YES
0 QTRS
↳1 RootLabelingProof (⇔, 0 ms)
↳2 QTRS
↳3 DependencyPairsProof (⇔, 0 ms)
↳4 QDP
↳5 DependencyGraphProof (⇔, 0 ms)
↳6 QDP
↳7 QDPOrderProof (⇔, 17 ms)
↳8 QDP
↳9 DependencyGraphProof (⇔, 0 ms)
↳10 QDP
↳11 QDPOrderProof (⇔, 4 ms)
↳12 QDP
↳13 PisEmptyProof (⇔, 0 ms)
↳14 YES
b(a(x)) → b(b(x))
b(a(b(x))) → b(a(a(x)))
a(a(a(x))) → a(b(b(x)))
b_{a_1}(a_{b_1}(x)) → b_{b_1}(b_{b_1}(x))
b_{a_1}(a_{a_1}(x)) → b_{b_1}(b_{a_1}(x))
b_{a_1}(a_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{a_1}(a_{b_1}(x)))
b_{a_1}(a_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{a_1}(a_{a_1}(x)))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{b_1}(b_{b_1}(x)))
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{b_1}(b_{a_1}(x)))
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
B_{A_1}(a_{b_1}(b_{b_1}(x))) → B_{A_1}(a_{a_1}(a_{b_1}(x)))
B_{A_1}(a_{b_1}(b_{b_1}(x))) → A_{A_1}(a_{b_1}(x))
B_{A_1}(a_{b_1}(b_{a_1}(x))) → B_{A_1}(a_{a_1}(a_{a_1}(x)))
B_{A_1}(a_{b_1}(b_{a_1}(x))) → A_{A_1}(a_{a_1}(x))
B_{A_1}(a_{b_1}(b_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(b_{b_1}(x))
b_{a_1}(a_{a_1}(x)) → b_{b_1}(b_{a_1}(x))
b_{a_1}(a_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{a_1}(a_{b_1}(x)))
b_{a_1}(a_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{a_1}(a_{a_1}(x)))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{b_1}(b_{b_1}(x)))
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{b_1}(b_{a_1}(x)))
B_{A_1}(a_{b_1}(b_{b_1}(x))) → B_{A_1}(a_{a_1}(a_{b_1}(x)))
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
B_{A_1}(a_{b_1}(b_{a_1}(x))) → B_{A_1}(a_{a_1}(a_{a_1}(x)))
B_{A_1}(a_{b_1}(b_{a_1}(x))) → A_{A_1}(a_{a_1}(x))
A_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(x)
B_{A_1}(a_{b_1}(b_{a_1}(x))) → A_{A_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(b_{b_1}(x))
b_{a_1}(a_{a_1}(x)) → b_{b_1}(b_{a_1}(x))
b_{a_1}(a_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{a_1}(a_{b_1}(x)))
b_{a_1}(a_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{a_1}(a_{a_1}(x)))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{b_1}(b_{b_1}(x)))
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{b_1}(b_{a_1}(x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
B_{A_1}(a_{b_1}(b_{a_1}(x))) → A_{A_1}(a_{a_1}(x))
A_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(x)
B_{A_1}(a_{b_1}(b_{a_1}(x))) → A_{A_1}(x)
POL(A_{A_1}(x1)) = 1 + x1
POL(B_{A_1}(x1)) = 1 + x1
POL(a_{a_1}(x1)) = 1 + x1
POL(a_{b_1}(x1)) = 1 + x1
POL(b_{a_1}(x1)) = 1 + x1
POL(b_{b_1}(x1)) = 1 + x1
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{b_1}(b_{b_1}(x)))
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{b_1}(b_{a_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{b_1}(b_{a_1}(x))
b_{a_1}(a_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{a_1}(a_{b_1}(x)))
b_{a_1}(a_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{a_1}(a_{a_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{b_1}(b_{b_1}(x))
B_{A_1}(a_{b_1}(b_{b_1}(x))) → B_{A_1}(a_{a_1}(a_{b_1}(x)))
B_{A_1}(a_{b_1}(b_{a_1}(x))) → B_{A_1}(a_{a_1}(a_{a_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{b_1}(b_{b_1}(x))
b_{a_1}(a_{a_1}(x)) → b_{b_1}(b_{a_1}(x))
b_{a_1}(a_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{a_1}(a_{b_1}(x)))
b_{a_1}(a_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{a_1}(a_{a_1}(x)))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{b_1}(b_{b_1}(x)))
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{b_1}(b_{a_1}(x)))
B_{A_1}(a_{b_1}(b_{a_1}(x))) → B_{A_1}(a_{a_1}(a_{a_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{b_1}(b_{b_1}(x))
b_{a_1}(a_{a_1}(x)) → b_{b_1}(b_{a_1}(x))
b_{a_1}(a_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{a_1}(a_{b_1}(x)))
b_{a_1}(a_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{a_1}(a_{a_1}(x)))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{b_1}(b_{b_1}(x)))
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{b_1}(b_{a_1}(x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B_{A_1}(a_{b_1}(b_{a_1}(x))) → B_{A_1}(a_{a_1}(a_{a_1}(x)))
POL(B_{A_1}(x1)) = x1
POL(a_{a_1}(x1)) = 0
POL(a_{b_1}(x1)) = x1
POL(b_{a_1}(x1)) = 1
POL(b_{b_1}(x1)) = 0
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{b_1}(b_{b_1}(x)))
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{b_1}(b_{a_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{b_1}(b_{b_1}(x))
b_{a_1}(a_{a_1}(x)) → b_{b_1}(b_{a_1}(x))
b_{a_1}(a_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{a_1}(a_{b_1}(x)))
b_{a_1}(a_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{a_1}(a_{a_1}(x)))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{b_1}(b_{b_1}(x)))
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{b_1}(b_{a_1}(x)))