YES Termination Proof

Termination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

a(b(a(x0))) b(b(a(x0)))
b(b(b(x0))) b(a(x0))
b(b(x0)) a(a(a(x0)))

Proof

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
a#(b(a(x0))) b#(b(a(x0)))
b#(b(b(x0))) a#(x0)
b#(b(b(x0))) b#(a(x0))
b#(b(x0)) a#(x0)
b#(b(x0)) a#(a(x0))
b#(b(x0)) a#(a(a(x0)))

1.1 Reduction Pair Processor with Usable Rules

Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 over the arctic semiring over the integers
[b(x1)] =
0 0
2 0
· x1 +
0 -∞
1 -∞
[b#(x1)] =
0 -∞
-∞ -∞
· x1 +
0 -∞
-∞ -∞
[a(x1)] =
0 0
0 0
· x1 +
0 -∞
0 -∞
[a#(x1)] =
0 -∞
-∞ -∞
· x1 +
0 -∞
-∞ -∞
together with the usable rules
a(b(a(x0))) b(b(a(x0)))
b(b(b(x0))) b(a(x0))
b(b(x0)) a(a(a(x0)))
(w.r.t. the implicit argument filter of the reduction pair), the pairs
a#(b(a(x0))) b#(b(a(x0)))
b#(b(b(x0))) b#(a(x0))
b#(b(x0)) a#(x0)
b#(b(x0)) a#(a(x0))
b#(b(x0)) a#(a(a(x0)))
remain.

1.1.1 Reduction Pair Processor with Usable Rules

Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 over the arctic semiring over the integers
[b(x1)] =
0 0
1 0
· x1 +
2 -∞
3 -∞
[b#(x1)] =
0 -∞
-∞ -∞
· x1 +
0 -∞
-∞ -∞
[a(x1)] =
0 0
0 0
· x1 +
-∞ -∞
1 -∞
[a#(x1)] =
0 0
-∞ -∞
· x1 +
2 -∞
-∞ -∞
together with the usable rules
a(b(a(x0))) b(b(a(x0)))
b(b(b(x0))) b(a(x0))
b(b(x0)) a(a(a(x0)))
(w.r.t. the implicit argument filter of the reduction pair), the pairs
b#(b(b(x0))) b#(a(x0))
b#(b(x0)) a#(x0)
b#(b(x0)) a#(a(x0))
b#(b(x0)) a#(a(a(x0)))
remain.

1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 1 component.