YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
B(x0) | → | W(M(V(x0))) |
M(x0) | → | x0 |
M(V(a(x0))) | → | V(Xa(x0)) |
M(V(b(x0))) | → | V(Xb(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
Xb(E(x0)) | → | b(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(a(a(x0))) | → | D(a(b(a(x0)))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
R(D(x0)) | → | B(x0) |
[a(x1)] | = |
|
||||||||||||||||||
[E(x1)] | = |
|
||||||||||||||||||
[V(x1)] | = |
|
||||||||||||||||||
[W(x1)] | = |
|
||||||||||||||||||
[Xa(x1)] | = |
|
||||||||||||||||||
[R(x1)] | = |
|
||||||||||||||||||
[B(x1)] | = |
|
||||||||||||||||||
[Xb(x1)] | = |
|
||||||||||||||||||
[Yb(x1)] | = |
|
||||||||||||||||||
[Ya(x1)] | = |
|
||||||||||||||||||
[L(x1)] | = |
|
||||||||||||||||||
[D(x1)] | = |
|
||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||
[M(x1)] | = |
|
B(x0) | → | W(M(V(x0))) |
M(V(a(x0))) | → | V(Xa(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
Xb(E(x0)) | → | b(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(a(a(x0))) | → | D(a(b(a(x0)))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
R(D(x0)) | → | B(x0) |
[a(x1)] | = | 0 · x1 + -∞ |
[E(x1)] | = | 0 · x1 + -∞ |
[V(x1)] | = | 0 · x1 + -∞ |
[W(x1)] | = | 0 · x1 + -∞ |
[Xa(x1)] | = | 0 · x1 + -∞ |
[R(x1)] | = | 0 · x1 + -∞ |
[B(x1)] | = | 0 · x1 + -∞ |
[Xb(x1)] | = | 7 · x1 + -∞ |
[Yb(x1)] | = | 0 · x1 + -∞ |
[Ya(x1)] | = | 0 · x1 + -∞ |
[L(x1)] | = | 0 · x1 + -∞ |
[D(x1)] | = | 0 · x1 + -∞ |
[b(x1)] | = | 0 · x1 + -∞ |
[M(x1)] | = | 0 · x1 + -∞ |
B(x0) | → | W(M(V(x0))) |
M(V(a(x0))) | → | V(Xa(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(a(a(x0))) | → | D(a(b(a(x0)))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
R(D(x0)) | → | B(x0) |
B(x0) | → | V(M(W(x0))) |
a(V(M(x0))) | → | Xa(V(x0)) |
a(Xa(x0)) | → | Xa(a(x0)) |
b(Xa(x0)) | → | Xa(b(x0)) |
a(Xb(x0)) | → | Xb(a(x0)) |
b(Xb(x0)) | → | Xb(b(x0)) |
E(Xa(x0)) | → | E(a(x0)) |
V(W(x0)) | → | L(R(x0)) |
a(L(x0)) | → | L(Ya(x0)) |
b(L(x0)) | → | L(Yb(x0)) |
a(a(L(x0))) | → | a(b(a(D(x0)))) |
D(Ya(x0)) | → | a(D(x0)) |
D(Yb(x0)) | → | b(D(x0)) |
D(R(x0)) | → | B(x0) |
[a(x1)] | = | 4 · x1 + 0 |
[E(x1)] | = | 1 · x1 + 12 |
[V(x1)] | = | 1 · x1 + 1 |
[W(x1)] | = | 1 · x1 + 0 |
[Xa(x1)] | = | 4 · x1 + 0 |
[R(x1)] | = | 1 · x1 + 1 |
[B(x1)] | = | 1 · x1 + 1 |
[Xb(x1)] | = | 6 · x1 + 1 |
[Yb(x1)] | = | 1 · x1 + 0 |
[Ya(x1)] | = | 4 · x1 + 0 |
[L(x1)] | = | 1 · x1 + 0 |
[D(x1)] | = | 1 · x1 + 0 |
[b(x1)] | = | 1 · x1 + 0 |
[M(x1)] | = | 1 · x1 + 0 |
B(x0) | → | V(M(W(x0))) |
a(V(M(x0))) | → | Xa(V(x0)) |
a(Xa(x0)) | → | Xa(a(x0)) |
b(Xa(x0)) | → | Xa(b(x0)) |
b(Xb(x0)) | → | Xb(b(x0)) |
E(Xa(x0)) | → | E(a(x0)) |
V(W(x0)) | → | L(R(x0)) |
a(L(x0)) | → | L(Ya(x0)) |
b(L(x0)) | → | L(Yb(x0)) |
a(a(L(x0))) | → | a(b(a(D(x0)))) |
D(Ya(x0)) | → | a(D(x0)) |
D(Yb(x0)) | → | b(D(x0)) |
D(R(x0)) | → | B(x0) |
[a(x1)] | = |
|
||||||||||||||||||
[E(x1)] | = |
|
||||||||||||||||||
[V(x1)] | = |
|
||||||||||||||||||
[W(x1)] | = |
|
||||||||||||||||||
[Xa(x1)] | = |
|
||||||||||||||||||
[R(x1)] | = |
|
||||||||||||||||||
[B(x1)] | = |
|
||||||||||||||||||
[Xb(x1)] | = |
|
||||||||||||||||||
[Yb(x1)] | = |
|
||||||||||||||||||
[Ya(x1)] | = |
|
||||||||||||||||||
[L(x1)] | = |
|
||||||||||||||||||
[D(x1)] | = |
|
||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||
[M(x1)] | = |
|
B(x0) | → | V(M(W(x0))) |
a(V(M(x0))) | → | Xa(V(x0)) |
a(Xa(x0)) | → | Xa(a(x0)) |
b(Xa(x0)) | → | Xa(b(x0)) |
E(Xa(x0)) | → | E(a(x0)) |
V(W(x0)) | → | L(R(x0)) |
a(L(x0)) | → | L(Ya(x0)) |
b(L(x0)) | → | L(Yb(x0)) |
a(a(L(x0))) | → | a(b(a(D(x0)))) |
D(Ya(x0)) | → | a(D(x0)) |
D(Yb(x0)) | → | b(D(x0)) |
D(R(x0)) | → | B(x0) |
B(x0) | → | W(M(V(x0))) |
M(V(a(x0))) | → | V(Xa(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(a(a(x0))) | → | D(a(b(a(x0)))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
R(D(x0)) | → | B(x0) |
[a(x1)] | = |
|
||||||||||||||||||
[E(x1)] | = |
|
||||||||||||||||||
[V(x1)] | = |
|
||||||||||||||||||
[W(x1)] | = |
|
||||||||||||||||||
[Xa(x1)] | = |
|
||||||||||||||||||
[R(x1)] | = |
|
||||||||||||||||||
[B(x1)] | = |
|
||||||||||||||||||
[Yb(x1)] | = |
|
||||||||||||||||||
[Ya(x1)] | = |
|
||||||||||||||||||
[L(x1)] | = |
|
||||||||||||||||||
[D(x1)] | = |
|
||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||
[M(x1)] | = |
|
B(x0) | → | W(M(V(x0))) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(a(a(x0))) | → | D(a(b(a(x0)))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
R(D(x0)) | → | B(x0) |
[a(x1)] | = | 0 · x1 + -∞ |
[E(x1)] | = | 0 · x1 + -∞ |
[V(x1)] | = | 5 · x1 + -∞ |
[W(x1)] | = | 0 · x1 + -∞ |
[Xa(x1)] | = | 13 · x1 + -∞ |
[R(x1)] | = | 3 · x1 + -∞ |
[B(x1)] | = | 5 · x1 + -∞ |
[Yb(x1)] | = | 0 · x1 + -∞ |
[Ya(x1)] | = | 0 · x1 + -∞ |
[L(x1)] | = | 2 · x1 + -∞ |
[D(x1)] | = | 2 · x1 + -∞ |
[b(x1)] | = | 0 · x1 + -∞ |
[M(x1)] | = | 0 · x1 + -∞ |
B(x0) | → | W(M(V(x0))) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(a(a(x0))) | → | D(a(b(a(x0)))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
R(D(x0)) | → | B(x0) |
B(x0) | → | V(M(W(x0))) |
a(Xa(x0)) | → | Xa(a(x0)) |
b(Xa(x0)) | → | Xa(b(x0)) |
V(W(x0)) | → | L(R(x0)) |
a(L(x0)) | → | L(Ya(x0)) |
b(L(x0)) | → | L(Yb(x0)) |
a(a(L(x0))) | → | a(b(a(D(x0)))) |
D(Ya(x0)) | → | a(D(x0)) |
D(Yb(x0)) | → | b(D(x0)) |
D(R(x0)) | → | B(x0) |
final states:
{20, 19, 17, 15, 13, 11, 9, 7, 5, 1}
transitions:
15 | → | 6 |
5 | → | 6 |
20 | → | 16 |
13 | → | 8 |
2 | → | 21 |
11 | → | 6 |
7 | → | 8 |
17 | → | 16 |
24 | → | 20 |
19 | → | 16 |
L0(10) | → | 9 |
L0(12) | → | 11 |
L0(14) | → | 13 |
W0(2) | → | 3 |
Xa0(6) | → | 5 |
Xa0(8) | → | 7 |
M0(3) | → | 4 |
V1(23) | → | 24 |
Yb0(2) | → | 14 |
R0(2) | → | 10 |
W1(21) | → | 22 |
Ya0(2) | → | 12 |
V0(4) | → | 1 |
b0(2) | → | 8 |
b0(16) | → | 19 |
b0(17) | → | 18 |
f140 | → | 2 |
B0(2) | → | 20 |
D0(2) | → | 16 |
M1(22) | → | 23 |
a0(2) | → | 6 |
a0(18) | → | 15 |
a0(16) | → | 17 |