

Matching of Meta-Expressions with Recursive Bindings

David Sabel

Goethe-University Frankfurt am Main, Germany

UNIF 2017, Oxford, UK

†Research supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1.

- automated reasoning on programs and program transformations w.r.t. operational semantics
- **•** for program calculi with higher-order constructs and recursive bindings, e.g. letrec-expressions:

letrec $x_1 = s_1; \ldots; x_n = s_n$ in t

extended call-by-need lambda calculi with letrec that model core languages of lazy functional programming languages like Haskell

Application: Correctness of Program Transformations **GORTHE AN**

Program transformation T is **correct** iff

 $\forall \ell \to r \in T: \forall$ contexts $C: C[\ell] \downarrow \iff C[r] \downarrow$

where \downarrow = successful evaluation w.r.t. standard reduction

Application: Correctness of Program Transformations **SOBTHI**

Program transformation T is **correct** iff

 $\forall \ell \to r \in T: \forall$ contexts $C: C[\ell] \downarrow \iff C[r] \downarrow$

where \downarrow successful evaluation w.r.t. standard reduction

Diagram method to show correctness of transformations:

- Compute overlaps between standard reductions and program transformations (requires unification, see [SSS16, PPDP])
- \bullet Join the overlaps \Rightarrow forking and commuting diagrams
- Induction using the diagrams (automatable, see [RSSS12, IJCAR])

Reduction contexts:

$$
A ::= [\cdot] | (A \ e)
$$

$$
R ::= A | \text{letrec} \ Env \text{ in } A | \text{letrec} \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env \text{ in } A[x_1]
$$

Standard-reduction rules and some program transformations:

(SR, lbeta) $R[(\lambda x.e_1) e_2] \rightarrow R$ [letrec $x = e_2$ in e_1] (SR, llet) letrec Env_1 in letrec Env_2 in $e \rightarrow$ letrec Env_1 , Env_2 in e (T,cpx) T[letrec $x = y$, Env in $C[x] \rightarrow T$ [letrec $x = y$, Env in $C[y]$] (T,gc) $T[\text{letrec } Env \text{ in } e] \rightarrow T[e]$ if $LetVars(Env) \cap FV(e) = \emptyset$

Reduction contexts:

$$
A ::= [\cdot] | (A \ e)
$$

$$
R ::= A | \text{letrec} \ Env \text{ in } A | \text{letrec} \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, \text{Env in } A[x_1]
$$

Standard-reduction rules and some program transformations:

(SR, lbeta) $R[(\lambda x.e_1) e_2] \rightarrow R$ [letrec $x = e_2$ in e_1] (SR, llet) letrec Env_1 in letrec Env_2 in $e \rightarrow$ letrec Env_1 , Env_2 in e (T,cpx) T[letrec $x = y$, Env in $C[x] \rightarrow T$ [letrec $x = y$, Env in $C[y]$] (T,gc) $T[\text{letrec } Env \text{ in } e] \rightarrow T[e]$ if $LetVars(Env) \cap FV(e) = \emptyset$

- contexts of different classes
- environments Env_i ,
- environment chains $\{x_i{=}A_i[x_{i+1}]\}_{i=1}^{n-1}$

Reduction contexts:

$$
A ::= [\cdot] | (A \ e)
$$

$$
R ::= A | \text{letrec} \ Env \text{ in } A | \text{letrec} \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, \text{Env in } A[x_1]
$$

Standard-reduction rules and some program transformations:

(SR,lbeta)
$$
R[(\lambda x.e_1) e_2] \rightarrow R[\text{letrec } x = e_2 \text{ in } e_1]
$$

\n(SR,llet) **letrec** Env_1 **in letrec** Env_2 **in** $e \rightarrow \text{letrec}$ Env_1 , Env_2 **in** e
\n(T,cpx) $T[\text{letrec } x = y, Env \text{ in } C[x]] \rightarrow T[\text{letrec } x = y, Env \text{ in } C[y]]$
\n(T,gc) $T[\text{letrec}$ $Env \text{ in } e] \rightarrow T[e]$ **if** $LetVars(Env) \cap FV(e) = \emptyset$

- contexts of different classes
- environments Env_i ,
- environment chains $\{x_i{=}A_i[x_{i+1}]\}_{i=1}^{n-1}$

Reduction contexts:

$$
\begin{array}{l} A ::= \left[\cdot \right] \mid (A \; e) \\ R ::= A \mid \texttt{letrec}\mathit{Env} \text{ in } A \mid \texttt{letrec}\left\{ x_i = A_i [x_{i+1}] \right\}_{i=1}^{n-1}, x_n = A_n, \mathit{Env} \text{ in } A[x_1] \end{array}
$$

Standard-reduction rules and some program transformations:

(SR, lbeta) $R[(\lambda x.e_1) e_2] \rightarrow R$ [letrec $x = e_2$ in e_1] (SR, llet) letrec Env_1 in letrec Env_2 in $e \rightarrow$ letrec Env_1 , Env_2 in e (T,cpx) T[letrec $x = y$, Env in $C[x] \rightarrow T$ [letrec $x = y$, Env in $C[y]$] (T,gc) $T[\text{letrec } Env \text{ in } e] \rightarrow T[e]$ if $LetVars(Env) \cap FV(e) = \emptyset$

- contexts of different classes
- environments Env_i ,
- environment chains $\{x_i{=}A_i[x_{i+1}]\}_{i=1}^{n-1}$

Reduction contexts:

$$
A ::= [\cdot] | (A \ e)
$$

$$
R ::= A | \text{letrec } Env \text{ in } A | \text{letrec } \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env \text{ in } A[x_1]
$$

Standard-reduction rules and some program transformations:

(SR, lbeta) $R[(\lambda x.e_1) e_2] \rightarrow R$ [letrec $x = e_2$ in e_1] (SR, llet) letrec Env_1 in letrec Env_2 in $e \rightarrow$ letrec Env_1 , Env_2 in e (T,cpx) T[letrec $x = y$, Env in $C[x] \rightarrow T$ [letrec $x = y$, Env in $C[y]$] (T,gc) $T[\text{letrec } Env \text{ in } e] \rightarrow T[e]$ if $LetVars(Env) \cap FV(e) = \emptyset$

- contexts of different classes
- environments Env_i ,
- environment chains $\{x_i{=}A_i[x_{i+1}]\}_{i=1}^{n-1}$

Syntax of the Meta-Language LRSX

- Context variables D and Ch-variables have a context class $cl(D)$
- instances of $Ch[x, s]$: chains $x=D_1$ [var x₁]; x₁=D₂[var x₂]; . . . ; x_n=D_n[s] where D_i are contexts of class $cl(Ch)$.

Reduction contexts:

$$
A ::= [\cdot] | (A \ e)
$$

$$
R ::= A | \text{letrec} \ Env \text{ in } A | \text{letrec} \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, \text{Env in } A[x_1]
$$

Standard-reduction rules and some program transformations:

(SR,Ibeta)
$$
R[(\lambda x.e_1) e_2] \rightarrow R[\text{letrec } x = e_2 \text{ in } e_1]
$$

(SR, Het) letrec Env_1 in letrec Env_2 in $e \rightarrow$ letrec Env_1 , Env_2 in e

$$
(\mathsf{T}, \mathsf{cpx}) \qquad T[\mathtt{letrec}\ x = y, \mathit{Env}\ \mathtt{in}\ C[x]] \to T[\mathtt{letrec}\ x = y, \mathit{Env}\ \mathtt{in}\ C[y]]
$$

(T,gc) T[letrec Env in $e \rightarrow T[e]$ if $LetVars(Env) \cap FV(e) = \emptyset$

- \bullet (gc): Env must not be empty; side condition on variables
- \bullet (llet): $FV(Env_1) \cap LetVars(Env_2) = \emptyset$
- (cpx): x, y are not captured by C in $C[x]$

Reduction contexts:

$$
A ::= [\cdot] | (A \ e)
$$

$$
R ::= A | \text{letrec} \ Env \text{ in } A | \text{letrec} \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, \text{Env in } A[x_1]
$$

Standard-reduction rules and some program transformations:

(SR,Ibeta)
$$
R[(\lambda x.e_1) e_2] \rightarrow R[\text{letrec } x = e_2 \text{ in } e_1]
$$

(SR, llet) letrec Env_1 in letrec Env_2 in $e \rightarrow$ letrec Env_1 , Env_2 in e

$$
(\mathsf{T}, \mathsf{cpx}) \qquad T[\mathtt{letrec}\ x = y, \mathit{Env}\ \mathtt{in}\ C[x]] \to T[\mathtt{letrec}\ x = y, \mathit{Env}\ \mathtt{in}\ C[y]]
$$

(T,gc) T[letrec Env in $e \rightarrow T[e]$ if $LetVars(Env) \cap FV(e) = \emptyset$

- \bullet (gc): Env must not be empty; side condition on variables
- \bullet (llet): $FV(Env_1) \cap LetVars(Env_2) = \emptyset$
- (cpx): x, y are not captured by C in $C[x]$

Reduction contexts:

$$
A ::= [\cdot] | (A \ e)
$$

$$
R ::= A | \text{letrec} \ Env \text{ in } A | \text{letrec} \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, \text{Env in } A[x_1]
$$

Standard-reduction rules and some program transformations:

(SR, lbeta) $R[(\lambda x.e_1) e_2] \rightarrow R$ [letrec $x = e_2$ in e_1]

(SR, llet) letrec Env_1 in letrec Env_2 in $e \rightarrow$ letrec Env_1 , Env_2 in e

$$
(\mathsf{T}, \mathsf{cpx}) \qquad T[\mathtt{letrec}\ x = y, \mathit{Env}\ \mathtt{in}\ C[x]] \to T[\mathtt{letrec}\ x = y, \mathit{Env}\ \mathtt{in}\ C[y]]
$$

(T,gc) T[letrec Env in $e \rightarrow T[e]$ if $LetVars(Env) \cap FV(e) = \emptyset$

- \bullet (gc): Env must not be empty; side condition on variables
- \bullet (llet): $FV(Env_1) \cap LetVars(Env_2) = \emptyset$
- (cpx): x, y are not captured by C in $C[x]$

Reduction contexts:

$$
A ::= [\cdot] | (A \ e)
$$

$$
R ::= A | \text{letrec} \ Env \text{ in } A | \text{letrec} \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, \text{Env in } A[x_1]
$$

Standard-reduction rules and some program transformations:

(SR,Ibeta)
$$
R[(\lambda x.e_1) e_2] \rightarrow R[\text{letrec } x = e_2 \text{ in } e_1]
$$

(SR, Het) letrec Env_1 in letrec Env_2 in $e \rightarrow$ letrec Env_1 , Env_2 in e

- (T,cpx) T[letrec $x = y$, Env in $C[x] \rightarrow T$ [letrec $x = y$, Env in $C[y]$]
- (T,gc) $T[\text{letrec } Env \text{ in } e] \rightarrow T[e]$ if $LetVars(Env) \cap FVe = \emptyset$

- \bullet (gc): Env must not be empty; side condition on variables
- \bullet (llet): $FV(Env_1) \cap LetVars(Env_2) = \emptyset$
- (cpx): x, y are not captured by C in $C[x]$

Constrained Expressions

- A constraint tuple $\Delta = (\Delta_1, \Delta_2, \Delta_3)$ consists of Δ_1 : set of context variables (non-emp
	- (non-empty context constraint) Δ_2 : set of environment variables (non-empty environment constraint)
	- Δ_3 : set of pairs (s, d) (s an expression, d a context) (non-capture constraint)
- Ground substitution ρ satisfies $(\Delta_1, \Delta_2, \Delta_3)$ iff

$$
- \rho(D) \neq [\cdot] \text{ for all } D \in \Delta_1
$$

- $\rho(E) \neq \emptyset$ for all $E \in \Delta_2$
- − hole of $\rho(d)$ does not capture variables of $\rho(s)$, for all $(s, d) \in \Delta_3$

Constrained Expressions

• A constraint tuple $\Delta = (\Delta_1, \Delta_2, \Delta_3)$ consists of Δ_1 : set of context variables (non-emp

- (non-empty context constraint) Δ_2 : set of environment variables (non-empty environment constraint) Δ_3 : set of pairs (s, d) (s an expression, d a context) (non-capture constraint)
- Ground substitution ρ satisfies $(\Delta_1, \Delta_2, \Delta_3)$ iff

$$
-\;\rho(D)\neq[\cdot]\;\text{for all}\;D\in\Delta_1
$$

- $\rho(E) \neq \emptyset$ for all $E \in \Delta_2$
- − hole of $\rho(d)$ does not capture variables of $\rho(s)$, for all $(s, d) \in \Delta_3$
- A pair (s, Δ) is called a constrained expression $sem(s, \Delta) = \{ \rho(s) | \rho(s)$ fulfills LVC and ρ satisfies $\Delta \}$ $(LVC = let variable convention, binders of the same environment are different)$

Example:

s = letrec E_1 in letrec E_2 in S Δ = $(\emptyset, \{E_1, E_2\}, \{(\text{letrec } E_2 \text{ in } S, \text{letrec } E_1 \text{ in } [\cdot])\})$ $sem(s, \Delta)$ = nested letrec-expressions with unused outer environment

Computing Diagrams

- \bullet t₁, t₂ are meta-expressions restricted by constraints ∇
- computing joins $\stackrel{*}{\rightarrow}$ requires abstract rewriting by rewrite rules $\ell \rightarrow \Delta r$ with Δ restricting ℓ and r
- matching equations $\ell \leq t$ together with constraint tuples ∇, Δ
- a matcher σ may instantiate ℓ but not t, i.e. $\sigma(\ell) = t$
- \bullet *l* contains instantiable meta-variables and t contains fixed meta-variables, denoted by $MV_I(\cdot)$ and $MV_F(\cdot)$

- A letrec matching problem is a tuple $P=(\Gamma, \Delta, \nabla)$ where
	- Γ is a set of matching equations $s \leq t$ s.t. $MV_I(t) = \emptyset$
	- $\Delta = (\Delta_1, \Delta_2, \Delta_3)$ is a constraint tuple (needed constraints);
	- $\bullet \nabla = (\nabla_1, \nabla_2, \nabla_3)$ is a constraint tuple (given constraints), s.t. $MV_I(\nabla)=\emptyset$ and ∇ is satisfiable.

Occurrence restrictions for instantiable meta variables:

- **•** Each instantiable S-variable occurs at most twice in Γ
- **•** Each E -, Ch -, D -variable occurs at most once in Γ

Matcher of $P = (\Gamma, \Delta, \nabla)$

A substitution σ is a **matcher of** $P = (\Gamma, \Delta, \nabla)$ iff

- \bullet σ instantiates the instantiable variables and does not introduce new instantiable or fixed variables
- \bullet for any ground substitution ρ on $MV_F(P)$ that satisfies ∇ and where $\rho(\sigma(s))$ and $\rho(t)$ for $s \le t \in \Gamma$ fullfill the LVC:

$$
-\;\rho(\sigma(s))\sim_{let}\rho(t)\;\text{for all}\;s\trianglelefteq t\in\Gamma
$$

 $-$ the Λ -constraints hold

 $(\exists \rho_0$ with $Dom(\rho_0) = MV_I(\rho(\sigma(\Delta)))$ s.t. $\rho_0(\rho(\sigma(\Delta)))$ is satisfied.)

 \sim_{let} = syntactic equality upto permuting bindings in environments

Theorem (NP-Hardness)

The decision problem whether a matcher for a letrec matching problem exists is NP-hard.

Proof by a reduction from MONOTONE ONE-IN-THREE- 3 -SAT.

Sketch: For each clause $C_i = \{S_{i,1}, S_{i,2}, S_{i,3}\}\,$ add the matching equation

> letrec $Y_{i,1} = S_{i,1}$; $Y_{i,2} = S_{i,2}$; $Y_{i,3} = S_{i,3}$ in c \leq letrec $y_{i,1} = false$; $y_{i,2} = false$; $y_{i,3} = true$ in c

Intermediate **data structure** of the algorithm: $(Sol, \Gamma, \Delta, \nabla)$ where

- \bullet Sol is a computed substitution
- \bullet Γ is a set of equations
- \bullet ($\Delta_1, \Delta_2, \Delta_3$) are needed constraints
- \bullet ($\nabla_1, \nabla_2, \nabla_3$) are given constraints

Input:

For $P = (\Gamma, \Delta, \nabla)$, MatchLRS starts with $(Id, \Gamma, \Delta, \nabla)$

Output (on each branch): *Fail* or final state $(Sol, \emptyset, \Delta, \nabla)$

Inference rules of the form

State State₁ | \ldots | State_n

Rule application is non-deterministic:

- o don't care non-determinsm between the rules
- \bullet don't know non-determinism between State₁ | ... | State_n

Selection of Rules (1)

Solving an expression-variable:

$$
\frac{(Sol,\Gamma \cup \{S \trianglelefteq s\},\Delta)}{(Sol\circ \{S \mapsto s\},\Gamma[s/S],\Delta[s/S])}
$$

Decomposition of letrec:

$$
\frac{\Gamma \cup \{\text{letrec } env \text{ in } s \leq \text{letrec } env' \text{ in } t\}}{\Gamma \cup \{env \leq env', s \leq t\}}
$$

Prefix-rule for contexts: D' is a prefix of D

 $(Sol, \Gamma \cup \{D[s] \leq D'[s']\}, \Delta, \nabla)$ if $D \in \Delta_1 \iff D' \in \nabla_1$ $\overline{(Sol \circ \sigma, \Gamma \cup \{D''[s] \trianglelefteq s'\}, \Delta \sigma, \nabla)}$ and $cl(D') \leq cl(D)$ s.t. $\sigma = \{ D \mapsto D'[D''] \}, cl(D'') = cl(D)$

Selection of Rules (2)

 $(Sol, \Gamma \cup \{env \leq b; env'\}, \Delta, \nabla)$

 $|(Sol, \Gamma \cup \{b' \leq b, env'' \leq env'\}, \Delta, \nabla)$ $\forall b':env=b';env''$ $|\big| (Sol \circ \sigma, \Gamma \cup \{E';\text{env}'' \le \text{env}'\}, \Delta \sigma, \nabla)$ where $\sigma = \{E \mapsto b; E'\}$ $\forall E: env = E: env$ $|\left| \begin{array}{c} (Sol \circ \sigma, \Gamma \cup \{y.D[s] \leq b, env'' \leq env'\}, \Delta \sigma, \nabla) \\ \text{where } \sigma = \{ Ch[\cdot_1, \cdot_2] \mapsto [\cdot_1].D[\cdot_2] \} \text{ and } cl(D) = cl(C) \end{array} \right|$ $\forall Ch:env=Ch[y,s];env''$ where $\sigma = \{ \mathit{Ch}[\cdot_1, \cdot_2] \mapsto [\cdot_1] \mathit{D}[\cdot_2] \}$ and $cl(D) = cl(Ch)$ | $(Sol \circ \sigma, \Gamma \cup \{y.D[X] \leq b, Ch_2[X,s]; env'' \leq env'\}, \Delta \sigma, \nabla)$
where $\sigma = \{Ch[\cdot_1, \cdot_2] \mapsto [\cdot_1].D[X]; Ch_2[X, \cdot_2]\}, \, cl(D)=cl(Ch_2)=cl(O_1)$ $\forall Ch:env=Ch[u,s]:env''$ where $\sigma = \{Ch[\cdot_1,\cdot_2] \mapsto [\cdot_1].D[X];\, Ch_2[X,\cdot_2]\},\, cl(D){=}cl(Ch_2){=}cl(Ch)$ | $|(Sol \circ \sigma, \Gamma \cup \{Y = D_1[X] \leq b, Ch_1[y, D_2[Y]]; Ch_2[X, s]; env'' \leq env'\}, \Delta \sigma, \nabla)$

where $\sigma = \{Ch[\cdot_1, \cdot_2] \mapsto Ch_1[\cdot_1, D_2[Y]]; Y = D_1[X]; Ch_2[X, \cdot_2]\}, cl(D_i) = cl(Ch_i) = cl(Ch)$ $\forall Ch:env=Ch[y,s];env''$ where $\sigma {=}\{Ch[\cdot_1,\cdot_2]{\mapsto} Ch_1[\cdot_1,D_2[Y]]; Y = D_1[X]; Ch_2[X,\cdot_2]\},$ $cl(D_i){=}cl(Ch_i){=}cl(Ch)$ $|\begin{array}{c} |(Sol \circ \sigma, \Gamma \cup \{X_1 = D[s] \trianglelefteq b, Ch_1[y, D'[X_1]]; env'' ⊆ env'\}, Δσ, ∇) \text{ where } \sigma = \{Ch[\cdot_1, \cdot_2] \mapsto Ch_1[\cdot_1, D'[X_1]]; X_1.D[\cdot_2]\}, cl(D)=cl(D')=cl(Ch_1)=cl(Ch) \end{array}$ $\forall Ch:env=Ch[y,s];env''$ $\sigma = \{ Ch[\cdot_1, \cdot_2] \mapsto Ch_1[\cdot_1, D'[X_1]], X_1, D[\cdot_2] \}, \, cl(D)=cl(D')=cl(Ch_1)=cl(Ch)$

environment with at least one binding b on the rhs of the equation

Selection of Rules (2)

$$
\left|\n\begin{array}{l}\n\text{(Sol, }\Gamma\cup\{b'\leq b,\text{ env}^{\prime\prime}\leq b,\text{ env}^{\prime\prime}\leq b\text{ equals a binding }b'\text{ on the lhs}\\
\text{(Sol, }\sigma,\Gamma\cup\{E';\text{ env}^{\prime\prime}\leq b\text{ if }\sigma\}\leq\text{(Sol, }\sigma,\Gamma\cup\{E';\text{ env}^{\prime\prime}\leq b,\text{ env}^{\prime\prime}\leq b,\text{ env}^{\prime\prime}\leq\text{(In, }\sigma\}\leq\text{(In, }\sigma\})\\
\downarrow\text{(Sol, }\sigma,\Gamma\cup\{y.D[s]\leq b,\text{ env}^{\prime\prime}\leq\text{ env}^{\prime}\},\Delta\sigma,\nabla)\\
\downarrow\text{ where }\sigma=\{Ch[\cdot_1,\cdot_2]\mapsto[\cdot_1].D[\cdot_2]\}\text{ and }cl(D)=cl(Ch)\\
\forall Ch:\text{env}=Ch[y,s];\text{env}^{\prime\prime}\\
\downarrow\text{(Sol, }\sigma,\Gamma\cup\{y.D[X]\leq b\}\text{ is part of a chain variable }Ch\text{ on the lhs}\\
\downarrow\text{(Sol, }\sigma,\Gamma\cup\{y.D[X]\leq b,\text{ s.t. }\sigma\}\text{ is part of a chain variable }Ch\text{ is an initial value of }Ch\text{ is a minimum of }Ch\text
$$

environment with at least one binding b on the rhs of the equation

Failure Rules

Usual cases:

- \bullet Γ not empty, but no matching rule applicable Examples:
	- f s_1 ... $s_n \triangleleft q$ t_1 ... t_m , or
	- $D[s] \trianglelefteq D'[t]$ and $cl(D) < cl(D').$

Extraordinary cases:

- \bullet (Sol, \emptyset , Δ , ∇) but for some s in an input equation $s \trianglelefteq t$, $Sol(s)$ violates the LVC
- NCC-implication check fails:
	- check that given constraints ∇ imply needed constraints Δ
	- also infers constraints from the LVC for input expressions

Example: letrec $X_1 = S_1$; $X_2 = S_2$ in ... implies validity of the non-capture constraint (var $X_1, \lambda X_2$.

Theorem

 $MatchLRS$ is sound and complete, i.e.

- (soundness) if $MatchLRS$ delivers $S = (Sol, \emptyset, \Delta, \nabla)$ for input P, then Sol is a matcher of P; and
- (completeness) if $P = (\Gamma, \Delta, \nabla)$ has a matcher σ , then there exists an output $(\sigma, \emptyset, \Delta_S, \nabla_S)$ of $MatchLRS$ for input P.

Theorem

MatchLRS runs in NP-time.

The letrec matching problem is NP-complete.

- Sound and complete matching algorithm for LRSX
- Designed to represent program calculi with recursive bindings
- Letrec matching problem is NP-complete
- Automated computation of overlaps and joins for call-by-need core languages is possible Implementation: LRSX Tool (http://goethe.link/LRSXTOOL)

- Sound and complete matching algorithm for LRSX
- Designed to represent program calculi with recursive bindings
- Letrec matching problem is NP-complete
- Automated computation of overlaps and joins for call-by-need core languages is possible Implementation: LRSX Tool (http://goethe.link/LRSXTOOL)

Further work:

- join more cases by meta alpha-renaming (PPDP 2017, to appear)
- automated correctness of translations between program calculi