LUDWIG-
MAXIMILIANS-
UNIVERSITAT

MUNCHEN

On Impossibility of Simple Modular Translations
of Concurrent Calculi

Manfred Schmidt-SchauB David Sabel
Goethe-University Frankfurt LMU Munich

WPTE 2020
June 29, 2020

e‘ ©0]0) This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License.
Tam https://creativecommons.org/licenses/by-nd/3.0/

https://creativecommons.org/licenses/by-nd/3.0/

General Motivation

@ We are interested in the correctness of translations between programming languages

@ In particular we consider concurrent programming languages
@ We focus correctness w.r.t. observational semantics

@ Motivations for considering these questions:

@ expressivity: can language B express language A7

@ correctness of implementations:
is the implementation of concurrency primitives of A in language B correct?

D. Sabel | Impossible Translations | WPTE 2020 2/17 Introduction Problem Translations Main Result Variations Conclusion

Motivation and Overview of this Work

@ open problem in previous work:

is there a particular small correct translation
from the m-calculus into Concurrent Haskell?

o the conjecture was that such a translation does not exist,
but we did not find a proof

Motivation and Overview of this Work

@ open problem in previous work:

is there a particular small correct translation
from the m-calculus into Concurrent Haskell?

o the conjecture was that such a translation does not exist,
but we did not find a proof

In this work:
@ we prove the conjecture
@ method: consider a simpler problem using simpler languages
@ we show impossibility of a correct translation for the simple languages

@ this implies impossibility of a correct translation for the original problem

D. Sabel | Impossible Translations | WPTE 2020 3/17 Introduction Problem Translations Main Result Variations Conclusion

The Original Problem

In previous work, we analyzed translations from the m-calculus to Concurrent Haskell

T

The Original Problem

In previous work, we analyzed translations from the m-calculus to Concurrent Haskell

-
m-calculus with Stop CH (core language of Concurrent Haskell)
@ process calculus o functional language extended by threads and
o message-passing model MVars for communication and synchronization
@ synchronous communication o shared-memory model
o sending message z over channel z: @ MVars are one-place buffers: full or empty

@ monadic operations on MVars:

takeMVar x | zme — returne | am—
putMvar z e | tm— — return () | xme
takeMVar x | z m — blocks

@ Stop-constant to signal success putMVar z e | z me blocks

D. Sabel | Impossible Translations | WPTE 2020 4/17 Introduction Problem Translations Main Result Variations Conclusion

Zz.P | 2(y).Q — P Qlz/y]
e e e

sender receiver

The Original Problem (2)

Our correct translation encodes communication zz.P | z(y).QQ — P | Q[z/y] using

@ one MVar for exchanging the message
@ two additional check-MVars for synchronization
@ check-MVar: MVar with content ()

Conjecture [SSS2020] J

Two check-MVars are necessary.

In this work: we prove the conjecture, by transferring the problem:

H T M

D. Sabel | Impossible Translations | WPTE 2020 5/17 Introduction Problem Translations Main Result Variations Conclusion

The Simple Language: PISIMPLE

Subprocesses U = 0 (silent process)
| 1 (success)
| U (output)
| U (input)
Processes: P == U | UIP (parallel composition)

where | is associative and commutative and 0 | P =P

. . PI
Operational semantics: Uy | 27Uy | P LIS, U s I'P

Successful process: 1| P

Examples: 210 1111120 225 10111120 2255 011110 not successful

2011111720 225 21011110 225 101110 successful

The Simple Languages: CHSIMPLE

Subprocesses U = 0 (silent process)
| 1 (success)
| Su (send)
| RU (receive)
| PU (put)
| TU (take)
Processes: P == U | UIP (parallel composition)

where | is associative and commutative and 0 | P =P
State: (P, My, Ms) where My, My € {full, 0}

Mj is the send-receive-MVar,
M, is the check-MVar

The Simple Languages: CHSIMPLE (2)

Successful state: (1 | P, My, Ma)

Operational Semantics: (SU | P, 0, M) s, (U | P, full, My)
(RU | P, full, My) <5 W1 P,0,M,)
(PUIP, M, 0) <5 U P, M, full)
(TU | P, My, full) <55 U1 P, My, 0)

Example:
(STO0 | RP1,0,0) <55 (T0 | RP1, full,0) <2 (T0 1 P1,0,0) < (T0 1 1,0, full) success

Simple Modular Translations

A modular translation 7 : PISIMPLE — CHSIMPLE is a homomorphism on the languages,
and defined by the mappings:

T =Sow 7)) =1y 7(l)=1 70)=0 7(1)=1

where sS4, is a string over {P, T, S}, and ry, is a string over {P, T, R}.
7 is an SRU-translation iff
@ Syt contains exactly one occurrence of S and
@ r;, contains exactly one occurrence of R
A modular translation can be described by a translation pair (7(!), 7(?)) = (Sout, T'in)
Example: (7(!),7(?)) = (SPP,RTT)
Then, for instance 7(!70 | 7!111!0) = SPPRTTO | RTTSPPO | SPPO

D. Sabel | Impossible Translations | WPTE 2020 9/17 Introduction Problem Translations Main Result Variations Conclusion

Correctness w.r.t. Observational Semantics

Observations: May- and Should-Convergence

PISIMPLE-process P is

. PI
@ may-convergent iff P PISx 1) pr

@ should-convergent iff VP’ : P £I—Sik—> P’ = P’ is may-convergent

Analogous notions are defined for CHSIMPLE processes P using 5,

Correctness of Translations
A translation 7 is correct, if it is convergence equivalent, i.e. for all P € PISIMPLE:

@ P is may-convergent iff 7(P) is may-convergent, and

@ P is should-convergent iff 7(P) is should-convergent.

Examples

Example 1: Let 7(!) =S, 7(?) = R
@ the process !71 is deadlocked in PISIMPLE
o 7(I71) = SRl is should- convergent in CHSIMPLE:
(SR1,0,0) <25 (R1, full,0) <5 (1, full, 0)

@ thus 7 is not correct

Example 2: Let 7(!) = SPP, 7(?) = RTT.
@ a smallest counter-example for correctness is !0 | 70 | 1711
@ neither may- nor should-convergent (and thus must-divergent) in PISIMPLE

@ translation SPP0 | RTT0O | SPPRTTSPP1 is may-convergent in CHSIMPLE:

order of command-execution:
SPPOIl RTT Ol SPPRTT S P P1
69 3413 1257810111214

D. Sabel | Impossible Translations | WPTE 2020 11/17 Introduction Problem Translations Main Result Variations Conclusion

Main Result: Impossibility of a Correct Translation

Main Theorem
There are no modular correct SRU-translations from PISIMPLE into CHSIMPLE.

Proof: lllustrated in the remainder of the talk.

Corollary
There are no modular correct translations from the pi-calculus with Stop into CH, where the
translations uses only one check-MVar per channel.

v

This holds, since a correct translation could be transformed into a correct SRU-translation
from PISIMPLE to CHSIMPLE which does not exist.

D. Sabel | Impossible Translations | WPTE 2020 12/17 Introduction Problem Translations Main Result Variations Conclusion

Refuting Correctness of All SRU-Translations

The proof of impossibility is supported by our implemented tool:
Refute-Regex (https://gitlab.com/davidsabel/refute-regex)

@ can execute PISIMPLE and CHSIMPLE programs

@ can refute correctness of translations by searching for counter-examples

@ can refute whole sets of translations represented by regular expressions
(by executing prefixes of the translations and partial unfolding of the regular expressions)

@ regular expressions are built by
MNP, T,S R,0,1,wiwe,w™ ,w* ,wi|wy, M for “more” (representing (P|T)*)

@ uses an external regex library to check containment of regular expressions

D. Sabel | Impossible Translations | WPTE 2020 13/17 Introduction Problem Translations Main Result Variations Conclusion

https://gitlab.com/davidsabel/refute-regex

Outline of the Proof

Some general properties of correct SRU-translations 7 are used in all other proofs:
@ The number of P-s is the same as the number of T-s in the multiset-union 7(!) U 7(7).
o 7(!) | 7(7) can be executed without any deadlock until the process is empty.

@ There are no correct translations 7 with |7(1)| + |7(7)] < 10

(this is shown by Refute-Regex, 12193 translations are refuted, using 10
counter-example processes)

D. Sabel | Impossible Translations | WPTE 2020 14/17 Introduction Problem Translations Main Result Variations Conclusion

Outline of the Proof (2)

Fix the notation for an SRU-translation 7(!) = s;Ss2 and 7(7) = 1 Rrs.

The proof argues on the form of the prefixes s; and ry

Outline of the Proof (2)

Fix the notation for an SRU-translation 7(!) = s;Ss2 and 7(7) = 1 Rrs.

The proof argues on the form of the prefixes s; and ry

allowed forms for s1,71:

Initially, everything is possible. s1,r1 € {P,T}*

Outline of the Proof (2)

Fix the notation for an SRU-translation 7(!) = s;Ss2 and 7(7) = 1 Rrs.

The proof argues on the form of the prefixes s; and r;

allowed forms for s1,71:
Initially, everything is possible. s1,r1 € {P, T}

Proposition: If 7 is correct, then neither PP nor T'T
occurs in s1 or rq

Proof uses generic counter-example processes of the form

] ...11 170 and 711 ... 171110
—_——— —_——
sufficiently many sufficiently many
copies of I1 copies of 71

D. Sabel | Impossible Translations | WPTE 2020 15/17 Introduction Problem Translations Main Result Variations Conclusion

Outline of the Proof (2)

Fix the notation for an SRU-translation 7(!) = s;Ss2 and 7(7) = 1 Rrs.

The proof argues on the form of the prefixes s; and ry

allowed forms for s1,71:

Initially, everything is possible. s1,r1 € {P,T}*
Proposition: If 7 is correct, then neither PP nor T'T s1,r1 € {(PT)*,(T'P)*,
occurs in s1 or rq (PT)*P,(TP)*T}

Outline of the Proof (2)

Fix the notation for an SRU-translation 7(!) = s;Ss2 and 7(7) = 1 Rrs.

The proof argues on the form of the prefixes s; and ry

allowed forms for s1,71:

Initially, everything is possible. s1,r1 € {P,T}*
Proposition: If 7 is correct, then neither PP nor T'T s1,r1 € {(PT)*,(T'P)*,
occurs in s1 or 71 (PT)"P,(TP)"T}

Proposition: If 7 is correct, s1 & {(PT)"P,(TP)"T},
and r & {(PT)"P,(TP)"T}

Outline of the Proof (2)

Fix the notation for an SRU-translation 7(!) = s;Ss2 and 7(7) = 1 Rrs.

The proof argues on the form of the prefixes s; and ry

allowed forms for s1,71:

Initially, everything is possible. s1,r1 € {P,T}*

Proposition: If 7 is correct, then neither PP nor T'T s1,r1 € {(PT)*,(T'P)*,
occurs in s1 or 71 (PT)"P,(TP)"T}

Proposition: If 7 is correct, s1 & {(PT)"P,(TP)"T}, . .
and g {(PT)TLP’ (TP)nT} 51,71 € {(PT) 7(TP) }

Outline of the Proof (2)

Fix the notation for an SRU-translation 7(!) = s1Ss2 and 7(7) = r1 Rro.

The

Proof uses the lemmas:

Initi Lemma: Let 7(!) = (PT)"SP*s3 and 7(?) = RT"r3, where n > 0, h,k > 2,
h+k > 5, s3 does not start with P, r3 does not start with 7". Then 7 is not correct.
Pro
Lemma: Let 7(!) = (PT)"ST*s3 and 7(?) = RP"r3, where n >0, h,k > 2. Then

T is not correct.
Pro

dima 771 ¢ 1\{1%/,\1f) 1]
Proposition: 7 is not correct for the translation patterns
o7(!) = (PT)"Ssg and 7(?) = (PT)"Rra,
o7(!) = (PT)"Ssgand 7(?) = (TP)™Rra,
o7(!)=(T'P)"Ssgand 7(?) = (PT)"Rra,
o7(!)=(TP)"Ssgand 7(?) = (TP)"Rra,
15/17 Introduction Problem Translations Main Result Variations Conclusion

Outline of the Proof (2)

Fix the notation for an SRU-translation 7(!) = s;Ss2 and 7(7) = 1 Rrs.

The proof argues on the form of the prefixes s; and ry
allowed forms for s1,71:

Initially, everything is possible. s1,r1 € {P, T}
Proposition: If 7 is correct, then neither PP nor T'T s1,r1 € {(PT)*,(T'P)*,
occurs in $j or rq (PT)*P,(TP)*T}

Proposition: If 7 is correct, s1 & {(PT)"P,(TP)"T},
and ry &€ {(PT)"P,(TP)"T}

Proposition: 7 is not correct for the translation patterns
07-() = (PT)"Ssz and 7(7) = (PT)™ Rra,

si,r1 € {(PT)*, (TP)*}

() = (PT)"SSQ and T(?) (P)mRTQ,
7(!) = (T'P)"Ssg and 7(?) = (PT)™Rr,
7(1) = (T'P)"Ssg and 7(?) = (T P)™Rrs, s1,71 €0 0

D. Sabel | Impossible Translations | WPTE 2020 15/17 Introduction Problem Translations Main Result Variations Conclusion

Variants of CHSIMPLE

Theorem

There are no correct PT-only translations, where in PT-only translation no S and R are
permitted.

Proof: Similar case-distinction as in the previous proof

Variants of CHSIMPLE

Theorem

There are no correct PT-only translations, where in PT-only translation no S and R are
permitted.

Proof: Similar case-distinction as in the previous proof

Theorem (Correct Translations)
Let CHSIMPLE; be like CHSIMPLE, but with i copies of P,T" (each with their own MVar)
@ A correct modular SRU-translation from PISIMPLE — CHSIMPLE, is
7(!) = PLSTYTy and 7(7) = RPx.

@ A correct modular PT-only translation from PISIMPLE — CHSIMPLE; is
7'(') = P1P3T2T1 and 7'(7) = T3P2.

D. Sabel | Impossible Translations | WPTE 2020 16/17 Introduction Problem Translations Main Result Variations Conclusion

Conclusion

@ solved an open question on the existence/nonexistence of correct modular translations
from the pi-calculus into CH, with special question on the number of check-MVars

@ two check-MVars are sufficient, one is insufficient
@ seems to be a sharp boundary between synchronous and asynchronous communication

in concurrent calculi

Future work

@ consider further cases and variations

o formulate the result more independent from CH,
perhaps replace MVars by locks?

D. Sabel | Impossible Translations | WPTE 2020 17/17 Introduction Problem Translations Main Result Variations Conclusion

	Introduction
	Problem
	Translations
	Main Result
	Variations
	Conclusion

