
On Impossibility of Simple Modular Translations
of Concurrent Calculi

Manfred Schmidt-Schauß

Goethe-University Frankfurt

David Sabel

LMU Munich

WPTE 2020
June 29, 2020

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License.
https://creativecommons.org/licenses/by-nd/3.0/

https://creativecommons.org/licenses/by-nd/3.0/

General Motivation

We are interested in the correctness of translations between programming languages

A B
τ

In particular we consider concurrent programming languages

We focus correctness w.r.t. observational semantics

Motivations for considering these questions:

expressivity: can language B express language A?

correctness of implementations:
is the implementation of concurrency primitives of A in language B correct?

D. Sabel | Impossible Translations | WPTE 2020 2/17 Introduction Problem Translations Main Result Variations Conclusion

Motivation and Overview of this Work

open problem in previous work:

is there a particular small correct translation
from the π-calculus into Concurrent Haskell?

the conjecture was that such a translation does not exist,
but we did not find a proof

In this work:

we prove the conjecture

method: consider a simpler problem using simpler languages

we show impossibility of a correct translation for the simple languages

this implies impossibility of a correct translation for the original problem

D. Sabel | Impossible Translations | WPTE 2020 3/17 Introduction Problem Translations Main Result Variations Conclusion

Motivation and Overview of this Work

open problem in previous work:

is there a particular small correct translation
from the π-calculus into Concurrent Haskell?

the conjecture was that such a translation does not exist,
but we did not find a proof

In this work:

we prove the conjecture

method: consider a simpler problem using simpler languages

we show impossibility of a correct translation for the simple languages

this implies impossibility of a correct translation for the original problem

D. Sabel | Impossible Translations | WPTE 2020 3/17 Introduction Problem Translations Main Result Variations Conclusion

The Original Problem

In previous work, we analyzed translations from the π-calculus to Concurrent Haskell

PI CH
τ

π-calculus with Stop

process calculus

message-passing model

synchronous communication

sending message z over channel x:

xz.P︸ ︷︷ ︸
sender

|| x(y).Q︸ ︷︷ ︸
receiver

→ P ||Q[z/y]

Stop-constant to signal success

CH (core language of Concurrent Haskell)

functional language extended by threads and
MVars for communication and synchronization

shared-memory model

MVars are one-place buffers: full or empty

monadic operations on MVars:

takeMVar x ||xm e→ return e ||xm−
putMVar x e ||xm− → return () ||xm e
takeMVar x ||xm− blocks
putMVar x e ||xm e blocks

D. Sabel | Impossible Translations | WPTE 2020 4/17 Introduction Problem Translations Main Result Variations Conclusion

The Original Problem

In previous work, we analyzed translations from the π-calculus to Concurrent Haskell

PI CH
τ

π-calculus with Stop

process calculus

message-passing model

synchronous communication

sending message z over channel x:

xz.P︸ ︷︷ ︸
sender

|| x(y).Q︸ ︷︷ ︸
receiver

→ P ||Q[z/y]

Stop-constant to signal success

CH (core language of Concurrent Haskell)

functional language extended by threads and
MVars for communication and synchronization

shared-memory model

MVars are one-place buffers: full or empty

monadic operations on MVars:

takeMVar x ||xm e→ return e ||xm−
putMVar x e ||xm− → return () ||xm e
takeMVar x ||xm− blocks
putMVar x e ||xm e blocks

D. Sabel | Impossible Translations | WPTE 2020 4/17 Introduction Problem Translations Main Result Variations Conclusion

The Original Problem (2)

Our correct translation encodes communication xz.P ||x(y).Q→ P ||Q[z/y] using

one MVar for exchanging the message

two additional check-MVars for synchronization

check-MVar: MVar with content ()

Conjecture [SSS2020]

Two check-MVars are necessary.

In this work: we prove the conjecture, by transferring the problem:

PISIMPLE CHSIMPLE
τ

D. Sabel | Impossible Translations | WPTE 2020 5/17 Introduction Problem Translations Main Result Variations Conclusion

The Simple Language: PISIMPLE

Subprocesses U ::= 0 (silent process)
| 1 (success)
| !U (output)
| ?U (input)

Processes: P ::= U | U ||P (parallel composition)
where || is associative and commutative and 0 ||P ≡ P

Operational semantics: !U1 || ?U2 ||P
PIS−−→ U1 ||U2 ||P

Successful process: 1 ||P

Examples: ?!0 || !!1 || ?0
PIS−−→ !0 || !1 || ?0

PIS−−→ 0 || !1 || 0 not successful

?!0 || !!1 || ?0
PIS−−→ ?!0 || !1 || 0

PIS−−→ !0 || 1 || 0 successful

D. Sabel | Impossible Translations | WPTE 2020 6/17 Introduction Problem Translations Main Result Variations Conclusion

The Simple Languages: CHSIMPLE

Subprocesses U ::= 0 (silent process)
| 1 (success)
| S U (send)
| RU (receive)
| P U (put)
| T U (take)

Processes: P ::= U | U ||P (parallel composition)
where || is associative and commutative and 0 ||P ≡ P

State: (P,M1,M2) where M1,M2 ∈ {full, ∅}
M1 is the send-receive-MVar,
M2 is the check-MVar

D. Sabel | Impossible Translations | WPTE 2020 7/17 Introduction Problem Translations Main Result Variations Conclusion

The Simple Languages: CHSIMPLE (2)

Successful state: (1 ||P,M1,M2)

Operational Semantics: (SU ||P, ∅,M2)
CS−−→ (U ||P, full,M2)

(RU ||P, full,M2)
CS−−→ (U ||P, ∅,M2)

(PU ||P,M1, ∅)
CS−−→ (U ||P,M1, full)

(TU ||P,M1, full)
CS−−→ (U ||P,M1, ∅)

Example:

(ST0 ||RP1, ∅, ∅) CS−−→ (T0 ||RP1, full, ∅) CS−−→ (T0 ||P1, ∅, ∅) CS−−→ (T0 || 1, ∅, full) success

D. Sabel | Impossible Translations | WPTE 2020 8/17 Introduction Problem Translations Main Result Variations Conclusion

Simple Modular Translations

A modular translation τ : PISIMPLE→ CHSIMPLE is a homomorphism on the languages,
and defined by the mappings:

τ(!) = sout τ(?) = rin τ(||) = || τ(0) = 0 τ(1) = 1

where sout is a string over {P, T, S}, and rin is a string over {P, T,R}.

τ is an SRU-translation iff

sout contains exactly one occurrence of S and

rin contains exactly one occurrence of R

A modular translation can be described by a translation pair (τ(!), τ(?)) = (sout, rin)

Example: (τ(!), τ(?)) = (SPP,RTT)
Then, for instance τ(!?0 || ?!1 || !0) = SPPRTT0 ||RTTSPP0 ||SPP0

D. Sabel | Impossible Translations | WPTE 2020 9/17 Introduction Problem Translations Main Result Variations Conclusion

Correctness w.r.t. Observational Semantics

Observations: May- and Should-Convergence

PISIMPLE-process P is

may-convergent iff P PIS,∗−−−−→ 1 ||P ′

should-convergent iff ∀P ′ : P PIS,∗−−−−→ P ′ =⇒ P ′ is may-convergent

Analogous notions are defined for CHSIMPLE processes P using
CS−−→

Correctness of Translations
A translation τ is correct, if it is convergence equivalent, i.e. for all P ∈ PISIMPLE:

P is may-convergent iff τ(P) is may-convergent, and

P is should-convergent iff τ(P) is should-convergent.

D. Sabel | Impossible Translations | WPTE 2020 10/17 Introduction Problem Translations Main Result Variations Conclusion

Examples

Example 1: Let τ(!) = S, τ(?) = R

the process !?1 is deadlocked in PISIMPLE

τ(!?1) = SR1 is should-convergent in CHSIMPLE:

(SR1, ∅, ∅) CS−−→ (R1, full, ∅) CS−−→ (1, full, ∅)
thus τ is not correct

Example 2: Let τ(!) = SPP , τ(?) = RTT .

a smallest counter-example for correctness is !0 || ?0 || !?!1

neither may- nor should-convergent (and thus must-divergent) in PISIMPLE

translation SPP0 ||RTT0 ||SPPRTTSPP1 is may-convergent in CHSIMPLE:
order of command-execution:

S P P 0 || R T T 0 || S P P R T T S P P 1
6 9 3 4 13 1 2 5 7 8 10 11 12 14

D. Sabel | Impossible Translations | WPTE 2020 11/17 Introduction Problem Translations Main Result Variations Conclusion

Main Result: Impossibility of a Correct Translation

Main Theorem

There are no modular correct SRU-translations from PISIMPLE into CHSIMPLE.

Proof: Illustrated in the remainder of the talk.

Corollary

There are no modular correct translations from the pi-calculus with Stop into CH , where the
translations uses only one check-MVar per channel.

This holds, since a correct translation could be transformed into a correct SRU-translation
from PISIMPLE to CHSIMPLE which does not exist.

D. Sabel | Impossible Translations | WPTE 2020 12/17 Introduction Problem Translations Main Result Variations Conclusion

Refuting Correctness of All SRU-Translations

The proof of impossibility is supported by our implemented tool:

Refute-Regex (https://gitlab.com/davidsabel/refute-regex)

can execute PISIMPLE and CHSIMPLE programs

can refute correctness of translations by searching for counter-examples

can refute whole sets of translations represented by regular expressions
(by executing prefixes of the translations and partial unfolding of the regular expressions)

regular expressions are built by
λ,P, T, S,R, 0, 1,w1w2,w+,w∗,w1|w2, M for “more” (representing (P |T)∗)

uses an external regex library to check containment of regular expressions

D. Sabel | Impossible Translations | WPTE 2020 13/17 Introduction Problem Translations Main Result Variations Conclusion

https://gitlab.com/davidsabel/refute-regex

Outline of the Proof

Some general properties of correct SRU-translations τ are used in all other proofs:

The number of P -s is the same as the number of T -s in the multiset-union τ(!) ∪ τ(?).

τ(!) || τ(?) can be executed without any deadlock until the process is empty.

There are no correct translations τ with |τ(!)|+ |τ(?)| ≤ 10

(this is shown by Refute-Regex, 12193 translations are refuted, using 10
counter-example processes)

D. Sabel | Impossible Translations | WPTE 2020 14/17 Introduction Problem Translations Main Result Variations Conclusion

Outline of the Proof (2)

Fix the notation for an SRU-translation τ(!) = s1Ss2 and τ(?) = r1Rr2.

The proof argues on the form of the prefixes s1 and r1

allowed forms for s1, r1:

s1,r1 ∈ {P, T}∗

s1,r1 ∈ {(PT)∗, (TP)∗,
(PT)∗P, (TP)∗T}

s1,r1 ∈ {(PT)∗, (TP)∗}

s1, r1 ∈ ∅

Initially, everything is possible.

Proposition: If τ is correct, then neither PP nor TT
occurs in s1 or r1

Proposition: If τ is correct, s1 6∈ {(PT)nP, (TP)nT},
and r1 6∈ {(PT)nP, (TP)nT}

Proposition: τ is not correct for the translation patterns
τ(!) = (PT)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (PT)nSs2 and τ(?) = (TP)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (TP)mRr2,

Proof uses generic counter-example processes of the form

!1 || . . . || !1︸ ︷︷ ︸
sufficiently many

copies of !1

|| ?0 and ?1 || . . . || ?1︸ ︷︷ ︸
sufficiently many

copies of ?1

|| !0

Proof uses the lemmas:

Lemma: Let τ(!) = (PT)nSP ks3 and τ(?) = RT hr3, where n ≥ 0, h, k ≥ 2,
h+k ≥ 5, s3 does not start with P , r3 does not start with T . Then τ is not correct.

Lemma: Let τ(!) = (PT)nST ks3 and τ(?) = RP hr3, where n ≥ 0, h, k ≥ 2. Then
τ is not correct.

D. Sabel | Impossible Translations | WPTE 2020 15/17 Introduction Problem Translations Main Result Variations Conclusion

Outline of the Proof (2)

Fix the notation for an SRU-translation τ(!) = s1Ss2 and τ(?) = r1Rr2.

The proof argues on the form of the prefixes s1 and r1

allowed forms for s1, r1:

s1,r1 ∈ {P, T}∗

s1,r1 ∈ {(PT)∗, (TP)∗,
(PT)∗P, (TP)∗T}

s1,r1 ∈ {(PT)∗, (TP)∗}

s1, r1 ∈ ∅

Initially, everything is possible.

Proposition: If τ is correct, then neither PP nor TT
occurs in s1 or r1

Proposition: If τ is correct, s1 6∈ {(PT)nP, (TP)nT},
and r1 6∈ {(PT)nP, (TP)nT}

Proposition: τ is not correct for the translation patterns
τ(!) = (PT)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (PT)nSs2 and τ(?) = (TP)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (TP)mRr2,

Proof uses generic counter-example processes of the form

!1 || . . . || !1︸ ︷︷ ︸
sufficiently many

copies of !1

|| ?0 and ?1 || . . . || ?1︸ ︷︷ ︸
sufficiently many

copies of ?1

|| !0

Proof uses the lemmas:

Lemma: Let τ(!) = (PT)nSP ks3 and τ(?) = RT hr3, where n ≥ 0, h, k ≥ 2,
h+k ≥ 5, s3 does not start with P , r3 does not start with T . Then τ is not correct.

Lemma: Let τ(!) = (PT)nST ks3 and τ(?) = RP hr3, where n ≥ 0, h, k ≥ 2. Then
τ is not correct.

D. Sabel | Impossible Translations | WPTE 2020 15/17 Introduction Problem Translations Main Result Variations Conclusion

Outline of the Proof (2)

Fix the notation for an SRU-translation τ(!) = s1Ss2 and τ(?) = r1Rr2.

The proof argues on the form of the prefixes s1 and r1

allowed forms for s1, r1:

s1,r1 ∈ {P, T}∗

s1,r1 ∈ {(PT)∗, (TP)∗,
(PT)∗P, (TP)∗T}

s1,r1 ∈ {(PT)∗, (TP)∗}

s1, r1 ∈ ∅

Initially, everything is possible.

Proposition: If τ is correct, then neither PP nor TT
occurs in s1 or r1

Proposition: If τ is correct, s1 6∈ {(PT)nP, (TP)nT},
and r1 6∈ {(PT)nP, (TP)nT}

Proposition: τ is not correct for the translation patterns
τ(!) = (PT)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (PT)nSs2 and τ(?) = (TP)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (TP)mRr2,

Proof uses generic counter-example processes of the form

!1 || . . . || !1︸ ︷︷ ︸
sufficiently many

copies of !1

|| ?0 and ?1 || . . . || ?1︸ ︷︷ ︸
sufficiently many

copies of ?1

|| !0

Proof uses the lemmas:

Lemma: Let τ(!) = (PT)nSP ks3 and τ(?) = RT hr3, where n ≥ 0, h, k ≥ 2,
h+k ≥ 5, s3 does not start with P , r3 does not start with T . Then τ is not correct.

Lemma: Let τ(!) = (PT)nST ks3 and τ(?) = RP hr3, where n ≥ 0, h, k ≥ 2. Then
τ is not correct.

D. Sabel | Impossible Translations | WPTE 2020 15/17 Introduction Problem Translations Main Result Variations Conclusion

Outline of the Proof (2)

Fix the notation for an SRU-translation τ(!) = s1Ss2 and τ(?) = r1Rr2.

The proof argues on the form of the prefixes s1 and r1

allowed forms for s1, r1:

s1,r1 ∈ {P, T}∗

s1,r1 ∈ {(PT)∗, (TP)∗,
(PT)∗P, (TP)∗T}

s1,r1 ∈ {(PT)∗, (TP)∗}

s1, r1 ∈ ∅

Initially, everything is possible.

Proposition: If τ is correct, then neither PP nor TT
occurs in s1 or r1

Proposition: If τ is correct, s1 6∈ {(PT)nP, (TP)nT},
and r1 6∈ {(PT)nP, (TP)nT}

Proposition: τ is not correct for the translation patterns
τ(!) = (PT)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (PT)nSs2 and τ(?) = (TP)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (TP)mRr2,

Proof uses generic counter-example processes of the form

!1 || . . . || !1︸ ︷︷ ︸
sufficiently many

copies of !1

|| ?0 and ?1 || . . . || ?1︸ ︷︷ ︸
sufficiently many

copies of ?1

|| !0

Proof uses the lemmas:

Lemma: Let τ(!) = (PT)nSP ks3 and τ(?) = RT hr3, where n ≥ 0, h, k ≥ 2,
h+k ≥ 5, s3 does not start with P , r3 does not start with T . Then τ is not correct.

Lemma: Let τ(!) = (PT)nST ks3 and τ(?) = RP hr3, where n ≥ 0, h, k ≥ 2. Then
τ is not correct.

D. Sabel | Impossible Translations | WPTE 2020 15/17 Introduction Problem Translations Main Result Variations Conclusion

Outline of the Proof (2)

Fix the notation for an SRU-translation τ(!) = s1Ss2 and τ(?) = r1Rr2.

The proof argues on the form of the prefixes s1 and r1

allowed forms for s1, r1:

s1,r1 ∈ {P, T}∗

s1,r1 ∈ {(PT)∗, (TP)∗,
(PT)∗P, (TP)∗T}

s1,r1 ∈ {(PT)∗, (TP)∗}

s1, r1 ∈ ∅

Initially, everything is possible.

Proposition: If τ is correct, then neither PP nor TT
occurs in s1 or r1

Proposition: If τ is correct, s1 6∈ {(PT)nP, (TP)nT},
and r1 6∈ {(PT)nP, (TP)nT}

Proposition: τ is not correct for the translation patterns
τ(!) = (PT)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (PT)nSs2 and τ(?) = (TP)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (TP)mRr2,

Proof uses generic counter-example processes of the form

!1 || . . . || !1︸ ︷︷ ︸
sufficiently many

copies of !1

|| ?0 and ?1 || . . . || ?1︸ ︷︷ ︸
sufficiently many

copies of ?1

|| !0

Proof uses the lemmas:

Lemma: Let τ(!) = (PT)nSP ks3 and τ(?) = RT hr3, where n ≥ 0, h, k ≥ 2,
h+k ≥ 5, s3 does not start with P , r3 does not start with T . Then τ is not correct.

Lemma: Let τ(!) = (PT)nST ks3 and τ(?) = RP hr3, where n ≥ 0, h, k ≥ 2. Then
τ is not correct.

D. Sabel | Impossible Translations | WPTE 2020 15/17 Introduction Problem Translations Main Result Variations Conclusion

Outline of the Proof (2)

Fix the notation for an SRU-translation τ(!) = s1Ss2 and τ(?) = r1Rr2.

The proof argues on the form of the prefixes s1 and r1

allowed forms for s1, r1:

s1,r1 ∈ {P, T}∗

s1,r1 ∈ {(PT)∗, (TP)∗,
(PT)∗P, (TP)∗T}

s1,r1 ∈ {(PT)∗, (TP)∗}

s1, r1 ∈ ∅

Initially, everything is possible.

Proposition: If τ is correct, then neither PP nor TT
occurs in s1 or r1

Proposition: If τ is correct, s1 6∈ {(PT)nP, (TP)nT},
and r1 6∈ {(PT)nP, (TP)nT}

Proposition: τ is not correct for the translation patterns
τ(!) = (PT)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (PT)nSs2 and τ(?) = (TP)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (TP)mRr2,

Proof uses generic counter-example processes of the form

!1 || . . . || !1︸ ︷︷ ︸
sufficiently many

copies of !1

|| ?0 and ?1 || . . . || ?1︸ ︷︷ ︸
sufficiently many

copies of ?1

|| !0

Proof uses the lemmas:

Lemma: Let τ(!) = (PT)nSP ks3 and τ(?) = RT hr3, where n ≥ 0, h, k ≥ 2,
h+k ≥ 5, s3 does not start with P , r3 does not start with T . Then τ is not correct.

Lemma: Let τ(!) = (PT)nST ks3 and τ(?) = RP hr3, where n ≥ 0, h, k ≥ 2. Then
τ is not correct.

D. Sabel | Impossible Translations | WPTE 2020 15/17 Introduction Problem Translations Main Result Variations Conclusion

Outline of the Proof (2)

Fix the notation for an SRU-translation τ(!) = s1Ss2 and τ(?) = r1Rr2.

The proof argues on the form of the prefixes s1 and r1

allowed forms for s1, r1:

s1,r1 ∈ {P, T}∗

s1,r1 ∈ {(PT)∗, (TP)∗,
(PT)∗P, (TP)∗T}

s1,r1 ∈ {(PT)∗, (TP)∗}

s1, r1 ∈ ∅

Initially, everything is possible.

Proposition: If τ is correct, then neither PP nor TT
occurs in s1 or r1

Proposition: If τ is correct, s1 6∈ {(PT)nP, (TP)nT},
and r1 6∈ {(PT)nP, (TP)nT}

Proposition: τ is not correct for the translation patterns
τ(!) = (PT)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (PT)nSs2 and τ(?) = (TP)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (TP)mRr2,

Proof uses generic counter-example processes of the form

!1 || . . . || !1︸ ︷︷ ︸
sufficiently many

copies of !1

|| ?0 and ?1 || . . . || ?1︸ ︷︷ ︸
sufficiently many

copies of ?1

|| !0

Proof uses the lemmas:

Lemma: Let τ(!) = (PT)nSP ks3 and τ(?) = RT hr3, where n ≥ 0, h, k ≥ 2,
h+k ≥ 5, s3 does not start with P , r3 does not start with T . Then τ is not correct.

Lemma: Let τ(!) = (PT)nST ks3 and τ(?) = RP hr3, where n ≥ 0, h, k ≥ 2. Then
τ is not correct.

D. Sabel | Impossible Translations | WPTE 2020 15/17 Introduction Problem Translations Main Result Variations Conclusion

Outline of the Proof (2)

Fix the notation for an SRU-translation τ(!) = s1Ss2 and τ(?) = r1Rr2.

The proof argues on the form of the prefixes s1 and r1

allowed forms for s1, r1:

s1,r1 ∈ {P, T}∗

s1,r1 ∈ {(PT)∗, (TP)∗,
(PT)∗P, (TP)∗T}

s1,r1 ∈ {(PT)∗, (TP)∗}

s1, r1 ∈ ∅

Initially, everything is possible.

Proposition: If τ is correct, then neither PP nor TT
occurs in s1 or r1

Proposition: If τ is correct, s1 6∈ {(PT)nP, (TP)nT},
and r1 6∈ {(PT)nP, (TP)nT}

Proposition: τ is not correct for the translation patterns
τ(!) = (PT)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (PT)nSs2 and τ(?) = (TP)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (PT)mRr2,
τ(!) = (TP)nSs2 and τ(?) = (TP)mRr2,

Proof uses generic counter-example processes of the form

!1 || . . . || !1︸ ︷︷ ︸
sufficiently many

copies of !1

|| ?0 and ?1 || . . . || ?1︸ ︷︷ ︸
sufficiently many

copies of ?1

|| !0

Proof uses the lemmas:

Lemma: Let τ(!) = (PT)nSP ks3 and τ(?) = RT hr3, where n ≥ 0, h, k ≥ 2,
h+k ≥ 5, s3 does not start with P , r3 does not start with T . Then τ is not correct.

Lemma: Let τ(!) = (PT)nST ks3 and τ(?) = RP hr3, where n ≥ 0, h, k ≥ 2. Then
τ is not correct.

D. Sabel | Impossible Translations | WPTE 2020 15/17 Introduction Problem Translations Main Result Variations Conclusion

Variants of CHSIMPLE

Theorem

There are no correct PT-only translations, where in PT-only translation no S and R are
permitted.

Proof: Similar case-distinction as in the previous proof

Theorem (Correct Translations)

Let CHSIMPLEi be like CHSIMPLE, but with i copies of P, T (each with their own MVar)

A correct modular SRU-translation from PISIMPLE→ CHSIMPLE2 is

τ(!) = P1ST2T1 and τ(?) = RP2.

A correct modular PT-only translation from PISIMPLE→ CHSIMPLE3 is

τ(!) = P1P3T2T1 and τ(?) = T3P2.

D. Sabel | Impossible Translations | WPTE 2020 16/17 Introduction Problem Translations Main Result Variations Conclusion

Variants of CHSIMPLE

Theorem

There are no correct PT-only translations, where in PT-only translation no S and R are
permitted.

Proof: Similar case-distinction as in the previous proof

Theorem (Correct Translations)

Let CHSIMPLEi be like CHSIMPLE, but with i copies of P, T (each with their own MVar)

A correct modular SRU-translation from PISIMPLE→ CHSIMPLE2 is

τ(!) = P1ST2T1 and τ(?) = RP2.

A correct modular PT-only translation from PISIMPLE→ CHSIMPLE3 is

τ(!) = P1P3T2T1 and τ(?) = T3P2.

D. Sabel | Impossible Translations | WPTE 2020 16/17 Introduction Problem Translations Main Result Variations Conclusion

Conclusion

solved an open question on the existence/nonexistence of correct modular translations
from the pi-calculus into CH, with special question on the number of check-MVars

two check-MVars are sufficient, one is insufficient

seems to be a sharp boundary between synchronous and asynchronous communication
in concurrent calculi

Future work

consider further cases and variations

formulate the result more independent from CH,
perhaps replace MVars by locks?

D. Sabel | Impossible Translations | WPTE 2020 17/17 Introduction Problem Translations Main Result Variations Conclusion

	Introduction
	Problem
	Translations
	Main Result
	Variations
	Conclusion

