YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
0(1(2(x0))) | → | 0(0(2(1(x0)))) |
0(1(2(x0))) | → | 0(2(1(3(x0)))) |
0(1(2(x0))) | → | 0(2(3(1(x0)))) |
0(1(4(x0))) | → | 0(4(1(1(0(0(x0)))))) |
0(3(2(x0))) | → | 0(0(2(3(x0)))) |
0(3(2(x0))) | → | 0(2(3(1(x0)))) |
0(3(4(x0))) | → | 0(0(4(3(x0)))) |
0(4(5(x0))) | → | 0(0(4(1(5(x0))))) |
2(0(1(x0))) | → | 0(2(1(1(x0)))) |
2(4(1(x0))) | → | 0(4(2(3(1(x0))))) |
4(3(2(x0))) | → | 4(2(3(1(x0)))) |
0(1(0(1(x0)))) | → | 0(0(3(1(1(x0))))) |
0(1(0(2(x0)))) | → | 0(0(2(1(1(1(x0)))))) |
0(1(4(2(x0)))) | → | 0(4(2(1(1(x0))))) |
0(3(2(4(x0)))) | → | 0(4(2(3(0(x0))))) |
0(3(4(2(x0)))) | → | 0(4(2(3(1(x0))))) |
0(3(5(2(x0)))) | → | 0(2(1(3(5(x0))))) |
0(4(5(3(x0)))) | → | 0(0(4(3(5(x0))))) |
0(5(3(4(x0)))) | → | 0(4(3(3(5(x0))))) |
0(5(4(2(x0)))) | → | 0(4(2(1(5(x0))))) |
2(0(3(1(x0)))) | → | 0(3(2(1(1(x0))))) |
2(2(4(1(x0)))) | → | 4(2(2(3(1(x0))))) |
2(3(4(3(x0)))) | → | 2(3(0(4(3(3(x0)))))) |
2(4(1(1(x0)))) | → | 2(0(4(1(1(x0))))) |
2(4(1(3(x0)))) | → | 0(4(3(2(1(x0))))) |
2(4(3(2(x0)))) | → | 2(0(4(2(3(x0))))) |
2(5(4(3(x0)))) | → | 0(4(2(3(5(x0))))) |
4(2(0(3(x0)))) | → | 2(3(0(4(3(x0))))) |
4(3(4(3(x0)))) | → | 4(3(0(4(3(x0))))) |
0(1(5(3(2(x0))))) | → | 0(5(0(3(2(1(x0)))))) |
0(1(5(4(2(x0))))) | → | 5(2(1(0(4(3(x0)))))) |
0(1(5(4(5(x0))))) | → | 0(4(1(2(5(5(x0)))))) |
0(2(2(4(3(x0))))) | → | 2(0(4(3(0(2(x0)))))) |
0(3(0(4(5(x0))))) | → | 5(0(0(4(3(2(x0)))))) |
0(3(2(4(3(x0))))) | → | 0(4(3(3(4(2(x0)))))) |
0(4(2(5(4(x0))))) | → | 0(4(2(1(5(4(x0)))))) |
0(5(3(2(1(x0))))) | → | 0(2(3(1(3(5(x0)))))) |
0(5(4(1(4(x0))))) | → | 4(0(4(1(5(0(x0)))))) |
2(4(1(5(3(x0))))) | → | 0(4(1(3(5(2(x0)))))) |
2(4(2(0(1(x0))))) | → | 2(1(1(2(0(4(x0)))))) |
2(5(3(4(1(x0))))) | → | 5(1(0(4(3(2(x0)))))) |
4(0(1(5(4(x0))))) | → | 4(0(0(4(1(5(x0)))))) |
4(3(0(2(3(x0))))) | → | 0(4(2(3(1(3(x0)))))) |
4(4(1(2(3(x0))))) | → | 0(4(4(2(3(1(x0)))))) |
4(5(1(0(2(x0))))) | → | 1(0(4(2(1(5(x0)))))) |
2(1(0(x0))) | → | 1(2(0(0(x0)))) |
2(1(0(x0))) | → | 3(1(2(0(x0)))) |
2(1(0(x0))) | → | 1(3(2(0(x0)))) |
4(1(0(x0))) | → | 0(0(1(1(4(0(x0)))))) |
2(3(0(x0))) | → | 3(2(0(0(x0)))) |
2(3(0(x0))) | → | 1(3(2(0(x0)))) |
4(3(0(x0))) | → | 3(4(0(0(x0)))) |
5(4(0(x0))) | → | 5(1(4(0(0(x0))))) |
1(0(2(x0))) | → | 1(1(2(0(x0)))) |
1(4(2(x0))) | → | 1(3(2(4(0(x0))))) |
2(3(4(x0))) | → | 1(3(2(4(x0)))) |
1(0(1(0(x0)))) | → | 1(1(3(0(0(x0))))) |
2(0(1(0(x0)))) | → | 1(1(1(2(0(0(x0)))))) |
2(4(1(0(x0)))) | → | 1(1(2(4(0(x0))))) |
4(2(3(0(x0)))) | → | 0(3(2(4(0(x0))))) |
2(4(3(0(x0)))) | → | 1(3(2(4(0(x0))))) |
2(5(3(0(x0)))) | → | 5(3(1(2(0(x0))))) |
3(5(4(0(x0)))) | → | 5(3(4(0(0(x0))))) |
4(3(5(0(x0)))) | → | 5(3(3(4(0(x0))))) |
2(4(5(0(x0)))) | → | 5(1(2(4(0(x0))))) |
1(3(0(2(x0)))) | → | 1(1(2(3(0(x0))))) |
1(4(2(2(x0)))) | → | 1(3(2(2(4(x0))))) |
3(4(3(2(x0)))) | → | 3(3(4(0(3(2(x0)))))) |
1(1(4(2(x0)))) | → | 1(1(4(0(2(x0))))) |
3(1(4(2(x0)))) | → | 1(2(3(4(0(x0))))) |
2(3(4(2(x0)))) | → | 3(2(4(0(2(x0))))) |
3(4(5(2(x0)))) | → | 5(3(2(4(0(x0))))) |
3(0(2(4(x0)))) | → | 3(4(0(3(2(x0))))) |
3(4(3(4(x0)))) | → | 3(4(0(3(4(x0))))) |
2(3(5(1(0(x0))))) | → | 1(2(3(0(5(0(x0)))))) |
2(4(5(1(0(x0))))) | → | 3(4(0(1(2(5(x0)))))) |
5(4(5(1(0(x0))))) | → | 5(5(2(1(4(0(x0)))))) |
3(4(2(2(0(x0))))) | → | 2(0(3(4(0(2(x0)))))) |
5(4(0(3(0(x0))))) | → | 2(3(4(0(0(5(x0)))))) |
3(4(2(3(0(x0))))) | → | 2(4(3(3(4(0(x0)))))) |
4(5(2(4(0(x0))))) | → | 4(5(1(2(4(0(x0)))))) |
1(2(3(5(0(x0))))) | → | 5(3(1(3(2(0(x0)))))) |
4(1(4(5(0(x0))))) | → | 0(5(1(4(0(4(x0)))))) |
3(5(1(4(2(x0))))) | → | 2(5(3(1(4(0(x0)))))) |
1(0(2(4(2(x0))))) | → | 4(0(2(1(1(2(x0)))))) |
1(4(3(5(2(x0))))) | → | 2(3(4(0(1(5(x0)))))) |
4(5(1(0(4(x0))))) | → | 5(1(4(0(0(4(x0)))))) |
3(2(0(3(4(x0))))) | → | 3(1(3(2(4(0(x0)))))) |
3(2(1(4(4(x0))))) | → | 1(3(2(4(4(0(x0)))))) |
2(0(1(5(4(x0))))) | → | 5(1(2(4(0(1(x0)))))) |
final states:
{123, 119, 118, 114, 109, 104, 101, 96, 94, 93, 91, 86, 83, 80, 74, 69, 65, 55, 64, 62, 60, 56, 50, 47, 43, 42, 39, 38, 37, 36, 34, 32, 29, 25, 22, 21, 19, 17, 16, 11, 9, 6, 1}
transitions:
78 | → | 209 |
111 | → | 190 |
25 | → | 51 |
32 | → | 7 |
32 | → | 158 |
32 | → | 51 |
29 | → | 124 |
80 | → | 75 |
96 | → | 26 |
119 | → | 52 |
39 | → | 26 |
3 | → | 170 |
50 | → | 66 |
213 | → | 48 |
9 | → | 51 |
37 | → | 76 |
37 | → | 51 |
34 | → | 27 |
34 | → | 51 |
65 | → | 66 |
199 | → | 27 |
55 | → | 44 |
62 | → | 51 |
1 | → | 51 |
123 | → | 7 |
123 | → | 158 |
123 | → | 51 |
135 | → | 153 |
179 | → | 86 |
86 | → | 75 |
91 | → | 66 |
36 | → | 26 |
21 | → | 124 |
138 | → | 73 |
6 | → | 51 |
109 | → | 124 |
88 | → | 175 |
22 | → | 124 |
22 | → | 27 |
22 | → | 51 |
174 | → | 61 |
143 | → | 45 |
53 | → | 205 |
2 | → | 139 |
11 | → | 26 |
4 | → | 195 |
28 | → | 10 |
28 | → | 159 |
16 | → | 51 |
114 | → | 26 |
93 | → | 26 |
140 | → | 157 |
104 | → | 124 |
69 | → | 51 |
42 | → | 27 |
42 | → | 51 |
64 | → | 66 |
83 | → | 66 |
17 | → | 26 |
47 | → | 124 |
160 | → | 45 |
206 | → | 157 |
74 | → | 27 |
74 | → | 51 |
19 | → | 75 |
43 | → | 124 |
194 | → | 109 |
70 | → | 134 |
56 | → | 124 |
94 | → | 105 |
94 | → | 124 |
156 | → | 73 |
f60 | → | 2 |
50(99) | → | 100 |
50(20) | → | 19 |
50(128) | → | 123 |
50(24) | → | 64 |
50(95) | → | 94 |
50(6) | → | 37 |
50(117) | → | 114 |
50(82) | → | 80 |
50(2) | → | 75 |
50(3) | → | 70 |
50(41) | → | 39 |
50(35) | → | 42 |
50(102) | → | 103 |
50(17) | → | 38 |
50(81) | → | 82 |
41(195) | → | 196 |
41(175) | → | 176 |
41(170) | → | 171 |
41(209) | → | 210 |
41(190) | → | 191 |
41(205) | → | 206 |
20(106) | → | 107 |
20(126) | → | 127 |
20(26) | → | 27 |
20(85) | → | 83 |
20(58) | → | 63 |
20(120) | → | 121 |
20(92) | → | 91 |
20(90) | → | 86 |
20(75) | → | 76 |
20(3) | → | 7 |
20(40) | → | 61 |
20(113) | → | 109 |
20(12) | → | 23 |
20(72) | → | 73 |
20(27) | → | 48 |
20(13) | → | 81 |
20(103) | → | 101 |
20(2) | → | 51 |
20(4) | → | 5 |
20(44) | → | 45 |
01(134) | → | 135 |
01(140) | → | 141 |
01(139) | → | 140 |
01(135) | → | 136 |
00(51) | → | 57 |
00(3) | → | 4 |
00(66) | → | 67 |
00(77) | → | 78 |
00(24) | → | 36 |
00(26) | → | 97 |
00(87) | → | 88 |
00(52) | → | 53 |
00(70) | → | 71 |
00(84) | → | 85 |
00(110) | → | 111 |
00(75) | → | 87 |
00(15) | → | 11 |
00(97) | → | 115 |
00(107) | → | 108 |
00(124) | → | 125 |
00(14) | → | 15 |
00(2) | → | 3 |
00(100) | → | 96 |
11(212) | → | 213 |
11(198) | → | 199 |
11(159) | → | 160 |
11(178) | → | 179 |
11(193) | → | 194 |
11(173) | → | 174 |
11(155) | → | 156 |
30(26) | → | 66 |
30(71) | → | 72 |
30(58) | → | 84 |
30(51) | → | 52 |
30(48) | → | 49 |
30(4) | → | 30 |
30(112) | → | 113 |
30(12) | → | 40 |
30(8) | → | 6 |
30(89) | → | 90 |
30(55) | → | 50 |
30(9) | → | 95 |
30(68) | → | 65 |
30(18) | → | 17 |
30(27) | → | 28 |
30(23) | → | 24 |
30(54) | → | 55 |
30(13) | → | 102 |
30(63) | → | 62 |
30(79) | → | 74 |
30(121) | → | 122 |
30(3) | → | 44 |
30(40) | → | 41 |
30(5) | → | 16 |
30(22) | → | 118 |
30(7) | → | 10 |
10(2) | → | 124 |
10(51) | → | 105 |
10(18) | → | 20 |
10(46) | → | 43 |
10(28) | → | 25 |
10(10) | → | 9 |
10(49) | → | 47 |
10(105) | → | 106 |
10(98) | → | 99 |
10(30) | → | 31 |
10(24) | → | 22 |
10(8) | → | 21 |
10(61) | → | 60 |
10(76) | → | 77 |
10(23) | → | 35 |
10(1) | → | 33 |
10(7) | → | 8 |
10(33) | → | 32 |
10(35) | → | 34 |
10(45) | → | 46 |
10(127) | → | 128 |
10(75) | → | 110 |
10(12) | → | 13 |
10(73) | → | 69 |
10(59) | → | 56 |
10(31) | → | 29 |
10(58) | → | 59 |
10(5) | → | 1 |
10(13) | → | 14 |
10(116) | → | 117 |
10(122) | → | 119 |
31(137) | → | 138 |
31(192) | → | 193 |
31(158) | → | 159 |
31(154) | → | 155 |
31(172) | → | 173 |
31(177) | → | 178 |
31(142) | → | 143 |
31(197) | → | 198 |
31(211) | → | 212 |
21(136) | → | 137 |
21(153) | → | 154 |
21(196) | → | 197 |
21(191) | → | 192 |
21(176) | → | 177 |
21(157) | → | 158 |
21(171) | → | 172 |
21(141) | → | 142 |
21(210) | → | 211 |
40(125) | → | 126 |
40(108) | → | 104 |
40(42) | → | 93 |
40(97) | → | 98 |
40(78) | → | 79 |
40(88) | → | 89 |
40(53) | → | 54 |
40(4) | → | 18 |
40(41) | → | 92 |
40(67) | → | 68 |
40(3) | → | 12 |
40(57) | → | 58 |
40(115) | → | 116 |
40(12) | → | 120 |
40(111) | → | 112 |
40(2) | → | 26 |