NO
0 QTRS
↳1 DependencyPairsProof (⇔, 30 ms)
↳2 QDP
↳3 DependencyGraphProof (⇔, 0 ms)
↳4 AND
↳5 QDP
↳6 UsableRulesProof (⇔, 0 ms)
↳7 QDP
↳8 QDPOrderProof (⇔, 74 ms)
↳9 QDP
↳10 DependencyGraphProof (⇔, 0 ms)
↳11 QDP
↳12 QDP
↳13 UsableRulesProof (⇔, 0 ms)
↳14 QDP
↳15 QDPSizeChangeProof (⇔, 0 ms)
↳16 YES
↳17 QDP
↳18 UsableRulesProof (⇔, 0 ms)
↳19 QDP
↳20 QDPSizeChangeProof (⇔, 0 ms)
↳21 YES
↳22 QDP
↳23 UsableRulesProof (⇔, 0 ms)
↳24 QDP
↳25 QDPSizeChangeProof (⇔, 0 ms)
↳26 YES
↳27 QDP
↳28 UsableRulesProof (⇔, 0 ms)
↳29 QDP
↳30 QDPSizeChangeProof (⇔, 0 ms)
↳31 YES
↳32 QDP
↳33 UsableRulesProof (⇔, 0 ms)
↳34 QDP
↳35 QDPSizeChangeProof (⇔, 0 ms)
↳36 YES
↳37 QDP
↳38 UsableRulesProof (⇔, 0 ms)
↳39 QDP
↳40 QDPSizeChangeProof (⇔, 0 ms)
↳41 YES
↳42 QDP
↳43 UsableRulesProof (⇔, 0 ms)
↳44 QDP
↳45 NonTerminationLoopProof (⇒, 150 ms)
↳46 NO
Begin(0(0(0(x)))) → Wait(Right1(x))
Begin(0(0(x))) → Wait(Right2(x))
Begin(0(x)) → Wait(Right3(x))
Begin(1(0(1(x)))) → Wait(Right4(x))
Begin(0(1(x))) → Wait(Right5(x))
Begin(1(x)) → Wait(Right6(x))
Right1(0(End(x))) → Left(0(1(1(1(End(x))))))
Right2(0(0(End(x)))) → Left(0(1(1(1(End(x))))))
Right3(0(0(0(End(x))))) → Left(0(1(1(1(End(x))))))
Right4(1(End(x))) → Left(0(0(0(0(End(x))))))
Right5(1(1(End(x)))) → Left(0(0(0(0(End(x))))))
Right6(1(1(0(End(x))))) → Left(0(0(0(0(End(x))))))
Right1(0(x)) → A0(Right1(x))
Right2(0(x)) → A0(Right2(x))
Right3(0(x)) → A0(Right3(x))
Right4(0(x)) → A0(Right4(x))
Right5(0(x)) → A0(Right5(x))
Right6(0(x)) → A0(Right6(x))
Right1(1(x)) → A1(Right1(x))
Right2(1(x)) → A1(Right2(x))
Right3(1(x)) → A1(Right3(x))
Right4(1(x)) → A1(Right4(x))
Right5(1(x)) → A1(Right5(x))
Right6(1(x)) → A1(Right6(x))
A0(Left(x)) → Left(0(x))
A1(Left(x)) → Left(1(x))
Wait(Left(x)) → Begin(x)
0(0(0(0(x)))) → 0(1(1(1(x))))
1(1(0(1(x)))) → 0(0(0(0(x))))
BEGIN(0(0(0(x)))) → WAIT(Right1(x))
BEGIN(0(0(0(x)))) → RIGHT1(x)
BEGIN(0(0(x))) → WAIT(Right2(x))
BEGIN(0(0(x))) → RIGHT2(x)
BEGIN(0(x)) → WAIT(Right3(x))
BEGIN(0(x)) → RIGHT3(x)
BEGIN(1(0(1(x)))) → WAIT(Right4(x))
BEGIN(1(0(1(x)))) → RIGHT4(x)
BEGIN(0(1(x))) → WAIT(Right5(x))
BEGIN(0(1(x))) → RIGHT5(x)
BEGIN(1(x)) → WAIT(Right6(x))
BEGIN(1(x)) → RIGHT6(x)
RIGHT1(0(End(x))) → 01(1(1(1(End(x)))))
RIGHT1(0(End(x))) → 11(1(1(End(x))))
RIGHT1(0(End(x))) → 11(1(End(x)))
RIGHT1(0(End(x))) → 11(End(x))
RIGHT2(0(0(End(x)))) → 01(1(1(1(End(x)))))
RIGHT2(0(0(End(x)))) → 11(1(1(End(x))))
RIGHT2(0(0(End(x)))) → 11(1(End(x)))
RIGHT2(0(0(End(x)))) → 11(End(x))
RIGHT3(0(0(0(End(x))))) → 01(1(1(1(End(x)))))
RIGHT3(0(0(0(End(x))))) → 11(1(1(End(x))))
RIGHT3(0(0(0(End(x))))) → 11(1(End(x)))
RIGHT3(0(0(0(End(x))))) → 11(End(x))
RIGHT4(1(End(x))) → 01(0(0(0(End(x)))))
RIGHT4(1(End(x))) → 01(0(0(End(x))))
RIGHT4(1(End(x))) → 01(0(End(x)))
RIGHT4(1(End(x))) → 01(End(x))
RIGHT5(1(1(End(x)))) → 01(0(0(0(End(x)))))
RIGHT5(1(1(End(x)))) → 01(0(0(End(x))))
RIGHT5(1(1(End(x)))) → 01(0(End(x)))
RIGHT5(1(1(End(x)))) → 01(End(x))
RIGHT6(1(1(0(End(x))))) → 01(0(0(0(End(x)))))
RIGHT6(1(1(0(End(x))))) → 01(0(0(End(x))))
RIGHT6(1(1(0(End(x))))) → 01(0(End(x)))
RIGHT1(0(x)) → A01(Right1(x))
RIGHT1(0(x)) → RIGHT1(x)
RIGHT2(0(x)) → A01(Right2(x))
RIGHT2(0(x)) → RIGHT2(x)
RIGHT3(0(x)) → A01(Right3(x))
RIGHT3(0(x)) → RIGHT3(x)
RIGHT4(0(x)) → A01(Right4(x))
RIGHT4(0(x)) → RIGHT4(x)
RIGHT5(0(x)) → A01(Right5(x))
RIGHT5(0(x)) → RIGHT5(x)
RIGHT6(0(x)) → A01(Right6(x))
RIGHT6(0(x)) → RIGHT6(x)
RIGHT1(1(x)) → A11(Right1(x))
RIGHT1(1(x)) → RIGHT1(x)
RIGHT2(1(x)) → A11(Right2(x))
RIGHT2(1(x)) → RIGHT2(x)
RIGHT3(1(x)) → A11(Right3(x))
RIGHT3(1(x)) → RIGHT3(x)
RIGHT4(1(x)) → A11(Right4(x))
RIGHT4(1(x)) → RIGHT4(x)
RIGHT5(1(x)) → A11(Right5(x))
RIGHT5(1(x)) → RIGHT5(x)
RIGHT6(1(x)) → A11(Right6(x))
RIGHT6(1(x)) → RIGHT6(x)
A01(Left(x)) → 01(x)
A11(Left(x)) → 11(x)
WAIT(Left(x)) → BEGIN(x)
01(0(0(0(x)))) → 01(1(1(1(x))))
01(0(0(0(x)))) → 11(1(1(x)))
01(0(0(0(x)))) → 11(1(x))
01(0(0(0(x)))) → 11(x)
11(1(0(1(x)))) → 01(0(0(0(x))))
11(1(0(1(x)))) → 01(0(0(x)))
11(1(0(1(x)))) → 01(0(x))
11(1(0(1(x)))) → 01(x)
Begin(0(0(0(x)))) → Wait(Right1(x))
Begin(0(0(x))) → Wait(Right2(x))
Begin(0(x)) → Wait(Right3(x))
Begin(1(0(1(x)))) → Wait(Right4(x))
Begin(0(1(x))) → Wait(Right5(x))
Begin(1(x)) → Wait(Right6(x))
Right1(0(End(x))) → Left(0(1(1(1(End(x))))))
Right2(0(0(End(x)))) → Left(0(1(1(1(End(x))))))
Right3(0(0(0(End(x))))) → Left(0(1(1(1(End(x))))))
Right4(1(End(x))) → Left(0(0(0(0(End(x))))))
Right5(1(1(End(x)))) → Left(0(0(0(0(End(x))))))
Right6(1(1(0(End(x))))) → Left(0(0(0(0(End(x))))))
Right1(0(x)) → A0(Right1(x))
Right2(0(x)) → A0(Right2(x))
Right3(0(x)) → A0(Right3(x))
Right4(0(x)) → A0(Right4(x))
Right5(0(x)) → A0(Right5(x))
Right6(0(x)) → A0(Right6(x))
Right1(1(x)) → A1(Right1(x))
Right2(1(x)) → A1(Right2(x))
Right3(1(x)) → A1(Right3(x))
Right4(1(x)) → A1(Right4(x))
Right5(1(x)) → A1(Right5(x))
Right6(1(x)) → A1(Right6(x))
A0(Left(x)) → Left(0(x))
A1(Left(x)) → Left(1(x))
Wait(Left(x)) → Begin(x)
0(0(0(0(x)))) → 0(1(1(1(x))))
1(1(0(1(x)))) → 0(0(0(0(x))))
01(0(0(0(x)))) → 11(1(1(x)))
11(1(0(1(x)))) → 01(0(0(0(x))))
01(0(0(0(x)))) → 01(1(1(1(x))))
01(0(0(0(x)))) → 11(1(x))
11(1(0(1(x)))) → 01(0(0(x)))
01(0(0(0(x)))) → 11(x)
11(1(0(1(x)))) → 01(0(x))
11(1(0(1(x)))) → 01(x)
Begin(0(0(0(x)))) → Wait(Right1(x))
Begin(0(0(x))) → Wait(Right2(x))
Begin(0(x)) → Wait(Right3(x))
Begin(1(0(1(x)))) → Wait(Right4(x))
Begin(0(1(x))) → Wait(Right5(x))
Begin(1(x)) → Wait(Right6(x))
Right1(0(End(x))) → Left(0(1(1(1(End(x))))))
Right2(0(0(End(x)))) → Left(0(1(1(1(End(x))))))
Right3(0(0(0(End(x))))) → Left(0(1(1(1(End(x))))))
Right4(1(End(x))) → Left(0(0(0(0(End(x))))))
Right5(1(1(End(x)))) → Left(0(0(0(0(End(x))))))
Right6(1(1(0(End(x))))) → Left(0(0(0(0(End(x))))))
Right1(0(x)) → A0(Right1(x))
Right2(0(x)) → A0(Right2(x))
Right3(0(x)) → A0(Right3(x))
Right4(0(x)) → A0(Right4(x))
Right5(0(x)) → A0(Right5(x))
Right6(0(x)) → A0(Right6(x))
Right1(1(x)) → A1(Right1(x))
Right2(1(x)) → A1(Right2(x))
Right3(1(x)) → A1(Right3(x))
Right4(1(x)) → A1(Right4(x))
Right5(1(x)) → A1(Right5(x))
Right6(1(x)) → A1(Right6(x))
A0(Left(x)) → Left(0(x))
A1(Left(x)) → Left(1(x))
Wait(Left(x)) → Begin(x)
0(0(0(0(x)))) → 0(1(1(1(x))))
1(1(0(1(x)))) → 0(0(0(0(x))))
01(0(0(0(x)))) → 11(1(1(x)))
11(1(0(1(x)))) → 01(0(0(0(x))))
01(0(0(0(x)))) → 01(1(1(1(x))))
01(0(0(0(x)))) → 11(1(x))
11(1(0(1(x)))) → 01(0(0(x)))
01(0(0(0(x)))) → 11(x)
11(1(0(1(x)))) → 01(0(x))
11(1(0(1(x)))) → 01(x)
0(0(0(0(x)))) → 0(1(1(1(x))))
1(1(0(1(x)))) → 0(0(0(0(x))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
01(0(0(0(x)))) → 11(1(1(x)))
01(0(0(0(x)))) → 11(1(x))
11(1(0(1(x)))) → 01(0(0(x)))
01(0(0(0(x)))) → 11(x)
11(1(0(1(x)))) → 01(0(x))
11(1(0(1(x)))) → 01(x)
POL(0(x1)) = 1 + x1
POL(01(x1)) = x1
POL(1(x1)) = 1 + x1
POL(11(x1)) = x1
1(1(0(1(x)))) → 0(0(0(0(x))))
0(0(0(0(x)))) → 0(1(1(1(x))))
11(1(0(1(x)))) → 01(0(0(0(x))))
01(0(0(0(x)))) → 01(1(1(1(x))))
0(0(0(0(x)))) → 0(1(1(1(x))))
1(1(0(1(x)))) → 0(0(0(0(x))))
01(0(0(0(x)))) → 01(1(1(1(x))))
0(0(0(0(x)))) → 0(1(1(1(x))))
1(1(0(1(x)))) → 0(0(0(0(x))))
RIGHT6(1(x)) → RIGHT6(x)
RIGHT6(0(x)) → RIGHT6(x)
Begin(0(0(0(x)))) → Wait(Right1(x))
Begin(0(0(x))) → Wait(Right2(x))
Begin(0(x)) → Wait(Right3(x))
Begin(1(0(1(x)))) → Wait(Right4(x))
Begin(0(1(x))) → Wait(Right5(x))
Begin(1(x)) → Wait(Right6(x))
Right1(0(End(x))) → Left(0(1(1(1(End(x))))))
Right2(0(0(End(x)))) → Left(0(1(1(1(End(x))))))
Right3(0(0(0(End(x))))) → Left(0(1(1(1(End(x))))))
Right4(1(End(x))) → Left(0(0(0(0(End(x))))))
Right5(1(1(End(x)))) → Left(0(0(0(0(End(x))))))
Right6(1(1(0(End(x))))) → Left(0(0(0(0(End(x))))))
Right1(0(x)) → A0(Right1(x))
Right2(0(x)) → A0(Right2(x))
Right3(0(x)) → A0(Right3(x))
Right4(0(x)) → A0(Right4(x))
Right5(0(x)) → A0(Right5(x))
Right6(0(x)) → A0(Right6(x))
Right1(1(x)) → A1(Right1(x))
Right2(1(x)) → A1(Right2(x))
Right3(1(x)) → A1(Right3(x))
Right4(1(x)) → A1(Right4(x))
Right5(1(x)) → A1(Right5(x))
Right6(1(x)) → A1(Right6(x))
A0(Left(x)) → Left(0(x))
A1(Left(x)) → Left(1(x))
Wait(Left(x)) → Begin(x)
0(0(0(0(x)))) → 0(1(1(1(x))))
1(1(0(1(x)))) → 0(0(0(0(x))))
RIGHT6(1(x)) → RIGHT6(x)
RIGHT6(0(x)) → RIGHT6(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT5(1(x)) → RIGHT5(x)
RIGHT5(0(x)) → RIGHT5(x)
Begin(0(0(0(x)))) → Wait(Right1(x))
Begin(0(0(x))) → Wait(Right2(x))
Begin(0(x)) → Wait(Right3(x))
Begin(1(0(1(x)))) → Wait(Right4(x))
Begin(0(1(x))) → Wait(Right5(x))
Begin(1(x)) → Wait(Right6(x))
Right1(0(End(x))) → Left(0(1(1(1(End(x))))))
Right2(0(0(End(x)))) → Left(0(1(1(1(End(x))))))
Right3(0(0(0(End(x))))) → Left(0(1(1(1(End(x))))))
Right4(1(End(x))) → Left(0(0(0(0(End(x))))))
Right5(1(1(End(x)))) → Left(0(0(0(0(End(x))))))
Right6(1(1(0(End(x))))) → Left(0(0(0(0(End(x))))))
Right1(0(x)) → A0(Right1(x))
Right2(0(x)) → A0(Right2(x))
Right3(0(x)) → A0(Right3(x))
Right4(0(x)) → A0(Right4(x))
Right5(0(x)) → A0(Right5(x))
Right6(0(x)) → A0(Right6(x))
Right1(1(x)) → A1(Right1(x))
Right2(1(x)) → A1(Right2(x))
Right3(1(x)) → A1(Right3(x))
Right4(1(x)) → A1(Right4(x))
Right5(1(x)) → A1(Right5(x))
Right6(1(x)) → A1(Right6(x))
A0(Left(x)) → Left(0(x))
A1(Left(x)) → Left(1(x))
Wait(Left(x)) → Begin(x)
0(0(0(0(x)))) → 0(1(1(1(x))))
1(1(0(1(x)))) → 0(0(0(0(x))))
RIGHT5(1(x)) → RIGHT5(x)
RIGHT5(0(x)) → RIGHT5(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT4(1(x)) → RIGHT4(x)
RIGHT4(0(x)) → RIGHT4(x)
Begin(0(0(0(x)))) → Wait(Right1(x))
Begin(0(0(x))) → Wait(Right2(x))
Begin(0(x)) → Wait(Right3(x))
Begin(1(0(1(x)))) → Wait(Right4(x))
Begin(0(1(x))) → Wait(Right5(x))
Begin(1(x)) → Wait(Right6(x))
Right1(0(End(x))) → Left(0(1(1(1(End(x))))))
Right2(0(0(End(x)))) → Left(0(1(1(1(End(x))))))
Right3(0(0(0(End(x))))) → Left(0(1(1(1(End(x))))))
Right4(1(End(x))) → Left(0(0(0(0(End(x))))))
Right5(1(1(End(x)))) → Left(0(0(0(0(End(x))))))
Right6(1(1(0(End(x))))) → Left(0(0(0(0(End(x))))))
Right1(0(x)) → A0(Right1(x))
Right2(0(x)) → A0(Right2(x))
Right3(0(x)) → A0(Right3(x))
Right4(0(x)) → A0(Right4(x))
Right5(0(x)) → A0(Right5(x))
Right6(0(x)) → A0(Right6(x))
Right1(1(x)) → A1(Right1(x))
Right2(1(x)) → A1(Right2(x))
Right3(1(x)) → A1(Right3(x))
Right4(1(x)) → A1(Right4(x))
Right5(1(x)) → A1(Right5(x))
Right6(1(x)) → A1(Right6(x))
A0(Left(x)) → Left(0(x))
A1(Left(x)) → Left(1(x))
Wait(Left(x)) → Begin(x)
0(0(0(0(x)))) → 0(1(1(1(x))))
1(1(0(1(x)))) → 0(0(0(0(x))))
RIGHT4(1(x)) → RIGHT4(x)
RIGHT4(0(x)) → RIGHT4(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT3(1(x)) → RIGHT3(x)
RIGHT3(0(x)) → RIGHT3(x)
Begin(0(0(0(x)))) → Wait(Right1(x))
Begin(0(0(x))) → Wait(Right2(x))
Begin(0(x)) → Wait(Right3(x))
Begin(1(0(1(x)))) → Wait(Right4(x))
Begin(0(1(x))) → Wait(Right5(x))
Begin(1(x)) → Wait(Right6(x))
Right1(0(End(x))) → Left(0(1(1(1(End(x))))))
Right2(0(0(End(x)))) → Left(0(1(1(1(End(x))))))
Right3(0(0(0(End(x))))) → Left(0(1(1(1(End(x))))))
Right4(1(End(x))) → Left(0(0(0(0(End(x))))))
Right5(1(1(End(x)))) → Left(0(0(0(0(End(x))))))
Right6(1(1(0(End(x))))) → Left(0(0(0(0(End(x))))))
Right1(0(x)) → A0(Right1(x))
Right2(0(x)) → A0(Right2(x))
Right3(0(x)) → A0(Right3(x))
Right4(0(x)) → A0(Right4(x))
Right5(0(x)) → A0(Right5(x))
Right6(0(x)) → A0(Right6(x))
Right1(1(x)) → A1(Right1(x))
Right2(1(x)) → A1(Right2(x))
Right3(1(x)) → A1(Right3(x))
Right4(1(x)) → A1(Right4(x))
Right5(1(x)) → A1(Right5(x))
Right6(1(x)) → A1(Right6(x))
A0(Left(x)) → Left(0(x))
A1(Left(x)) → Left(1(x))
Wait(Left(x)) → Begin(x)
0(0(0(0(x)))) → 0(1(1(1(x))))
1(1(0(1(x)))) → 0(0(0(0(x))))
RIGHT3(1(x)) → RIGHT3(x)
RIGHT3(0(x)) → RIGHT3(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT2(1(x)) → RIGHT2(x)
RIGHT2(0(x)) → RIGHT2(x)
Begin(0(0(0(x)))) → Wait(Right1(x))
Begin(0(0(x))) → Wait(Right2(x))
Begin(0(x)) → Wait(Right3(x))
Begin(1(0(1(x)))) → Wait(Right4(x))
Begin(0(1(x))) → Wait(Right5(x))
Begin(1(x)) → Wait(Right6(x))
Right1(0(End(x))) → Left(0(1(1(1(End(x))))))
Right2(0(0(End(x)))) → Left(0(1(1(1(End(x))))))
Right3(0(0(0(End(x))))) → Left(0(1(1(1(End(x))))))
Right4(1(End(x))) → Left(0(0(0(0(End(x))))))
Right5(1(1(End(x)))) → Left(0(0(0(0(End(x))))))
Right6(1(1(0(End(x))))) → Left(0(0(0(0(End(x))))))
Right1(0(x)) → A0(Right1(x))
Right2(0(x)) → A0(Right2(x))
Right3(0(x)) → A0(Right3(x))
Right4(0(x)) → A0(Right4(x))
Right5(0(x)) → A0(Right5(x))
Right6(0(x)) → A0(Right6(x))
Right1(1(x)) → A1(Right1(x))
Right2(1(x)) → A1(Right2(x))
Right3(1(x)) → A1(Right3(x))
Right4(1(x)) → A1(Right4(x))
Right5(1(x)) → A1(Right5(x))
Right6(1(x)) → A1(Right6(x))
A0(Left(x)) → Left(0(x))
A1(Left(x)) → Left(1(x))
Wait(Left(x)) → Begin(x)
0(0(0(0(x)))) → 0(1(1(1(x))))
1(1(0(1(x)))) → 0(0(0(0(x))))
RIGHT2(1(x)) → RIGHT2(x)
RIGHT2(0(x)) → RIGHT2(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT1(1(x)) → RIGHT1(x)
RIGHT1(0(x)) → RIGHT1(x)
Begin(0(0(0(x)))) → Wait(Right1(x))
Begin(0(0(x))) → Wait(Right2(x))
Begin(0(x)) → Wait(Right3(x))
Begin(1(0(1(x)))) → Wait(Right4(x))
Begin(0(1(x))) → Wait(Right5(x))
Begin(1(x)) → Wait(Right6(x))
Right1(0(End(x))) → Left(0(1(1(1(End(x))))))
Right2(0(0(End(x)))) → Left(0(1(1(1(End(x))))))
Right3(0(0(0(End(x))))) → Left(0(1(1(1(End(x))))))
Right4(1(End(x))) → Left(0(0(0(0(End(x))))))
Right5(1(1(End(x)))) → Left(0(0(0(0(End(x))))))
Right6(1(1(0(End(x))))) → Left(0(0(0(0(End(x))))))
Right1(0(x)) → A0(Right1(x))
Right2(0(x)) → A0(Right2(x))
Right3(0(x)) → A0(Right3(x))
Right4(0(x)) → A0(Right4(x))
Right5(0(x)) → A0(Right5(x))
Right6(0(x)) → A0(Right6(x))
Right1(1(x)) → A1(Right1(x))
Right2(1(x)) → A1(Right2(x))
Right3(1(x)) → A1(Right3(x))
Right4(1(x)) → A1(Right4(x))
Right5(1(x)) → A1(Right5(x))
Right6(1(x)) → A1(Right6(x))
A0(Left(x)) → Left(0(x))
A1(Left(x)) → Left(1(x))
Wait(Left(x)) → Begin(x)
0(0(0(0(x)))) → 0(1(1(1(x))))
1(1(0(1(x)))) → 0(0(0(0(x))))
RIGHT1(1(x)) → RIGHT1(x)
RIGHT1(0(x)) → RIGHT1(x)
From the DPs we obtained the following set of size-change graphs:
WAIT(Left(x)) → BEGIN(x)
BEGIN(0(0(0(x)))) → WAIT(Right1(x))
BEGIN(0(0(x))) → WAIT(Right2(x))
BEGIN(0(x)) → WAIT(Right3(x))
BEGIN(1(0(1(x)))) → WAIT(Right4(x))
BEGIN(0(1(x))) → WAIT(Right5(x))
BEGIN(1(x)) → WAIT(Right6(x))
Begin(0(0(0(x)))) → Wait(Right1(x))
Begin(0(0(x))) → Wait(Right2(x))
Begin(0(x)) → Wait(Right3(x))
Begin(1(0(1(x)))) → Wait(Right4(x))
Begin(0(1(x))) → Wait(Right5(x))
Begin(1(x)) → Wait(Right6(x))
Right1(0(End(x))) → Left(0(1(1(1(End(x))))))
Right2(0(0(End(x)))) → Left(0(1(1(1(End(x))))))
Right3(0(0(0(End(x))))) → Left(0(1(1(1(End(x))))))
Right4(1(End(x))) → Left(0(0(0(0(End(x))))))
Right5(1(1(End(x)))) → Left(0(0(0(0(End(x))))))
Right6(1(1(0(End(x))))) → Left(0(0(0(0(End(x))))))
Right1(0(x)) → A0(Right1(x))
Right2(0(x)) → A0(Right2(x))
Right3(0(x)) → A0(Right3(x))
Right4(0(x)) → A0(Right4(x))
Right5(0(x)) → A0(Right5(x))
Right6(0(x)) → A0(Right6(x))
Right1(1(x)) → A1(Right1(x))
Right2(1(x)) → A1(Right2(x))
Right3(1(x)) → A1(Right3(x))
Right4(1(x)) → A1(Right4(x))
Right5(1(x)) → A1(Right5(x))
Right6(1(x)) → A1(Right6(x))
A0(Left(x)) → Left(0(x))
A1(Left(x)) → Left(1(x))
Wait(Left(x)) → Begin(x)
0(0(0(0(x)))) → 0(1(1(1(x))))
1(1(0(1(x)))) → 0(0(0(0(x))))
WAIT(Left(x)) → BEGIN(x)
BEGIN(0(0(0(x)))) → WAIT(Right1(x))
BEGIN(0(0(x))) → WAIT(Right2(x))
BEGIN(0(x)) → WAIT(Right3(x))
BEGIN(1(0(1(x)))) → WAIT(Right4(x))
BEGIN(0(1(x))) → WAIT(Right5(x))
BEGIN(1(x)) → WAIT(Right6(x))
Right6(1(1(0(End(x))))) → Left(0(0(0(0(End(x))))))
Right6(0(x)) → A0(Right6(x))
Right6(1(x)) → A1(Right6(x))
A1(Left(x)) → Left(1(x))
1(1(0(1(x)))) → 0(0(0(0(x))))
0(0(0(0(x)))) → 0(1(1(1(x))))
A0(Left(x)) → Left(0(x))
Right5(1(1(End(x)))) → Left(0(0(0(0(End(x))))))
Right5(0(x)) → A0(Right5(x))
Right5(1(x)) → A1(Right5(x))
Right4(1(End(x))) → Left(0(0(0(0(End(x))))))
Right4(0(x)) → A0(Right4(x))
Right4(1(x)) → A1(Right4(x))
Right3(0(0(0(End(x))))) → Left(0(1(1(1(End(x))))))
Right3(0(x)) → A0(Right3(x))
Right3(1(x)) → A1(Right3(x))
Right2(0(0(End(x)))) → Left(0(1(1(1(End(x))))))
Right2(0(x)) → A0(Right2(x))
Right2(1(x)) → A1(Right2(x))
Right1(0(End(x))) → Left(0(1(1(1(End(x))))))
Right1(0(x)) → A0(Right1(x))
Right1(1(x)) → A1(Right1(x))