YES
0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 FlatCCProof (⇔, 0 ms)
↳4 QTRS
↳5 RootLabelingProof (⇔, 0 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 7 ms)
↳8 QTRS
↳9 QTRSRRRProof (⇔, 0 ms)
↳10 QTRS
↳11 RisEmptyProof (⇔, 0 ms)
↳12 YES
a(b(a(x))) → b(a(x))
b(b(b(x))) → b(a(b(x)))
a(a(x)) → b(b(b(x)))
a(b(a(x))) → a(b(x))
b(b(b(x))) → b(a(b(x)))
a(a(x)) → b(b(b(x)))
a(b(a(x))) → a(b(x))
b(b(b(x))) → b(a(b(x)))
a(a(a(x))) → a(b(b(b(x))))
b(a(a(x))) → b(b(b(b(x))))
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{a_1}(x))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{b_1}(x))
b_{b_1}(b_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{b_1}(b_{a_1}(x)))
b_{b_1}(b_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{b_1}(b_{b_1}(x)))
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{b_1}(b_{b_1}(b_{a_1}(x))))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{b_1}(b_{b_1}(b_{b_1}(x))))
b_{a_1}(a_{a_1}(a_{a_1}(x))) → b_{b_1}(b_{b_1}(b_{b_1}(b_{a_1}(x))))
b_{a_1}(a_{a_1}(a_{b_1}(x))) → b_{b_1}(b_{b_1}(b_{b_1}(b_{b_1}(x))))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a_{a_1}(x1)) = 3 + x1
POL(a_{b_1}(x1)) = x1
POL(b_{a_1}(x1)) = 2 + x1
POL(b_{b_1}(x1)) = 1 + x1
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{a_1}(x))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{b_1}(x))
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{b_1}(b_{b_1}(b_{a_1}(x))))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{b_1}(b_{b_1}(b_{b_1}(x))))
b_{a_1}(a_{a_1}(a_{a_1}(x))) → b_{b_1}(b_{b_1}(b_{b_1}(b_{a_1}(x))))
b_{a_1}(a_{a_1}(a_{b_1}(x))) → b_{b_1}(b_{b_1}(b_{b_1}(b_{b_1}(x))))
b_{b_1}(b_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{b_1}(b_{a_1}(x)))
b_{b_1}(b_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{b_1}(b_{b_1}(x)))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a_{b_1}(x1)) = x1
POL(b_{a_1}(x1)) = 1 + x1
POL(b_{b_1}(x1)) = 1 + x1
b_{b_1}(b_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{b_1}(b_{a_1}(x)))
b_{b_1}(b_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{b_1}(b_{b_1}(x)))