YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
0(0(1(0(x0)))) | → | 0(2(0(0(3(1(x0)))))) |
0(0(1(0(x0)))) | → | 0(2(0(4(1(0(x0)))))) |
0(0(1(0(x0)))) | → | 2(0(0(0(2(1(x0)))))) |
3(0(1(0(x0)))) | → | 0(2(3(1(0(x0))))) |
3(0(1(0(x0)))) | → | 3(1(0(0(2(x0))))) |
3(0(1(0(x0)))) | → | 3(1(1(0(0(x0))))) |
3(0(1(0(x0)))) | → | 3(1(2(0(0(x0))))) |
3(0(1(0(x0)))) | → | 3(1(5(0(0(x0))))) |
3(0(1(0(x0)))) | → | 3(5(1(0(0(x0))))) |
3(0(1(0(x0)))) | → | 5(0(3(1(0(x0))))) |
3(0(1(0(x0)))) | → | 2(0(2(3(1(0(x0)))))) |
3(0(1(0(x0)))) | → | 2(2(0(3(1(0(x0)))))) |
3(0(1(0(x0)))) | → | 3(1(5(0(0(0(x0)))))) |
3(0(1(0(x0)))) | → | 3(1(5(0(2(0(x0)))))) |
3(0(1(0(x0)))) | → | 3(1(5(1(0(0(x0)))))) |
3(0(1(0(x0)))) | → | 3(1(5(2(0(0(x0)))))) |
3(0(1(0(x0)))) | → | 3(1(5(5(0(0(x0)))))) |
3(0(1(0(x0)))) | → | 3(2(2(1(0(0(x0)))))) |
3(0(1(0(x0)))) | → | 3(5(1(0(0(2(x0)))))) |
3(0(1(0(x0)))) | → | 3(5(1(5(0(0(x0)))))) |
3(0(1(0(x0)))) | → | 5(1(1(3(0(0(x0)))))) |
3(4(1(0(x0)))) | → | 3(1(2(4(0(x0))))) |
3(4(1(0(x0)))) | → | 3(1(4(0(2(x0))))) |
3(4(1(0(x0)))) | → | 3(1(5(4(0(x0))))) |
3(4(1(0(x0)))) | → | 3(4(2(1(0(x0))))) |
3(4(1(0(x0)))) | → | 3(1(1(5(4(0(x0)))))) |
3(4(1(0(x0)))) | → | 3(1(2(1(4(0(x0)))))) |
3(4(1(0(x0)))) | → | 3(1(2(5(4(0(x0)))))) |
3(4(1(0(x0)))) | → | 3(1(4(2(0(2(x0)))))) |
3(4(1(0(x0)))) | → | 3(1(5(4(0(2(x0)))))) |
3(4(1(0(x0)))) | → | 3(1(5(5(4(0(x0)))))) |
3(4(1(0(x0)))) | → | 3(4(2(1(1(0(x0)))))) |
3(4(1(0(x0)))) | → | 3(4(5(1(2(0(x0)))))) |
0(1(4(1(0(x0))))) | → | 0(1(1(4(0(2(x0)))))) |
0(2(0(1(0(x0))))) | → | 0(2(0(0(3(1(x0)))))) |
0(2(0(1(0(x0))))) | → | 2(0(0(0(3(1(x0)))))) |
0(3(0(1(0(x0))))) | → | 0(0(3(1(3(0(x0)))))) |
0(3(0(1(0(x0))))) | → | 0(0(3(3(1(0(x0)))))) |
0(3(0(1(0(x0))))) | → | 0(0(3(5(1(0(x0)))))) |
0(3(0(1(0(x0))))) | → | 2(0(0(3(1(0(x0)))))) |
0(3(4(1(0(x0))))) | → | 0(2(0(4(3(1(x0)))))) |
0(5(0(1(0(x0))))) | → | 0(0(0(1(5(2(x0)))))) |
0(5(0(1(0(x0))))) | → | 0(0(1(5(1(0(x0)))))) |
0(5(0(1(0(x0))))) | → | 0(2(0(0(1(5(x0)))))) |
3(0(1(0(0(x0))))) | → | 3(1(3(0(0(0(x0)))))) |
3(0(1(1(0(x0))))) | → | 3(1(0(1(2(0(x0)))))) |
3(0(2(1(0(x0))))) | → | 2(0(3(1(1(0(x0)))))) |
3(0(2(1(0(x0))))) | → | 2(3(1(5(0(0(x0)))))) |
3(0(2(1(0(x0))))) | → | 3(1(2(0(1(0(x0)))))) |
3(0(2(1(0(x0))))) | → | 3(1(2(0(5(0(x0)))))) |
3(0(5(1(0(x0))))) | → | 3(1(5(2(0(0(x0)))))) |
3(1(0(1(0(x0))))) | → | 2(0(3(1(1(0(x0)))))) |
3(1(0(1(0(x0))))) | → | 3(1(1(1(0(0(x0)))))) |
3(1(0(1(0(x0))))) | → | 3(1(2(1(0(0(x0)))))) |
3(1(4(1(0(x0))))) | → | 3(1(2(1(4(0(x0)))))) |
3(1(4(1(0(x0))))) | → | 3(1(5(1(4(0(x0)))))) |
3(2(0(1(0(x0))))) | → | 0(2(3(1(5(0(x0)))))) |
3(2(0(1(0(x0))))) | → | 2(0(3(1(1(0(x0)))))) |
3(3(0(1(0(x0))))) | → | 3(1(2(0(3(0(x0)))))) |
3(3(0(1(0(x0))))) | → | 3(1(2(3(0(0(x0)))))) |
3(3(4(1(0(x0))))) | → | 3(1(2(4(3(0(x0)))))) |
3(3(4(1(0(x0))))) | → | 3(1(3(4(0(2(x0)))))) |
3(3(4(1(0(x0))))) | → | 3(1(4(3(1(0(x0)))))) |
3(4(0(1(0(x0))))) | → | 0(2(4(1(3(0(x0)))))) |
3(4(0(1(0(x0))))) | → | 3(1(4(0(0(2(x0)))))) |
3(4(0(1(0(x0))))) | → | 3(2(0(4(1(0(x0)))))) |
3(4(4(1(0(x0))))) | → | 3(1(1(4(4(0(x0)))))) |
final states:
{202, 201, 198, 195, 192, 189, 185, 182, 178, 174, 171, 169, 167, 162, 158, 157, 154, 151, 148, 142, 139, 134, 130, 128, 124, 121, 116, 114, 112, 108, 104, 101, 98, 94, 91, 87, 85, 82, 79, 76, 72, 68, 66, 64, 61, 58, 55, 53, 48, 44, 42, 41, 39, 37, 34, 31, 27, 22, 19, 14, 8, 1}
transitions:
157 | → | 117 |
61 | → | 117 |
128 | → | 179 |
128 | → | 9 |
87 | → | 4 |
167 | → | 20 |
167 | → | 4 |
41 | → | 117 |
39 | → | 117 |
134 | → | 164 |
134 | → | 9 |
37 | → | 117 |
34 | → | 117 |
55 | → | 117 |
130 | → | 9 |
31 | → | 117 |
1 | → | 28 |
1 | → | 9 |
1 | → | 50 |
1 | → | 24 |
8 | → | 28 |
8 | → | 9 |
139 | → | 164 |
139 | → | 9 |
44 | → | 117 |
58 | → | 117 |
121 | → | 179 |
121 | → | 9 |
171 | → | 4 |
116 | → | 179 |
116 | → | 9 |
22 | → | 117 |
124 | → | 179 |
124 | → | 9 |
53 | → | 117 |
66 | → | 117 |
114 | → | 50 |
114 | → | 24 |
114 | → | 9 |
14 | → | 28 |
14 | → | 9 |
112 | → | 9 |
169 | → | 20 |
169 | → | 4 |
42 | → | 117 |
64 | → | 117 |
162 | → | 117 |
158 | → | 117 |
48 | → | 117 |
154 | → | 117 |
154 | → | 20 |
154 | → | 4 |
68 | → | 117 |
148 | → | 117 |
142 | → | 164 |
142 | → | 9 |
19 | → | 117 |
27 | → | 117 |
151 | → | 117 |
30(175) | → | 176 |
30(67) | → | 66 |
30(65) | → | 64 |
30(173) | → | 171 |
30(166) | → | 162 |
30(78) | → | 76 |
30(200) | → | 198 |
30(30) | → | 27 |
30(105) | → | 155 |
30(3) | → | 4 |
30(86) | → | 85 |
30(33) | → | 31 |
30(45) | → | 149 |
30(125) | → | 126 |
30(77) | → | 190 |
30(184) | → | 182 |
30(150) | → | 148 |
30(26) | → | 22 |
30(93) | → | 91 |
30(52) | → | 48 |
30(111) | → | 108 |
30(170) | → | 169 |
30(9) | → | 117 |
30(118) | → | 119 |
30(60) | → | 58 |
30(84) | → | 82 |
30(75) | → | 72 |
30(161) | → | 158 |
30(205) | → | 202 |
30(97) | → | 94 |
30(13) | → | 201 |
30(81) | → | 79 |
30(107) | → | 104 |
30(10) | → | 20 |
30(90) | → | 87 |
30(63) | → | 61 |
30(191) | → | 189 |
30(181) | → | 178 |
30(28) | → | 69 |
30(36) | → | 34 |
30(47) | → | 44 |
30(57) | → | 55 |
30(168) | → | 167 |
30(20) | → | 122 |
30(194) | → | 192 |
30(100) | → | 98 |
30(54) | → | 53 |
30(103) | → | 101 |
30(38) | → | 37 |
30(153) | → | 151 |
30(188) | → | 185 |
10(73) | → | 88 |
10(2) | → | 3 |
10(78) | → | 113 |
10(25) | → | 26 |
10(117) | → | 118 |
10(160) | → | 161 |
10(74) | → | 75 |
10(102) | → | 103 |
10(152) | → | 153 |
10(51) | → | 52 |
10(193) | → | 194 |
10(32) | → | 33 |
10(28) | → | 29 |
10(59) | → | 60 |
10(46) | → | 47 |
10(77) | → | 78 |
10(80) | → | 81 |
10(165) | → | 166 |
10(70) | → | 71 |
10(89) | → | 90 |
10(190) | → | 191 |
10(187) | → | 188 |
10(203) | → | 204 |
10(199) | → | 200 |
10(135) | → | 136 |
10(172) | → | 173 |
10(92) | → | 93 |
10(9) | → | 10 |
10(99) | → | 100 |
10(125) | → | 140 |
10(143) | → | 144 |
10(183) | → | 184 |
10(163) | → | 175 |
10(56) | → | 57 |
10(62) | → | 170 |
10(69) | → | 70 |
10(204) | → | 205 |
10(180) | → | 181 |
10(38) | → | 54 |
10(49) | → | 109 |
10(10) | → | 105 |
10(29) | → | 30 |
10(81) | → | 86 |
10(96) | → | 97 |
10(149) | → | 150 |
10(30) | → | 168 |
10(35) | → | 36 |
20(73) | → | 74 |
20(159) | → | 160 |
20(19) | → | 41 |
20(156) | → | 154 |
20(179) | → | 180 |
20(132) | → | 133 |
20(34) | → | 157 |
20(105) | → | 106 |
20(6) | → | 7 |
20(43) | → | 42 |
20(176) | → | 177 |
20(129) | → | 128 |
20(88) | → | 89 |
20(29) | → | 62 |
20(18) | → | 14 |
20(28) | → | 32 |
20(3) | → | 15 |
20(40) | → | 43 |
20(164) | → | 165 |
20(69) | → | 183 |
20(9) | → | 49 |
20(196) | → | 197 |
20(12) | → | 13 |
20(146) | → | 147 |
20(80) | → | 92 |
20(20) | → | 21 |
20(115) | → | 114 |
20(62) | → | 63 |
20(10) | → | 83 |
20(2) | → | 23 |
20(24) | → | 95 |
20(186) | → | 187 |
40(25) | → | 199 |
40(106) | → | 107 |
40(117) | → | 186 |
40(4) | → | 131 |
40(118) | → | 196 |
40(10) | → | 11 |
40(20) | → | 193 |
40(83) | → | 84 |
40(9) | → | 73 |
40(95) | → | 96 |
40(110) | → | 111 |
40(24) | → | 77 |
40(73) | → | 203 |
50(77) | → | 99 |
50(88) | → | 172 |
50(40) | → | 39 |
50(73) | → | 80 |
50(32) | → | 56 |
50(9) | → | 163 |
50(23) | → | 135 |
50(50) | → | 51 |
50(109) | → | 110 |
50(71) | → | 68 |
50(80) | → | 102 |
50(2) | → | 143 |
50(26) | → | 65 |
50(45) | → | 46 |
50(36) | → | 67 |
50(28) | → | 35 |
50(35) | → | 59 |
50(29) | → | 38 |
50(10) | → | 125 |
f60 | → | 2 |
00(2) | → | 9 |
00(163) | → | 164 |
00(177) | → | 174 |
00(28) | → | 45 |
00(123) | → | 121 |
00(117) | → | 179 |
00(9) | → | 28 |
00(133) | → | 130 |
00(10) | → | 159 |
00(49) | → | 50 |
00(197) | → | 195 |
00(113) | → | 112 |
00(24) | → | 25 |
00(131) | → | 132 |
00(4) | → | 5 |
00(21) | → | 19 |
00(155) | → | 156 |
00(138) | → | 134 |
00(17) | → | 18 |
00(11) | → | 12 |
00(147) | → | 142 |
00(6) | → | 115 |
00(141) | → | 139 |
00(136) | → | 137 |
00(140) | → | 141 |
00(23) | → | 24 |
00(137) | → | 138 |
00(7) | → | 1 |
00(15) | → | 16 |
00(127) | → | 124 |
00(20) | → | 40 |
00(120) | → | 116 |
00(126) | → | 127 |
00(40) | → | 129 |
00(16) | → | 17 |
00(109) | → | 152 |
00(5) | → | 6 |
00(145) | → | 146 |
00(144) | → | 145 |
00(13) | → | 8 |
00(122) | → | 123 |
00(119) | → | 120 |