_1}(5_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x))))) → 3_{0_1}(0_{5_1}(5_{3_1}(3_{4_1}(4_{5_1}(5_{2_1}(x))))))
3_{5_1}(5_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x))))) → 3_{0_1}(0_{5_1}(5_{3_1}(3_{4_1}(4_{5_1}(5_{1_1}(x))))))
3_{5_1}(5_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x))))) → 3_{0_1}(0_{5_1}(5_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(x))))))
3_{5_1}(5_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x))))) → 3_{0_1}(0_{5_1}(5_{3_1}(3_{4_1}(4_{5_1}(5_{3_1}(x))))))
3_{5_1}(5_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x))))) → 3_{0_1}(0_{5_1}(5_{3_1}(3_{4_1}(4_{5_1}(5_{5_1}(x))))))
3_{5_1}(5_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x))))) → 3_{0_1}(0_{5_1}(5_{3_1}(3_{4_1}(4_{5_1}(5_{4_1}(x))))))
2_{1_1}(1_{3_1}(3_{3_1}(3_{4_1}(4_{2_1}(x))))) → 2_{3_1}(3_{4_1}(4_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x))))))
2_{1_1}(1_{3_1}(3_{3_1}(3_{4_1}(4_{1_1}(x))))) → 2_{3_1}(3_{4_1}(4_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x))))))
2_{1_1}(1_{3_1}(3_{3_1}(3_{4_1}(4_{0_1}(x))))) → 2_{3_1}(3_{4_1}(4_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x))))))
2_{1_1}(1_{3_1}(3_{3_1}(3_{4_1}(4_{3_1}(x))))) → 2_{3_1}(3_{4_1}(4_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x))))))
2_{1_1}(1_{3_1}(3_{3_1}(3_{4_1}(4_{5_1}(x))))) → 2_{3_1}(3_{4_1}(4_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x))))))
2_{1_1}(1_{3_1}(3_{3_1}(3_{4_1}(4_{4_1}(x))))) → 2_{3_1}(3_{4_1}(4_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x))))))
2_{0_1}(0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{4_1}(4_{2_1}(x))))))
2_{0_1}(0_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{4_1}(4_{1_1}(x))))))
2_{0_1}(0_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{4_1}(4_{0_1}(x))))))
2_{0_1}(0_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{4_1}(4_{3_1}(x))))))
2_{0_1}(0_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{4_1}(4_{5_1}(x))))))
2_{0_1}(0_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{4_1}(4_{4_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{2_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{1_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{0_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{3_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{5_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{4_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 1_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 1_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 1_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 1_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 1_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 1_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 0_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 0_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 0_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 0_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 0_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 0_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 5_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 5_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 5_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 5_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 5_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 5_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 4_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 4_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 4_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 4_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 4_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 4_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
2_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 2_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x))))))
2_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 2_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x))))))
2_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 2_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x))))))
2_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 2_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x))))))
2_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 2_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x))))))
2_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 2_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x))))))
1_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 1_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x))))))
1_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 1_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x))))))
1_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 1_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x))))))
1_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 1_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x))))))
1_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 1_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x))))))
1_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 1_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x))))))
0_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x))))))
0_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x))))))
0_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x))))))
0_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x))))))
0_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x))))))
0_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x))))))
3_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 3_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x))))))
3_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 3_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x))))))
3_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 3_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x))))))
3_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 3_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x))))))
3_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 3_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x))))))
3_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 3_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x))))))
5_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 5_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x))))))
5_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 5_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x))))))
5_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 5_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x))))))
5_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 5_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x))))))
5_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 5_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x))))))
5_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 5_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x))))))
4_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 4_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x))))))
4_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 4_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x))))))
4_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 4_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x))))))
4_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 4_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x))))))
4_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 4_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x))))))
4_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 4_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{2_1}(x))))) → 2_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{2_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{1_1}(x))))) → 2_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{1_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{0_1}(x))))) → 2_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{3_1}(x))))) → 2_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{3_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{5_1}(x))))) → 2_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{5_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{4_1}(x))))) → 2_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{2_1}(x))))) → 1_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{2_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{1_1}(x))))) → 1_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{1_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{0_1}(x))))) → 1_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{3_1}(x))))) → 1_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{3_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{5_1}(x))))) → 1_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{5_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{4_1}(x))))) → 1_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{2_1}(x))))) → 0_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{2_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{1_1}(x))))) → 0_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{1_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{0_1}(x))))) → 0_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{3_1}(x))))) → 0_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{3_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{5_1}(x))))) → 0_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{5_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{4_1}(x))))) → 0_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{2_1}(x))))) → 3_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{2_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{1_1}(x))))) → 3_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{1_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{0_1}(x))))) → 3_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{3_1}(x))))) → 3_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{3_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{5_1}(x))))) → 3_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{5_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{4_1}(x))))) → 3_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{2_1}(x))))) → 5_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{1_1}(x))))) → 5_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{1_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{0_1}(x))))) → 5_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{3_1}(x))))) → 5_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{3_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{5_1}(x))))) → 5_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{5_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{4_1}(x))))) → 5_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{2_1}(x))))) → 4_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{2_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{1_1}(x))))) → 4_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{1_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{0_1}(x))))) → 4_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{3_1}(x))))) → 4_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{3_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{5_1}(x))))) → 4_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{5_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{4_1}(x))))) → 4_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(x)))))))
2_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x)))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{2_1}(x)))))))
2_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x)))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(x)))))))
2_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x)))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{0_1}(x)))))))
2_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x)))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x)))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(x)))))))
2_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x)))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{4_1}(x)))))))
1_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x)))))) → 1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{2_1}(x)))))))
1_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x)))))) → 1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(x)))))))
1_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x)))))) → 1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{0_1}(x)))))))
1_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x)))))) → 1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{3_1}(x)))))))
1_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x)))))) → 1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(x)))))))
1_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x)))))) → 1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{4_1}(x)))))))
0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x)))))) → 0_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{2_1}(x)))))))
0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x)))))) → 0_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(x)))))))
0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x)))))) → 0_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{0_1}(x)))))))
0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x)))))) → 0_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{3_1}(x)))))))
0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x)))))) → 0_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(x)))))))
0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x)))))) → 0_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{4_1}(x)))))))
3_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x)))))) → 3_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{2_1}(x)))))))
3_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x)))))) → 3_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(x)))))))
3_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x)))))) → 3_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{0_1}(x)))))))
3_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x)))))) → 3_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x)))))) → 3_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(x)))))))
3_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x)))))) → 3_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{4_1}(x)))))))
5_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x)))))) → 5_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x)))))) → 5_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(x)))))))
5_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x)))))) → 5_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{0_1}(x)))))))
5_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x)))))) → 5_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{3_1}(x)))))))
5_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x)))))) → 5_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(x)))))))
5_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x)))))) → 5_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{4_1}(x)))))))
4_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x)))))) → 4_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{2_1}(x)))))))
4_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x)))))) → 4_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(x)))))))
4_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x)))))) → 4_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{0_1}(x)))))))
4_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x)))))) → 4_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{3_1}(x)))))))
4_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x)))))) → 4_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(x)))))))
4_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x)))))) → 4_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
1_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
1_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
1_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
1_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))))
1_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))))
0_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
0_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
0_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
0_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
0_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))))
5_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
5_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
5_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
5_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
5_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))))
5_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))))
4_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
4_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
4_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
4_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
4_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))))
4_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))))
2_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
2_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{1_1}(x)))))))
2_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{0_1}(x)))))))
2_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
2_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{5_1}(x)))))))
2_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{4_1}(x)))))))
1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 1_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 1_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{1_1}(x)))))))
1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 1_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{0_1}(x)))))))
1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 1_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 1_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{5_1}(x)))))))
1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 1_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{4_1}(x)))))))
0_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
0_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{1_1}(x)))))))
0_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{0_1}(x)))))))
0_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
0_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{5_1}(x)))))))
0_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{4_1}(x)))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{1_1}(x)))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{0_1}(x)))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{5_1}(x)))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{4_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{1_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{0_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{5_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{4_1}(x)))))))
4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 4_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 4_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{1_1}(x)))))))
4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 4_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{0_1}(x)))))))
4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 4_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 4_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{5_1}(x)))))))
4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 4_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{4_1}(x)))))))
2_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x)))))))
2_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x)))))))
2_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x)))))))
2_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x)))))))
2_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x)))))))
2_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x)))))))
1_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 1_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x)))))))
1_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 1_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x)))))))
1_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 1_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x)))))))
1_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 1_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x)))))))
1_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 1_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x)))))))
1_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 1_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x)))))))
0_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 0_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x)))))))
0_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 0_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x)))))))
0_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 0_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x)))))))
0_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 0_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x)))))))
0_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 0_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x)))))))
0_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 0_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x)))))))
3_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x)))))))
3_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x)))))))
3_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x)))))))
3_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x)))))))
3_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x)))))))
3_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x)))))))
5_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x)))))))
5_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 5_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x)))))))
5_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 5_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x)))))))
5_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x)))))))
5_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 5_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x)))))))
5_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 5_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x)))))))
4_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 4_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x)))))))
4_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 4_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x)))))))
4_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 4_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x)))))))
4_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 4_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x)))))))
4_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 4_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x)))))))
4_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 4_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{4_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 1_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 1_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{1_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 1_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 1_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{3_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 1_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{5_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 1_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{4_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 0_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 0_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{1_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 0_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 0_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{3_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 0_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{5_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 0_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{4_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 5_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{1_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 5_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{3_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 5_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{5_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 5_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{4_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 4_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 4_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{1_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 4_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 4_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{3_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 4_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{5_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 4_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{4_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{2_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{0_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{5_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{4_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 1_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{2_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 1_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 1_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{0_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 1_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 1_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{5_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 1_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{4_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 0_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{2_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 0_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 0_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{0_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 0_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 0_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{5_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 0_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{4_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{2_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{0_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{5_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{4_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{2_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{0_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{5_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{4_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 4_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{2_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 4_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 4_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{0_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 4_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 4_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{5_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 4_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{4_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
1_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
1_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
1_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
1_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
1_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
1_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
0_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
0_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
0_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
0_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
0_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
0_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
5_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
5_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
5_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
5_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
5_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
5_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
4_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
4_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
4_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
4_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
4_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
4_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
2_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{2_1}(x)))))) → 2_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{2_1}(x)))))))
2_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{1_1}(x)))))) → 2_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{1_1}(x)))))))
2_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{0_1}(x)))))) → 2_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{0_1}(x)))))))
2_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{3_1}(x)))))) → 2_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{3_1}(x)))))))
2_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{5_1}(x)))))) → 2_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{5_1}(x)))))))
2_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{4_1}(x)))))) → 2_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{4_1}(x)))))))
1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{2_1}(x)))))) → 1_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{2_1}(x)))))))
1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{1_1}(x)))))) → 1_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{1_1}(x)))))))
1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{0_1}(x)))))) → 1_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{0_1}(x)))))))
1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{3_1}(x)))))) → 1_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{3_1}(x)))))))
1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{5_1}(x)))))) → 1_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{5_1}(x)))))))
1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{4_1}(x)))))) → 1_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{4_1}(x)))))))
0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{2_1}(x)))))) → 0_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{2_1}(x)))))))
0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{1_1}(x)))))) → 0_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{1_1}(x)))))))
0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{0_1}(x)))))) → 0_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{0_1}(x)))))))
0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{3_1}(x)))))) → 0_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{3_1}(x)))))))
0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{5_1}(x)))))) → 0_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{5_1}(x)))))))
0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{4_1}(x)))))) → 0_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{4_1}(x)))))))
3_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{2_1}(x)))))) → 3_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{2_1}(x)))))))
3_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{1_1}(x)))))) → 3_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{1_1}(x)))))))
3_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{0_1}(x)))))) → 3_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{0_1}(x)))))))
3_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{3_1}(x)))))) → 3_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{3_1}(x)))))))
3_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{5_1}(x)))))) → 3_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{5_1}(x)))))))
3_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{4_1}(x)))))) → 3_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{4_1}(x)))))))
5_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{2_1}(x)))))) → 5_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{2_1}(x)))))))
5_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{1_1}(x)))))) → 5_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{1_1}(x)))))))
5_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{0_1}(x)))))) → 5_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{0_1}(x)))))))
5_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{3_1}(x)))))) → 5_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{3_1}(x)))))))
5_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{5_1}(x)))))) → 5_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{5_1}(x)))))))
5_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{4_1}(x)))))) → 5_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{4_1}(x)))))))
4_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{2_1}(x)))))) → 4_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{2_1}(x)))))))
4_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{1_1}(x)))))) → 4_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{1_1}(x)))))))
4_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{0_1}(x)))))) → 4_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{0_1}(x)))))))
4_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{3_1}(x)))))) → 4_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{3_1}(x)))))))
4_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{5_1}(x)))))) → 4_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{5_1}(x)))))))
4_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{4_1}(x)))))) → 4_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x)))))))
2_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{2_1}(x)))))))
2_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{1_1}(x)))))))
2_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{0_1}(x)))))))
2_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{3_1}(x)))))))
2_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(x)))))))
2_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{4_1}(x)))))))
1_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{2_1}(x)))))))
1_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{1_1}(x)))))))
1_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{0_1}(x)))))))
1_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{3_1}(x)))))))
1_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(x)))))))
1_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{4_1}(x)))))))
0_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{2_1}(x)))))))
0_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{1_1}(x)))))))
0_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{0_1}(x)))))))
0_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{3_1}(x)))))))
0_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(x)))))))
0_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{4_1}(x)))))))
3_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{2_1}(x)))))))
3_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{1_1}(x)))))))
3_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{0_1}(x)))))))
3_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{3_1}(x)))))))
3_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(x)))))))
3_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{4_1}(x)))))))
5_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{2_1}(x)))))))
5_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{1_1}(x)))))))
5_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{0_1}(x)))))))
5_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{3_1}(x)))))))
5_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(x)))))))
5_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{4_1}(x)))))))
4_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{2_1}(x)))))))
4_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{1_1}(x)))))))
4_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{0_1}(x)))))))
4_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{3_1}(x)))))))
4_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(x)))))))
4_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{4_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x)))))) → 2_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{2_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x)))))) → 2_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{1_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x)))))) → 2_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{0_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x)))))) → 2_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{3_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x)))))) → 2_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{5_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x)))))) → 2_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{4_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x)))))) → 1_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{2_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x)))))) → 1_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{1_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x)))))) → 1_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{0_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x)))))) → 1_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{3_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x)))))) → 1_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{5_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x)))))) → 1_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{4_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x)))))) → 0_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{2_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x)))))) → 0_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{1_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x)))))) → 0_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{0_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x)))))) → 0_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{3_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x)))))) → 0_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x)))))) → 0_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{4_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x)))))) → 3_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{2_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x)))))) → 3_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{1_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x)))))) → 3_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{0_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x)))))) → 3_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{3_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x)))))) → 3_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{5_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x)))))) → 3_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{4_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x)))))) → 5_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x)))))) → 5_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{1_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x)))))) → 5_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{0_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x)))))) → 5_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{3_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x)))))) → 5_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{5_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x)))))) → 5_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{4_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x)))))) → 4_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{2_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x)))))) → 4_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{1_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x)))))) → 4_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{0_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x)))))) → 4_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{3_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x)))))) → 4_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{5_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x)))))) → 4_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 2_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 2_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 2_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 2_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 2_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 2_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{2_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{1_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{0_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{3_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{4_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{2_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{1_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{0_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{3_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 3_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 3_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 3_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 3_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 3_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 3_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{4_1}(x)))))))
5_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 5_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{2_1}(x)))))))
5_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 5_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{1_1}(x)))))))
5_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 5_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{0_1}(x)))))))
5_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 5_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{3_1}(x)))))))
5_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 5_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
5_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 5_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{4_1}(x)))))))
4_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 4_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{2_1}(x)))))))
4_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 4_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{1_1}(x)))))))
4_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 4_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{0_1}(x)))))))
4_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 4_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{3_1}(x)))))))
4_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 4_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
4_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 4_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{4_1}(x)))))))

Q is empty.

(7) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0_{0_1}(x1)) = x1   
POL(0_{1_1}(x1)) = 8 + x1   
POL(0_{2_1}(x1)) = x1   
POL(0_{3_1}(x1)) = 14 + x1   
POL(0_{4_1}(x1)) = 9 + x1   
POL(0_{5_1}(x1)) = 25 + x1   
POL(1_{0_1}(x1)) = x1   
POL(1_{1_1}(x1)) = x1   
POL(1_{2_1}(x1)) = 3 + x1   
POL(1_{3_1}(x1)) = 17 + x1   
POL(1_{4_1}(x1)) = 7 + x1   
POL(1_{5_1}(x1)) = x1   
POL(2_{0_1}(x1)) = 77 + x1   
POL(2_{1_1}(x1)) = 114 + x1   
POL(2_{2_1}(x1)) = 71 + x1   
POL(2_{3_1}(x1)) = 61 + x1   
POL(2_{4_1}(x1)) = 114 + x1   
POL(2_{5_1}(x1)) = 115 + x1   
POL(3_{0_1}(x1)) = x1   
POL(3_{1_1}(x1)) = 76 + x1   
POL(3_{2_1}(x1)) = 33 + x1   
POL(3_{3_1}(x1)) = 24 + x1   
POL(3_{4_1}(x1)) = 76 + x1   
POL(3_{5_1}(x1)) = 77 + x1   
POL(4_{0_1}(x1)) = 18 + x1   
POL(4_{1_1}(x1)) = 26 + x1   
POL(4_{2_1}(x1)) = 18 + x1   
POL(4_{3_1}(x1)) = 32 + x1   
POL(4_{4_1}(x1)) = 26 + x1   
POL(4_{5_1}(x1)) = 42 + x1   
POL(5_{0_1}(x1)) = 23 + x1   
POL(5_{1_1}(x1)) = x1   
POL(5_{2_1}(x1)) = 3 + x1   
POL(5_{3_1}(x1)) = 17 + x1   
POL(5_{4_1}(x1)) = x1   
POL(5_{5_1}(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

2_{1_1}(1_{0_1}(0_{2_1}(x))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(x))))
2_{1_1}(1_{0_1}(0_{1_1}(x))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{1_1}(x))))
2_{1_1}(1_{0_1}(0_{0_1}(x))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{0_1}(x))))
2_{1_1}(1_{0_1}(0_{3_1}(x))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{3_1}(x))))
2_{1_1}(1_{0_1}(0_{5_1}(x))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{5_1}(x))))
2_{1_1}(1_{0_1}(0_{4_1}(x))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(x))))
2_{1_1}(1_{0_1}(0_{2_1}(x))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x))))
2_{1_1}(1_{0_1}(0_{1_1}(x))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x))))
2_{1_1}(1_{0_1}(0_{0_1}(x))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x))))
2_{1_1}(1_{0_1}(0_{3_1}(x))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x))))
2_{1_1}(1_{0_1}(0_{5_1}(x))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x))))
2_{1_1}(1_{0_1}(0_{4_1}(x))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x))))
2_{1_1}(1_{0_1}(0_{2_1}(x))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(x)))))
2_{1_1}(1_{0_1}(0_{1_1}(x))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(1_{1_1}(x)))))
2_{1_1}(1_{0_1}(0_{0_1}(x))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(1_{0_1}(x)))))
2_{1_1}(1_{0_1}(0_{3_1}(x))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(1_{3_1}(x)))))
2_{1_1}(1_{0_1}(0_{5_1}(x))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(1_{5_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(x))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(x)))))
2_{1_1}(1_{0_1}(0_{2_1}(x))) → 2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x)))))
2_{1_1}(1_{0_1}(0_{1_1}(x))) → 2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x)))))
2_{1_1}(1_{0_1}(0_{0_1}(x))) → 2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x)))))
2_{1_1}(1_{0_1}(0_{3_1}(x))) → 2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x)))))
2_{1_1}(1_{0_1}(0_{5_1}(x))) → 2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(x))) → 2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x)))))
2_{5_1}(5_{0_1}(0_{2_1}(x))) → 2_{0_1}(0_{0_1}(0_{5_1}(5_{2_1}(x))))
2_{5_1}(5_{0_1}(0_{1_1}(x))) → 2_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(x))))
2_{5_1}(5_{0_1}(0_{0_1}(x))) → 2_{0_1}(0_{0_1}(0_{5_1}(5_{0_1}(x))))
2_{5_1}(5_{0_1}(0_{3_1}(x))) → 2_{0_1}(0_{0_1}(0_{5_1}(5_{3_1}(x))))
2_{5_1}(5_{0_1}(0_{5_1}(x))) → 2_{0_1}(0_{0_1}(0_{5_1}(5_{5_1}(x))))
2_{5_1}(5_{0_1}(0_{4_1}(x))) → 2_{0_1}(0_{0_1}(0_{5_1}(5_{4_1}(x))))
2_{5_1}(5_{0_1}(0_{2_1}(x))) → 2_{0_1}(0_{5_1}(5_{5_1}(5_{2_1}(x))))
2_{5_1}(5_{0_1}(0_{1_1}(x))) → 2_{0_1}(0_{5_1}(5_{5_1}(5_{1_1}(x))))
2_{5_1}(5_{0_1}(0_{0_1}(x))) → 2_{0_1}(0_{5_1}(5_{5_1}(5_{0_1}(x))))
2_{5_1}(5_{0_1}(0_{3_1}(x))) → 2_{0_1}(0_{5_1}(5_{5_1}(5_{3_1}(x))))
2_{5_1}(5_{0_1}(0_{5_1}(x))) → 2_{0_1}(0_{5_1}(5_{5_1}(5_{5_1}(x))))
2_{5_1}(5_{0_1}(0_{4_1}(x))) → 2_{0_1}(0_{5_1}(5_{5_1}(5_{4_1}(x))))
2_{5_1}(5_{0_1}(0_{2_1}(x))) → 2_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(5_{2_1}(x)))))
2_{5_1}(5_{0_1}(0_{1_1}(x))) → 2_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(5_{1_1}(x)))))
2_{5_1}(5_{0_1}(0_{0_1}(x))) → 2_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(5_{0_1}(x)))))
2_{5_1}(5_{0_1}(0_{3_1}(x))) → 2_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(5_{3_1}(x)))))
2_{5_1}(5_{0_1}(0_{5_1}(x))) → 2_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(5_{5_1}(x)))))
2_{5_1}(5_{0_1}(0_{4_1}(x))) → 2_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(5_{4_1}(x)))))
3_{5_1}(5_{0_1}(0_{2_1}(x))) → 3_{0_1}(0_{0_1}(0_{5_1}(5_{2_1}(x))))
3_{5_1}(5_{0_1}(0_{1_1}(x))) → 3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(x))))
3_{5_1}(5_{0_1}(0_{0_1}(x))) → 3_{0_1}(0_{0_1}(0_{5_1}(5_{0_1}(x))))
3_{5_1}(5_{0_1}(0_{3_1}(x))) → 3_{0_1}(0_{0_1}(0_{5_1}(5_{3_1}(x))))
3_{5_1}(5_{0_1}(0_{5_1}(x))) → 3_{0_1}(0_{0_1}(0_{5_1}(5_{5_1}(x))))
3_{5_1}(5_{0_1}(0_{4_1}(x))) → 3_{0_1}(0_{0_1}(0_{5_1}(5_{4_1}(x))))
3_{5_1}(5_{0_1}(0_{2_1}(x))) → 3_{0_1}(0_{5_1}(5_{5_1}(5_{2_1}(x))))
3_{5_1}(5_{0_1}(0_{1_1}(x))) → 3_{0_1}(0_{5_1}(5_{5_1}(5_{1_1}(x))))
3_{5_1}(5_{0_1}(0_{0_1}(x))) → 3_{0_1}(0_{5_1}(5_{5_1}(5_{0_1}(x))))
3_{5_1}(5_{0_1}(0_{3_1}(x))) → 3_{0_1}(0_{5_1}(5_{5_1}(5_{3_1}(x))))
3_{5_1}(5_{0_1}(0_{5_1}(x))) → 3_{0_1}(0_{5_1}(5_{5_1}(5_{5_1}(x))))
3_{5_1}(5_{0_1}(0_{4_1}(x))) → 3_{0_1}(0_{5_1}(5_{5_1}(5_{4_1}(x))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x)))) → 3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(1_{2_1}(x)))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x)))) → 3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(1_{1_1}(x)))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x)))) → 3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(x)))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x)))) → 3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(1_{3_1}(x)))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x)))) → 3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(x)))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x)))) → 3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(1_{4_1}(x)))))
2_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))) → 2_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(4_{2_1}(x)))))
2_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))) → 2_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(4_{1_1}(x)))))
2_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))) → 2_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(4_{0_1}(x)))))
2_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))) → 2_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(4_{3_1}(x)))))
2_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))) → 2_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(4_{5_1}(x)))))
2_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))) → 2_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(4_{4_1}(x)))))
2_{1_1}(1_{4_1}(4_{0_1}(0_{2_1}(x)))) → 2_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(0_{2_1}(x))))))
2_{1_1}(1_{4_1}(4_{0_1}(0_{1_1}(x)))) → 2_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(0_{1_1}(x))))))
2_{1_1}(1_{4_1}(4_{0_1}(0_{0_1}(x)))) → 2_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(0_{0_1}(x))))))
2_{1_1}(1_{4_1}(4_{0_1}(0_{3_1}(x)))) → 2_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(0_{3_1}(x))))))
2_{1_1}(1_{4_1}(4_{0_1}(0_{5_1}(x)))) → 2_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(0_{5_1}(x))))))
2_{1_1}(1_{4_1}(4_{0_1}(0_{4_1}(x)))) → 2_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(0_{4_1}(x))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{2_1}(x)))) → 3_{2_1}(2_{3_1}(3_{0_1}(0_{5_1}(5_{2_1}(x)))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{1_1}(x)))) → 3_{2_1}(2_{3_1}(3_{0_1}(0_{5_1}(5_{1_1}(x)))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(x)))) → 3_{2_1}(2_{3_1}(3_{0_1}(0_{5_1}(5_{0_1}(x)))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(x)))) → 3_{2_1}(2_{3_1}(3_{0_1}(0_{5_1}(5_{3_1}(x)))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{5_1}(x)))) → 3_{2_1}(2_{3_1}(3_{0_1}(0_{5_1}(5_{5_1}(x)))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{4_1}(x)))) → 3_{2_1}(2_{3_1}(3_{0_1}(0_{5_1}(5_{4_1}(x)))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{2_1}(x)))) → 2_{2_1}(2_{5_1}(5_{1_1}(1_{1_1}(1_{2_1}(x)))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{1_1}(x)))) → 2_{2_1}(2_{5_1}(5_{1_1}(1_{1_1}(1_{1_1}(x)))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(x)))) → 2_{2_1}(2_{5_1}(5_{1_1}(1_{1_1}(1_{0_1}(x)))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{3_1}(x)))) → 2_{2_1}(2_{5_1}(5_{1_1}(1_{1_1}(1_{3_1}(x)))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{5_1}(x)))) → 2_{2_1}(2_{5_1}(5_{1_1}(1_{1_1}(1_{5_1}(x)))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{4_1}(x)))) → 2_{2_1}(2_{5_1}(5_{1_1}(1_{1_1}(1_{4_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(4_{2_1}(x)))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(4_{1_1}(x)))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(4_{0_1}(x)))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(4_{3_1}(x)))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(4_{5_1}(x)))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))
2_{1_1}(1_{0_1}(0_{4_1}(4_{4_1}(x)))) → 2_{0_1}(0_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))
2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(4_{2_1}(x)))))
2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(4_{1_1}(x)))))
2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(4_{0_1}(x)))))
2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(4_{3_1}(x)))))
2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(4_{5_1}(x)))))
2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(4_{4_1}(x)))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x))))) → 3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(2_{3_1}(3_{2_1}(x))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x))))) → 3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(2_{3_1}(3_{1_1}(x))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x))))) → 3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(2_{3_1}(3_{0_1}(x))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x))))) → 3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(2_{3_1}(3_{3_1}(x))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x))))) → 3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(2_{3_1}(3_{5_1}(x))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x))))) → 3_{0_1}(0_{0_1}(0_{1_1}(1_{2_1}(2_{3_1}(3_{4_1}(x))))))
3_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x))))) → 3_{0_1}(0_{1_1}(1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(x))))))
3_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x))))) → 3_{0_1}(0_{1_1}(1_{3_1}(3_{0_1}(0_{0_1}(0_{1_1}(x))))))
3_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x))))) → 3_{0_1}(0_{1_1}(1_{3_1}(3_{0_1}(0_{0_1}(0_{0_1}(x))))))
3_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x))))) → 3_{0_1}(0_{1_1}(1_{3_1}(3_{0_1}(0_{0_1}(0_{3_1}(x))))))
3_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x))))) → 3_{0_1}(0_{1_1}(1_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(x))))))
3_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x))))) → 3_{0_1}(0_{1_1}(1_{3_1}(3_{0_1}(0_{0_1}(0_{4_1}(x))))))
2_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{2_1}(x))))))
2_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{1_1}(x))))))
2_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(x))))))
2_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{3_1}(x))))))
2_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{5_1}(x))))))
2_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{4_1}(x))))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 2_{2_1}(2_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(1_{2_1}(x))))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 2_{2_1}(2_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(1_{1_1}(x))))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 2_{2_1}(2_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(1_{0_1}(x))))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 2_{2_1}(2_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(1_{3_1}(x))))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 2_{2_1}(2_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(1_{5_1}(x))))))
2_{1_1}(1_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 2_{2_1}(2_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(1_{4_1}(x))))))
2_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{2_1}(x))))))
2_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{1_1}(x))))))
2_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(x))))))
2_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{3_1}(x))))))
2_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{5_1}(x))))))
2_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{5_1}(5_{1_1}(1_{4_1}(x))))))
3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x))))) → 3_{0_1}(0_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{2_1}(x))))))
3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x))))) → 3_{0_1}(0_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{1_1}(x))))))
3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x))))) → 3_{0_1}(0_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{0_1}(x))))))
3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x))))) → 3_{0_1}(0_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{3_1}(x))))))
3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x))))) → 3_{0_1}(0_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{5_1}(x))))))
3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x))))) → 3_{0_1}(0_{1_1}(1_{5_1}(5_{5_1}(5_{4_1}(4_{4_1}(x))))))
2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x))))) → 2_{3_1}(3_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(5_{2_1}(x))))))
2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x))))) → 2_{3_1}(3_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(5_{1_1}(x))))))
2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x))))) → 2_{3_1}(3_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(x))))))
2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x))))) → 2_{3_1}(3_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(5_{3_1}(x))))))
2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x))))) → 2_{3_1}(3_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(5_{5_1}(x))))))
2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x))))) → 2_{3_1}(3_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(5_{4_1}(x))))))
2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x))))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x))))))
2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x))))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x))))))
2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x))))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x))))))
2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x))))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x))))))
2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x))))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x))))))
2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x))))) → 2_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x))))))
3_{5_1}(5_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x))))) → 3_{0_1}(0_{5_1}(5_{3_1}(3_{4_1}(4_{5_1}(5_{2_1}(x))))))
3_{5_1}(5_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x))))) → 3_{0_1}(0_{5_1}(5_{3_1}(3_{4_1}(4_{5_1}(5_{1_1}(x))))))
3_{5_1}(5_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x))))) → 3_{0_1}(0_{5_1}(5_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(x))))))
3_{5_1}(5_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x))))) → 3_{0_1}(0_{5_1}(5_{3_1}(3_{4_1}(4_{5_1}(5_{3_1}(x))))))
3_{5_1}(5_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x))))) → 3_{0_1}(0_{5_1}(5_{3_1}(3_{4_1}(4_{5_1}(5_{5_1}(x))))))
3_{5_1}(5_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x))))) → 3_{0_1}(0_{5_1}(5_{3_1}(3_{4_1}(4_{5_1}(5_{4_1}(x))))))
2_{1_1}(1_{3_1}(3_{3_1}(3_{4_1}(4_{2_1}(x))))) → 2_{3_1}(3_{4_1}(4_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x))))))
2_{1_1}(1_{3_1}(3_{3_1}(3_{4_1}(4_{1_1}(x))))) → 2_{3_1}(3_{4_1}(4_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x))))))
2_{1_1}(1_{3_1}(3_{3_1}(3_{4_1}(4_{0_1}(x))))) → 2_{3_1}(3_{4_1}(4_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x))))))
2_{1_1}(1_{3_1}(3_{3_1}(3_{4_1}(4_{3_1}(x))))) → 2_{3_1}(3_{4_1}(4_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x))))))
2_{1_1}(1_{3_1}(3_{3_1}(3_{4_1}(4_{5_1}(x))))) → 2_{3_1}(3_{4_1}(4_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x))))))
2_{1_1}(1_{3_1}(3_{3_1}(3_{4_1}(4_{4_1}(x))))) → 2_{3_1}(3_{4_1}(4_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x))))))
2_{0_1}(0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{4_1}(4_{2_1}(x))))))
2_{0_1}(0_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{4_1}(4_{1_1}(x))))))
2_{0_1}(0_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{4_1}(4_{0_1}(x))))))
2_{0_1}(0_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{4_1}(4_{3_1}(x))))))
2_{0_1}(0_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{4_1}(4_{5_1}(x))))))
2_{0_1}(0_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{4_1}(4_{4_1}(x))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 1_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 1_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 1_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 1_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 1_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 1_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 0_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 0_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 0_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 0_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 0_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 0_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 5_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 5_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 5_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 5_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 5_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 5_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 4_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 4_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 4_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 4_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 4_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 4_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
2_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 2_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x))))))
2_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 2_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x))))))
2_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 2_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x))))))
2_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 2_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x))))))
2_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 2_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x))))))
2_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 2_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x))))))
1_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 1_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x))))))
1_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 1_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x))))))
1_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 1_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x))))))
1_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 1_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x))))))
1_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 1_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x))))))
1_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 1_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x))))))
0_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x))))))
0_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x))))))
0_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x))))))
0_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x))))))
0_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x))))))
0_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x))))))
3_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 3_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x))))))
3_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 3_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x))))))
3_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 3_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x))))))
3_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 3_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x))))))
3_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 3_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x))))))
3_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 3_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x))))))
5_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 5_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x))))))
5_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 5_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x))))))
5_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 5_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x))))))
5_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 5_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x))))))
5_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 5_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x))))))
5_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 5_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x))))))
4_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{2_1}(x))))) → 4_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{2_1}(x))))))
4_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{1_1}(x))))) → 4_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{1_1}(x))))))
4_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{0_1}(x))))) → 4_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{0_1}(x))))))
4_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{3_1}(x))))) → 4_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{3_1}(x))))))
4_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(x))))) → 4_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{5_1}(x))))))
4_{4_1}(4_{2_1}(2_{1_1}(1_{0_1}(0_{4_1}(x))))) → 4_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(5_{4_1}(4_{4_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{2_1}(x))))) → 2_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{2_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{1_1}(x))))) → 2_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{1_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{0_1}(x))))) → 2_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{3_1}(x))))) → 2_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{3_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{5_1}(x))))) → 2_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{5_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{4_1}(x))))) → 2_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{2_1}(x))))) → 1_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{2_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{1_1}(x))))) → 1_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{1_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{0_1}(x))))) → 1_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{3_1}(x))))) → 1_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{3_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{5_1}(x))))) → 1_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{5_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{4_1}(x))))) → 1_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{2_1}(x))))) → 0_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{2_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{1_1}(x))))) → 0_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{1_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{0_1}(x))))) → 0_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{3_1}(x))))) → 0_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{3_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{5_1}(x))))) → 0_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{5_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{4_1}(x))))) → 0_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{2_1}(x))))) → 3_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{2_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{1_1}(x))))) → 3_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{1_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{0_1}(x))))) → 3_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{3_1}(x))))) → 3_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{3_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{5_1}(x))))) → 3_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{5_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{4_1}(x))))) → 3_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{2_1}(x))))) → 5_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{1_1}(x))))) → 5_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{1_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{0_1}(x))))) → 5_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{3_1}(x))))) → 5_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{3_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{5_1}(x))))) → 5_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{5_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{4_1}(x))))) → 5_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{2_1}(x))))) → 4_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{2_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{1_1}(x))))) → 4_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{1_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{0_1}(x))))) → 4_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{3_1}(x))))) → 4_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{3_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{5_1}(x))))) → 4_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{5_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{4_1}(4_{4_1}(x))))) → 4_{1_1}(1_{1_1}(1_{4_1}(4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(x)))))))
2_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x)))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{2_1}(x)))))))
2_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x)))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(x)))))))
2_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x)))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{0_1}(x)))))))
2_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x)))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x)))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(x)))))))
2_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x)))))) → 2_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{4_1}(x)))))))
1_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x)))))) → 1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{2_1}(x)))))))
1_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x)))))) → 1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(x)))))))
1_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x)))))) → 1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{0_1}(x)))))))
1_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x)))))) → 1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{3_1}(x)))))))
1_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x)))))) → 1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(x)))))))
1_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x)))))) → 1_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{4_1}(x)))))))
0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x)))))) → 0_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{2_1}(x)))))))
0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x)))))) → 0_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(x)))))))
0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x)))))) → 0_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{0_1}(x)))))))
0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x)))))) → 0_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{3_1}(x)))))))
0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x)))))) → 0_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(x)))))))
0_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x)))))) → 0_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{4_1}(x)))))))
3_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x)))))) → 3_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{2_1}(x)))))))
3_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x)))))) → 3_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(x)))))))
3_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x)))))) → 3_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{0_1}(x)))))))
3_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x)))))) → 3_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x)))))) → 3_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(x)))))))
3_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x)))))) → 3_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{4_1}(x)))))))
5_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x)))))) → 5_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x)))))) → 5_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(x)))))))
5_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x)))))) → 5_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{0_1}(x)))))))
5_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x)))))) → 5_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{3_1}(x)))))))
5_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x)))))) → 5_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(x)))))))
5_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x)))))) → 5_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{4_1}(x)))))))
4_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{2_1}(x)))))) → 4_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{2_1}(x)))))))
4_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{1_1}(x)))))) → 4_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{1_1}(x)))))))
4_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{0_1}(x)))))) → 4_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{0_1}(x)))))))
4_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{3_1}(x)))))) → 4_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{3_1}(x)))))))
4_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{5_1}(x)))))) → 4_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{5_1}(x)))))))
4_{2_1}(2_{3_1}(3_{1_1}(1_{0_1}(0_{0_1}(0_{4_1}(x)))))) → 4_{3_1}(3_{0_1}(0_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(1_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
1_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
1_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
1_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
1_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))))
1_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))))
0_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
0_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
0_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
0_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
0_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))))
5_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
5_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
5_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
5_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
5_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))))
5_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))))
4_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
4_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
4_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
4_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
4_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{5_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{5_1}(x)))))))
4_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{4_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{4_1}(x)))))))
2_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
2_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{1_1}(x)))))))
2_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{0_1}(x)))))))
2_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
2_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{5_1}(x)))))))
2_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{4_1}(x)))))))
1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 1_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 1_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{1_1}(x)))))))
1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 1_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{0_1}(x)))))))
1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 1_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 1_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{5_1}(x)))))))
1_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 1_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{4_1}(x)))))))
0_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
0_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{1_1}(x)))))))
0_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{0_1}(x)))))))
0_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
0_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{5_1}(x)))))))
0_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 0_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{4_1}(x)))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{1_1}(x)))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{0_1}(x)))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{5_1}(x)))))))
3_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{4_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{1_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{0_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{5_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{4_1}(x)))))))
4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 4_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 4_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{1_1}(x)))))))
4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 4_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{0_1}(x)))))))
4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 4_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 4_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{5_1}(x)))))))
4_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 4_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{4_1}(x)))))))
2_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x)))))))
2_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x)))))))
2_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x)))))))
2_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x)))))))
2_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x)))))))
2_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x)))))))
1_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 1_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x)))))))
1_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 1_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x)))))))
1_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 1_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x)))))))
1_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 1_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x)))))))
1_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 1_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x)))))))
1_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 1_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x)))))))
0_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 0_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x)))))))
0_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 0_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x)))))))
0_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 0_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x)))))))
0_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 0_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x)))))))
0_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 0_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x)))))))
0_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 0_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x)))))))
3_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x)))))))
3_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x)))))))
3_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x)))))))
3_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x)))))))
3_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x)))))))
3_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x)))))))
5_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x)))))))
5_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 5_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x)))))))
5_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 5_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x)))))))
5_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x)))))))
5_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 5_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x)))))))
5_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 5_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x)))))))
4_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 4_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{2_1}(x)))))))
4_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 4_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{1_1}(x)))))))
4_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 4_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{0_1}(x)))))))
4_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 4_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{3_1}(x)))))))
4_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 4_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{5_1}(x)))))))
4_{3_1}(3_{4_1}(4_{1_1}(1_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 4_{5_1}(5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{4_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 1_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 1_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{1_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 1_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 1_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{3_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 1_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{5_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 1_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{4_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 0_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 0_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{1_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 0_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 0_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{3_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 0_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{5_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 0_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{4_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 5_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{1_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 5_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{3_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 5_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{5_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 5_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{4_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 4_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 4_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{1_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 4_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{0_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 4_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{3_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 4_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{5_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 4_{3_1}(3_{2_1}(2_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{4_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{2_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{0_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{5_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{4_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 1_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{2_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 1_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 1_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{0_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 1_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 1_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{5_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 1_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{4_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 0_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{2_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 0_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 0_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{0_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 0_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 0_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{5_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 0_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{4_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{2_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{0_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{5_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{4_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{2_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{0_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{5_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 5_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{4_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 4_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{2_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 4_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{1_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 4_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{0_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 4_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 4_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{5_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 4_{4_1}(4_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{3_1}(3_{4_1}(x)))))))
1_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
1_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
1_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
1_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
1_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
1_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
0_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
0_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
0_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
0_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
0_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
0_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
5_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
5_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
5_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
5_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
5_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
5_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
4_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
4_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
4_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
4_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
4_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
4_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
2_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{2_1}(x)))))) → 2_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{2_1}(x)))))))
2_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{1_1}(x)))))) → 2_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{1_1}(x)))))))
2_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{3_1}(x)))))) → 2_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{3_1}(x)))))))
2_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{5_1}(x)))))) → 2_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{5_1}(x)))))))
2_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{4_1}(x)))))) → 2_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{4_1}(x)))))))
1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{2_1}(x)))))) → 1_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{2_1}(x)))))))
1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{1_1}(x)))))) → 1_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{1_1}(x)))))))
1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{0_1}(x)))))) → 1_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{0_1}(x)))))))
1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{3_1}(x)))))) → 1_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{3_1}(x)))))))
1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{5_1}(x)))))) → 1_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{5_1}(x)))))))
1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{4_1}(x)))))) → 1_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{4_1}(x)))))))
0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{2_1}(x)))))) → 0_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{2_1}(x)))))))
0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{1_1}(x)))))) → 0_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{1_1}(x)))))))
0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{0_1}(x)))))) → 0_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{0_1}(x)))))))
0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{3_1}(x)))))) → 0_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{3_1}(x)))))))
0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{5_1}(x)))))) → 0_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{5_1}(x)))))))
0_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{4_1}(x)))))) → 0_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{4_1}(x)))))))
3_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{2_1}(x)))))) → 3_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{2_1}(x)))))))
3_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{1_1}(x)))))) → 3_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{1_1}(x)))))))
3_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{0_1}(x)))))) → 3_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{0_1}(x)))))))
3_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{3_1}(x)))))) → 3_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{3_1}(x)))))))
3_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{5_1}(x)))))) → 3_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{5_1}(x)))))))
3_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{4_1}(x)))))) → 3_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{4_1}(x)))))))
5_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{2_1}(x)))))) → 5_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{2_1}(x)))))))
5_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{1_1}(x)))))) → 5_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{1_1}(x)))))))
5_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{0_1}(x)))))) → 5_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{0_1}(x)))))))
5_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{3_1}(x)))))) → 5_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{3_1}(x)))))))
5_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{5_1}(x)))))) → 5_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{5_1}(x)))))))
5_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{4_1}(x)))))) → 5_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{4_1}(x)))))))
4_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{2_1}(x)))))) → 4_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{2_1}(x)))))))
4_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{1_1}(x)))))) → 4_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{1_1}(x)))))))
4_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{0_1}(x)))))) → 4_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{0_1}(x)))))))
4_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{3_1}(x)))))) → 4_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{3_1}(x)))))))
4_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{5_1}(x)))))) → 4_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{5_1}(x)))))))
4_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{4_1}(x)))))) → 4_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 1_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 0_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 5_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{2_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{1_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{0_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{3_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{5_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 4_{5_1}(5_{2_1}(2_{0_1}(0_{0_1}(0_{3_1}(3_{1_1}(1_{4_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x)))))))
2_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x)))))))
1_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x)))))))
0_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x)))))))
3_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x)))))))
5_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{2_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{1_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{0_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{3_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x)))))))
4_{2_1}(2_{4_1}(4_{3_1}(3_{3_1}(3_{1_1}(1_{4_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x)))))))
2_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{2_1}(x)))))))
2_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{1_1}(x)))))))
2_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{0_1}(x)))))))
2_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{3_1}(x)))))))
2_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(x)))))))
2_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{4_1}(x)))))))
1_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{2_1}(x)))))))
1_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{1_1}(x)))))))
1_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{0_1}(x)))))))
1_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{3_1}(x)))))))
1_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(x)))))))
1_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{4_1}(x)))))))
0_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{2_1}(x)))))))
0_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{1_1}(x)))))))
0_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{0_1}(x)))))))
0_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{3_1}(x)))))))
0_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(x)))))))
0_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{4_1}(x)))))))
3_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{2_1}(x)))))))
3_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{1_1}(x)))))))
3_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{0_1}(x)))))))
3_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{3_1}(x)))))))
3_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(x)))))))
3_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{4_1}(x)))))))
5_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{2_1}(x)))))))
5_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{1_1}(x)))))))
5_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{0_1}(x)))))))
5_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{3_1}(x)))))))
5_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(x)))))))
5_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{4_1}(x)))))))
4_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{2_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{2_1}(x)))))))
4_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{1_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{1_1}(x)))))))
4_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{0_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{0_1}(x)))))))
4_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{3_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{3_1}(x)))))))
4_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{5_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{5_1}(x)))))))
4_{3_1}(3_{2_1}(2_{0_1}(0_{3_1}(3_{4_1}(4_{4_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{3_1}(3_{3_1}(3_{3_1}(3_{0_1}(0_{4_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x)))))) → 2_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{2_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x)))))) → 2_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{1_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x)))))) → 2_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{0_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x)))))) → 2_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{3_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x)))))) → 2_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{5_1}(x)))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x)))))) → 2_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{4_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x)))))) → 1_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{2_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x)))))) → 1_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{1_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x)))))) → 1_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{0_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x)))))) → 1_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{3_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x)))))) → 1_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{5_1}(x)))))))
1_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x)))))) → 1_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{4_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x)))))) → 0_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{2_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x)))))) → 0_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{1_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x)))))) → 0_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{0_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x)))))) → 0_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{3_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x)))))) → 0_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x)))))) → 0_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{4_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x)))))) → 3_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{2_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x)))))) → 3_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{1_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x)))))) → 3_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{0_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x)))))) → 3_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{3_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x)))))) → 3_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{5_1}(x)))))))
3_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x)))))) → 3_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{4_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x)))))) → 5_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x)))))) → 5_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{1_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x)))))) → 5_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{0_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x)))))) → 5_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{3_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x)))))) → 5_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{5_1}(x)))))))
5_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x)))))) → 5_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{4_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(x)))))) → 4_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{2_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{1_1}(x)))))) → 4_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{1_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{0_1}(x)))))) → 4_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{0_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{3_1}(x)))))) → 4_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{3_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{5_1}(x)))))) → 4_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{5_1}(x)))))))
4_{2_1}(2_{1_1}(1_{3_1}(3_{2_1}(2_{5_1}(5_{4_1}(x)))))) → 4_{5_1}(5_{1_1}(1_{4_1}(4_{2_1}(2_{3_1}(3_{2_1}(2_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
1_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 1_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 0_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
5_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 5_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
4_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 4_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 2_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 2_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 2_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 2_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 2_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 2_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{2_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{1_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{0_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{3_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{4_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{2_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{1_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{0_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{3_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 3_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 3_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 3_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 3_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 3_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 3_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{4_1}(x)))))))
5_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 5_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{2_1}(x)))))))
5_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 5_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{1_1}(x)))))))
5_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 5_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{0_1}(x)))))))
5_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 5_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{3_1}(x)))))))
5_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 5_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{4_1}(x)))))))
4_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 4_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{2_1}(x)))))))
4_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 4_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{1_1}(x)))))))
4_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 4_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{0_1}(x)))))))
4_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 4_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{3_1}(x)))))))
4_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 4_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{4_1}(x)))))))


(8) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{2_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{1_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{0_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{3_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{5_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{4_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
2_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{0_1}(x)))))) → 2_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
5_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 5_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
4_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 4_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))

Q is empty.

(9) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0_{0_1}(x1)) = 1 + x1   
POL(0_{1_1}(x1)) = x1   
POL(0_{2_1}(x1)) = 1 + x1   
POL(0_{3_1}(x1)) = 2 + x1   
POL(0_{4_1}(x1)) = x1   
POL(0_{5_1}(x1)) = x1   
POL(1_{0_1}(x1)) = 1 + x1   
POL(1_{2_1}(x1)) = x1   
POL(1_{3_1}(x1)) = 1 + x1   
POL(1_{4_1}(x1)) = x1   
POL(1_{5_1}(x1)) = x1   
POL(2_{0_1}(x1)) = x1   
POL(2_{1_1}(x1)) = x1   
POL(2_{2_1}(x1)) = x1   
POL(2_{3_1}(x1)) = 1 + x1   
POL(2_{4_1}(x1)) = x1   
POL(2_{5_1}(x1)) = x1   
POL(3_{0_1}(x1)) = x1   
POL(3_{1_1}(x1)) = x1   
POL(3_{2_1}(x1)) = x1   
POL(3_{3_1}(x1)) = x1   
POL(3_{4_1}(x1)) = x1   
POL(3_{5_1}(x1)) = x1   
POL(4_{0_1}(x1)) = x1   
POL(4_{1_1}(x1)) = x1   
POL(4_{2_1}(x1)) = x1   
POL(4_{3_1}(x1)) = x1   
POL(4_{5_1}(x1)) = 1 + x1   
POL(5_{0_1}(x1)) = x1   
POL(5_{1_1}(x1)) = x1   
POL(5_{2_1}(x1)) = x1   
POL(5_{3_1}(x1)) = x1   
POL(5_{4_1}(x1)) = x1   
POL(5_{5_1}(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{3_1}(x)))))))
2_{3_1}(3_{2_1}(2_{5_1}(5_{2_1}(2_{1_1}(1_{0_1}(x)))))) → 2_{2_1}(2_{3_1}(3_{3_1}(3_{2_1}(2_{1_1}(1_{5_1}(5_{0_1}(x)))))))
5_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 5_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
4_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 4_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))


(10) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{2_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{1_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{0_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{3_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{5_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{4_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))

Q is empty.

(11) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0_{0_1}(x1)) = x1   
POL(0_{1_1}(x1)) = x1   
POL(0_{2_1}(x1)) = x1   
POL(0_{3_1}(x1)) = x1   
POL(0_{4_1}(x1)) = x1   
POL(0_{5_1}(x1)) = x1   
POL(1_{0_1}(x1)) = x1   
POL(1_{2_1}(x1)) = x1   
POL(1_{3_1}(x1)) = x1   
POL(1_{4_1}(x1)) = x1   
POL(1_{5_1}(x1)) = x1   
POL(2_{0_1}(x1)) = x1   
POL(2_{1_1}(x1)) = x1   
POL(2_{2_1}(x1)) = x1   
POL(2_{3_1}(x1)) = x1   
POL(2_{4_1}(x1)) = x1   
POL(2_{5_1}(x1)) = x1   
POL(3_{0_1}(x1)) = x1   
POL(3_{1_1}(x1)) = x1   
POL(3_{2_1}(x1)) = x1   
POL(3_{3_1}(x1)) = x1   
POL(3_{4_1}(x1)) = x1   
POL(3_{5_1}(x1)) = x1   
POL(4_{0_1}(x1)) = x1   
POL(4_{1_1}(x1)) = x1   
POL(4_{2_1}(x1)) = x1   
POL(4_{5_1}(x1)) = x1   
POL(5_{0_1}(x1)) = x1   
POL(5_{1_1}(x1)) = x1   
POL(5_{2_1}(x1)) = x1   
POL(5_{3_1}(x1)) = x1   
POL(5_{4_1}(x1)) = 1 + x1   
POL(5_{5_1}(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

2_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{4_1}(4_{1_1}(1_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{0_1}(0_{1_1}(1_{4_1}(4_{1_1}(x)))))))


(12) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{2_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{1_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{0_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{3_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{5_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{4_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))

Q is empty.

(13) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0_{0_1}(x1)) = x1   
POL(0_{1_1}(x1)) = x1   
POL(0_{2_1}(x1)) = x1   
POL(0_{3_1}(x1)) = x1   
POL(0_{4_1}(x1)) = x1   
POL(0_{5_1}(x1)) = x1   
POL(1_{0_1}(x1)) = x1   
POL(1_{2_1}(x1)) = x1   
POL(1_{3_1}(x1)) = x1   
POL(1_{5_1}(x1)) = x1   
POL(2_{0_1}(x1)) = x1   
POL(2_{1_1}(x1)) = 1 + x1   
POL(2_{2_1}(x1)) = x1   
POL(2_{3_1}(x1)) = x1   
POL(2_{4_1}(x1)) = x1   
POL(2_{5_1}(x1)) = x1   
POL(3_{0_1}(x1)) = x1   
POL(3_{1_1}(x1)) = x1   
POL(3_{2_1}(x1)) = x1   
POL(3_{3_1}(x1)) = x1   
POL(3_{4_1}(x1)) = x1   
POL(3_{5_1}(x1)) = x1   
POL(4_{0_1}(x1)) = x1   
POL(4_{2_1}(x1)) = x1   
POL(4_{5_1}(x1)) = x1   
POL(5_{0_1}(x1)) = x1   
POL(5_{1_1}(x1)) = x1   
POL(5_{2_1}(x1)) = x1   
POL(5_{3_1}(x1)) = x1   
POL(5_{4_1}(x1)) = x1   
POL(5_{5_1}(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{2_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{2_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{1_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{1_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{0_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{0_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{3_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{3_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{5_1}(x))))))
2_{2_1}(2_{1_1}(1_{3_1}(3_{5_1}(5_{4_1}(x))))) → 2_{2_1}(2_{2_1}(2_{3_1}(3_{1_1}(1_{5_1}(5_{4_1}(x))))))


(14) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{2_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{1_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{0_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{3_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{5_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{4_1}(x))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))

Q is empty.

(15) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0_{0_1}(x1)) = x1   
POL(0_{1_1}(x1)) = x1   
POL(0_{2_1}(x1)) = x1   
POL(0_{3_1}(x1)) = 1 + x1   
POL(0_{4_1}(x1)) = x1   
POL(0_{5_1}(x1)) = x1   
POL(1_{0_1}(x1)) = x1   
POL(1_{2_1}(x1)) = x1   
POL(1_{3_1}(x1)) = 1 + x1   
POL(1_{5_1}(x1)) = x1   
POL(2_{0_1}(x1)) = x1   
POL(2_{1_1}(x1)) = x1   
POL(2_{2_1}(x1)) = x1   
POL(2_{3_1}(x1)) = x1   
POL(2_{4_1}(x1)) = x1   
POL(2_{5_1}(x1)) = x1   
POL(3_{0_1}(x1)) = x1   
POL(3_{2_1}(x1)) = x1   
POL(3_{3_1}(x1)) = x1   
POL(3_{4_1}(x1)) = x1   
POL(3_{5_1}(x1)) = x1   
POL(4_{0_1}(x1)) = x1   
POL(4_{2_1}(x1)) = x1   
POL(4_{5_1}(x1)) = x1   
POL(5_{0_1}(x1)) = x1   
POL(5_{1_1}(x1)) = x1   
POL(5_{2_1}(x1)) = x1   
POL(5_{3_1}(x1)) = x1   
POL(5_{4_1}(x1)) = x1   
POL(5_{5_1}(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{2_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{1_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{0_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{3_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{5_1}(x))))))
2_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x))))) → 2_{0_1}(0_{2_1}(2_{3_1}(3_{3_1}(3_{5_1}(5_{4_1}(x))))))


(16) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))

Q is empty.

(17) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0_{0_1}(x1)) = x1   
POL(0_{1_1}(x1)) = x1   
POL(0_{2_1}(x1)) = x1   
POL(0_{3_1}(x1)) = x1   
POL(0_{4_1}(x1)) = x1   
POL(0_{5_1}(x1)) = x1   
POL(1_{0_1}(x1)) = x1   
POL(1_{2_1}(x1)) = x1   
POL(1_{3_1}(x1)) = x1   
POL(1_{5_1}(x1)) = x1   
POL(2_{0_1}(x1)) = x1   
POL(2_{1_1}(x1)) = x1   
POL(2_{2_1}(x1)) = 1 + x1   
POL(2_{3_1}(x1)) = x1   
POL(2_{4_1}(x1)) = 1 + x1   
POL(2_{5_1}(x1)) = x1   
POL(3_{0_1}(x1)) = x1   
POL(3_{2_1}(x1)) = 1 + x1   
POL(3_{4_1}(x1)) = 1 + x1   
POL(3_{5_1}(x1)) = x1   
POL(4_{0_1}(x1)) = 1 + x1   
POL(4_{2_1}(x1)) = x1   
POL(4_{5_1}(x1)) = x1   
POL(5_{0_1}(x1)) = x1   
POL(5_{1_1}(x1)) = x1   
POL(5_{2_1}(x1)) = x1   
POL(5_{3_1}(x1)) = x1   
POL(5_{4_1}(x1)) = x1   
POL(5_{5_1}(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 2_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{2_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{1_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{0_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{3_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{5_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{0_1}(0_{4_1}(x))))) → 3_{5_1}(5_{5_1}(5_{3_1}(3_{0_1}(0_{2_1}(2_{0_1}(0_{4_1}(x)))))))


(18) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))

Q is empty.

(19) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0_{0_1}(x1)) = x1   
POL(0_{1_1}(x1)) = x1   
POL(0_{2_1}(x1)) = x1   
POL(0_{3_1}(x1)) = x1   
POL(0_{4_1}(x1)) = x1   
POL(0_{5_1}(x1)) = x1   
POL(1_{0_1}(x1)) = x1   
POL(1_{2_1}(x1)) = x1   
POL(1_{3_1}(x1)) = x1   
POL(1_{5_1}(x1)) = x1   
POL(2_{0_1}(x1)) = x1   
POL(2_{1_1}(x1)) = x1   
POL(2_{2_1}(x1)) = x1   
POL(2_{3_1}(x1)) = x1   
POL(2_{4_1}(x1)) = x1   
POL(2_{5_1}(x1)) = x1   
POL(3_{2_1}(x1)) = x1   
POL(3_{4_1}(x1)) = x1   
POL(3_{5_1}(x1)) = 1 + x1   
POL(4_{0_1}(x1)) = x1   
POL(4_{2_1}(x1)) = x1   
POL(4_{5_1}(x1)) = 1 + x1   
POL(5_{0_1}(x1)) = x1   
POL(5_{1_1}(x1)) = x1   
POL(5_{2_1}(x1)) = x1   
POL(5_{3_1}(x1)) = x1   
POL(5_{4_1}(x1)) = x1   
POL(5_{5_1}(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
2_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 2_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))


(20) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))

Q is empty.

(21) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0_{0_1}(x1)) = x1   
POL(0_{1_1}(x1)) = x1   
POL(0_{2_1}(x1)) = x1   
POL(0_{3_1}(x1)) = x1   
POL(0_{4_1}(x1)) = x1   
POL(0_{5_1}(x1)) = x1   
POL(1_{0_1}(x1)) = x1   
POL(1_{2_1}(x1)) = x1   
POL(1_{3_1}(x1)) = x1   
POL(1_{5_1}(x1)) = x1   
POL(2_{0_1}(x1)) = x1   
POL(2_{1_1}(x1)) = x1   
POL(2_{2_1}(x1)) = 1 + x1   
POL(2_{3_1}(x1)) = x1   
POL(2_{4_1}(x1)) = x1   
POL(2_{5_1}(x1)) = x1   
POL(3_{2_1}(x1)) = x1   
POL(3_{4_1}(x1)) = x1   
POL(3_{5_1}(x1)) = x1   
POL(4_{0_1}(x1)) = x1   
POL(4_{2_1}(x1)) = x1   
POL(4_{5_1}(x1)) = x1   
POL(5_{0_1}(x1)) = x1   
POL(5_{1_1}(x1)) = x1   
POL(5_{2_1}(x1)) = x1   
POL(5_{3_1}(x1)) = x1   
POL(5_{4_1}(x1)) = x1   
POL(5_{5_1}(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
2_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 2_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))


(22) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))

Q is empty.

(23) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0_{0_1}(x1)) = x1   
POL(0_{1_1}(x1)) = x1   
POL(0_{2_1}(x1)) = x1   
POL(0_{3_1}(x1)) = x1   
POL(0_{4_1}(x1)) = x1   
POL(0_{5_1}(x1)) = x1   
POL(1_{0_1}(x1)) = x1   
POL(1_{2_1}(x1)) = x1   
POL(1_{3_1}(x1)) = x1   
POL(1_{5_1}(x1)) = x1   
POL(2_{0_1}(x1)) = x1   
POL(2_{1_1}(x1)) = x1   
POL(2_{3_1}(x1)) = x1   
POL(2_{5_1}(x1)) = x1   
POL(3_{2_1}(x1)) = x1   
POL(3_{4_1}(x1)) = x1   
POL(3_{5_1}(x1)) = x1   
POL(4_{0_1}(x1)) = x1   
POL(4_{2_1}(x1)) = x1   
POL(4_{5_1}(x1)) = 1 + x1   
POL(5_{0_1}(x1)) = x1   
POL(5_{1_1}(x1)) = x1   
POL(5_{2_1}(x1)) = x1   
POL(5_{3_1}(x1)) = x1   
POL(5_{4_1}(x1)) = x1   
POL(5_{5_1}(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{2_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{1_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{1_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{0_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{0_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{3_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{5_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{5_1}(x)))))))
3_{2_1}(2_{3_1}(3_{4_1}(4_{5_1}(5_{0_1}(0_{4_1}(x)))))) → 3_{5_1}(5_{2_1}(2_{3_1}(3_{4_1}(4_{0_1}(0_{0_1}(0_{4_1}(x)))))))


(24) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))

Q is empty.

(25) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0_{2_1}(x1)) = x1   
POL(0_{3_1}(x1)) = x1   
POL(0_{5_1}(x1)) = x1   
POL(1_{0_1}(x1)) = x1   
POL(1_{2_1}(x1)) = x1   
POL(1_{3_1}(x1)) = x1   
POL(1_{5_1}(x1)) = x1   
POL(2_{0_1}(x1)) = x1   
POL(2_{1_1}(x1)) = x1   
POL(2_{5_1}(x1)) = 1 + x1   
POL(3_{2_1}(x1)) = x1   
POL(3_{4_1}(x1)) = x1   
POL(3_{5_1}(x1)) = x1   
POL(4_{2_1}(x1)) = x1   
POL(5_{0_1}(x1)) = x1   
POL(5_{1_1}(x1)) = x1   
POL(5_{2_1}(x1)) = x1   
POL(5_{3_1}(x1)) = x1   
POL(5_{4_1}(x1)) = x1   
POL(5_{5_1}(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{2_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{2_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{1_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{1_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{0_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{0_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{3_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{3_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{5_1}(x)))))))
3_{2_1}(2_{5_1}(5_{0_1}(0_{3_1}(3_{5_1}(5_{4_1}(x)))))) → 3_{4_1}(4_{2_1}(2_{0_1}(0_{3_1}(3_{5_1}(5_{5_1}(5_{4_1}(x)))))))


(26) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))

Q is empty.

(27) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

5_{2_1}1(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 0_{2_1}1(2_{1_1}(1_{2_1}(x)))
5_{2_1}1(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 1_{2_1}1(x)
5_{2_1}1(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 0_{2_1}1(2_{1_1}(1_{3_1}(x)))
1_{2_1}1(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 5_{2_1}1(2_{5_1}(x))
0_{2_1}1(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 5_{2_1}1(2_{5_1}(x))

The TRS R consists of the following rules:

5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{2_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{2_1}(x)))))))
5_{2_1}(2_{1_1}(1_{0_1}(0_{5_1}(5_{0_1}(0_{3_1}(x)))))) → 5_{0_1}(0_{5_1}(5_{1_1}(1_{0_1}(0_{2_1}(2_{1_1}(1_{3_1}(x)))))))
1_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 1_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))
0_{2_1}(2_{5_1}(5_{1_1}(1_{3_1}(3_{5_1}(5_{5_1}(x)))))) → 0_{3_1}(3_{5_1}(5_{1_1}(1_{5_1}(5_{5_1}(5_{2_1}(2_{5_1}(x)))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 5 less nodes.

(30) TRUE