YES
0 QTRS
↳1 DependencyPairsProof (⇔, 0 ms)
↳2 QDP
↳3 DependencyGraphProof (⇔, 3 ms)
↳4 QDP
↳5 QDPOrderProof (⇔, 87 ms)
↳6 QDP
↳7 DependencyGraphProof (⇔, 0 ms)
↳8 AND
↳9 QDP
↳10 MRRProof (⇔, 201 ms)
↳11 QDP
↳12 DependencyGraphProof (⇔, 0 ms)
↳13 QDP
↳14 UsableRulesProof (⇔, 0 ms)
↳15 QDP
↳16 QDPSizeChangeProof (⇔, 0 ms)
↳17 YES
↳18 QDP
↳19 MRRProof (⇔, 176 ms)
↳20 QDP
↳21 PisEmptyProof (⇔, 0 ms)
↳22 YES
R(E(x)) → L(E(x))
a(L(x)) → L(Aa(x))
b(L(x)) → L(Ab(x))
c(L(x)) → L(Ac(x))
R(Aa(x)) → a(R(x))
R(Ab(x)) → b(R(x))
R(Ac(x)) → c(R(x))
a(b(L(x))) → b(a(a(R(x))))
c(b(L(x))) → b(b(c(R(x))))
R1(Aa(x)) → A(R(x))
R1(Aa(x)) → R1(x)
R1(Ab(x)) → B(R(x))
R1(Ab(x)) → R1(x)
R1(Ac(x)) → C(R(x))
R1(Ac(x)) → R1(x)
A(b(L(x))) → B(a(a(R(x))))
A(b(L(x))) → A(a(R(x)))
A(b(L(x))) → A(R(x))
A(b(L(x))) → R1(x)
C(b(L(x))) → B(b(c(R(x))))
C(b(L(x))) → B(c(R(x)))
C(b(L(x))) → C(R(x))
C(b(L(x))) → R1(x)
R(E(x)) → L(E(x))
a(L(x)) → L(Aa(x))
b(L(x)) → L(Ab(x))
c(L(x)) → L(Ac(x))
R(Aa(x)) → a(R(x))
R(Ab(x)) → b(R(x))
R(Ac(x)) → c(R(x))
a(b(L(x))) → b(a(a(R(x))))
c(b(L(x))) → b(b(c(R(x))))
A(b(L(x))) → A(a(R(x)))
A(b(L(x))) → A(R(x))
A(b(L(x))) → R1(x)
R1(Aa(x)) → A(R(x))
R1(Aa(x)) → R1(x)
R1(Ab(x)) → R1(x)
R1(Ac(x)) → C(R(x))
C(b(L(x))) → C(R(x))
C(b(L(x))) → R1(x)
R1(Ac(x)) → R1(x)
R(E(x)) → L(E(x))
a(L(x)) → L(Aa(x))
b(L(x)) → L(Ab(x))
c(L(x)) → L(Ac(x))
R(Aa(x)) → a(R(x))
R(Ab(x)) → b(R(x))
R(Ac(x)) → c(R(x))
a(b(L(x))) → b(a(a(R(x))))
c(b(L(x))) → b(b(c(R(x))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
R1(Ac(x)) → C(R(x))
R1(Ac(x)) → R1(x)
POL(A(x1)) = x1
POL(Aa(x1)) = x1
POL(Ab(x1)) = x1
POL(Ac(x1)) = 1 + x1
POL(C(x1)) = x1
POL(E(x1)) = 1 + x1
POL(L(x1)) = x1
POL(R(x1)) = x1
POL(R1(x1)) = x1
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(c(x1)) = 1 + x1
R(E(x)) → L(E(x))
R(Aa(x)) → a(R(x))
R(Ab(x)) → b(R(x))
R(Ac(x)) → c(R(x))
a(L(x)) → L(Aa(x))
a(b(L(x))) → b(a(a(R(x))))
c(b(L(x))) → b(b(c(R(x))))
b(L(x)) → L(Ab(x))
c(L(x)) → L(Ac(x))
A(b(L(x))) → A(a(R(x)))
A(b(L(x))) → A(R(x))
A(b(L(x))) → R1(x)
R1(Aa(x)) → A(R(x))
R1(Aa(x)) → R1(x)
R1(Ab(x)) → R1(x)
C(b(L(x))) → C(R(x))
C(b(L(x))) → R1(x)
R(E(x)) → L(E(x))
a(L(x)) → L(Aa(x))
b(L(x)) → L(Ab(x))
c(L(x)) → L(Ac(x))
R(Aa(x)) → a(R(x))
R(Ab(x)) → b(R(x))
R(Ac(x)) → c(R(x))
a(b(L(x))) → b(a(a(R(x))))
c(b(L(x))) → b(b(c(R(x))))
A(b(L(x))) → A(R(x))
A(b(L(x))) → A(a(R(x)))
A(b(L(x))) → R1(x)
R1(Aa(x)) → A(R(x))
R1(Aa(x)) → R1(x)
R1(Ab(x)) → R1(x)
R(E(x)) → L(E(x))
a(L(x)) → L(Aa(x))
b(L(x)) → L(Ab(x))
c(L(x)) → L(Ac(x))
R(Aa(x)) → a(R(x))
R(Ab(x)) → b(R(x))
R(Ac(x)) → c(R(x))
a(b(L(x))) → b(a(a(R(x))))
c(b(L(x))) → b(b(c(R(x))))
A(b(L(x))) → A(R(x))
A(b(L(x))) → A(a(R(x)))
A(b(L(x))) → R1(x)
R1(Ab(x)) → R1(x)
POL(A(x1)) = x1
POL(Aa(x1)) = x1
POL(Ab(x1)) = 1 + x1
POL(Ac(x1)) = 2·x1
POL(E(x1)) = x1
POL(L(x1)) = 2·x1
POL(R(x1)) = 2·x1
POL(R1(x1)) = 2·x1
POL(a(x1)) = x1
POL(b(x1)) = 2 + x1
POL(c(x1)) = 2·x1
R1(Aa(x)) → A(R(x))
R1(Aa(x)) → R1(x)
R(E(x)) → L(E(x))
a(L(x)) → L(Aa(x))
b(L(x)) → L(Ab(x))
c(L(x)) → L(Ac(x))
R(Aa(x)) → a(R(x))
R(Ab(x)) → b(R(x))
R(Ac(x)) → c(R(x))
a(b(L(x))) → b(a(a(R(x))))
c(b(L(x))) → b(b(c(R(x))))
R1(Aa(x)) → R1(x)
R(E(x)) → L(E(x))
a(L(x)) → L(Aa(x))
b(L(x)) → L(Ab(x))
c(L(x)) → L(Ac(x))
R(Aa(x)) → a(R(x))
R(Ab(x)) → b(R(x))
R(Ac(x)) → c(R(x))
a(b(L(x))) → b(a(a(R(x))))
c(b(L(x))) → b(b(c(R(x))))
R1(Aa(x)) → R1(x)
From the DPs we obtained the following set of size-change graphs:
C(b(L(x))) → C(R(x))
R(E(x)) → L(E(x))
a(L(x)) → L(Aa(x))
b(L(x)) → L(Ab(x))
c(L(x)) → L(Ac(x))
R(Aa(x)) → a(R(x))
R(Ab(x)) → b(R(x))
R(Ac(x)) → c(R(x))
a(b(L(x))) → b(a(a(R(x))))
c(b(L(x))) → b(b(c(R(x))))
C(b(L(x))) → C(R(x))
POL(Aa(x1)) = x1
POL(Ab(x1)) = 1 + x1
POL(Ac(x1)) = 2·x1
POL(C(x1)) = 3·x1
POL(E(x1)) = x1
POL(L(x1)) = 2·x1
POL(R(x1)) = 2·x1
POL(a(x1)) = x1
POL(b(x1)) = 2 + x1
POL(c(x1)) = 2·x1
R(E(x)) → L(E(x))
a(L(x)) → L(Aa(x))
b(L(x)) → L(Ab(x))
c(L(x)) → L(Ac(x))
R(Aa(x)) → a(R(x))
R(Ab(x)) → b(R(x))
R(Ac(x)) → c(R(x))
a(b(L(x))) → b(a(a(R(x))))
c(b(L(x))) → b(b(c(R(x))))