YES
0 QTRS
↳1 DependencyPairsProof (⇔, 3 ms)
↳2 QDP
↳3 DependencyGraphProof (⇔, 0 ms)
↳4 QDP
↳5 QDPOrderProof (⇔, 16 ms)
↳6 QDP
↳7 DependencyGraphProof (⇔, 0 ms)
↳8 TRUE
0(P(x)) → 1(P(x))
1(P(x)) → c(P(x))
0(c(x)) → 1(0(x))
1(c(x)) → c(0(x))
P(0(x)) → P(1(0(0(x))))
01(P(x)) → 11(P(x))
01(c(x)) → 11(0(x))
01(c(x)) → 01(x)
11(c(x)) → 01(x)
P1(0(x)) → P1(1(0(0(x))))
P1(0(x)) → 11(0(0(x)))
P1(0(x)) → 01(0(x))
0(P(x)) → 1(P(x))
1(P(x)) → c(P(x))
0(c(x)) → 1(0(x))
1(c(x)) → c(0(x))
P(0(x)) → P(1(0(0(x))))
11(c(x)) → 01(x)
01(P(x)) → 11(P(x))
01(c(x)) → 11(0(x))
01(c(x)) → 01(x)
0(P(x)) → 1(P(x))
1(P(x)) → c(P(x))
0(c(x)) → 1(0(x))
1(c(x)) → c(0(x))
P(0(x)) → P(1(0(0(x))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
11(c(x)) → 01(x)
01(c(x)) → 01(x)
POL(0(x1)) = 1 + x1
POL(01(x1)) = x1
POL(1(x1)) = 1 + x1
POL(11(x1)) = x1
POL(P(x1)) = 0
POL(c(x1)) = 1 + x1
P(0(x)) → P(1(0(0(x))))
0(P(x)) → 1(P(x))
0(c(x)) → 1(0(x))
1(P(x)) → c(P(x))
1(c(x)) → c(0(x))
01(P(x)) → 11(P(x))
01(c(x)) → 11(0(x))
0(P(x)) → 1(P(x))
1(P(x)) → c(P(x))
0(c(x)) → 1(0(x))
1(c(x)) → c(0(x))
P(0(x)) → P(1(0(0(x))))