

Matching of Meta-Expressions with Recursive Bindings

David Sabel

Goethe-University Frankfurt am Main, Germany

UNIF 2017, Oxford, UK

[†]Research supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1.

- automated reasoning on programs and program transformations w.r.t. operational semantics
- for program calculi with higher-order constructs and recursive bindings, e.g. letrec-expressions:

letrec
$$x_1 = s_1; \ldots; x_n = s_n$$
 in t

 extended call-by-need lambda calculi with letrec that model core languages of lazy functional programming languages like Haskell

Application: Correctness of Program Transformations

Program transformation T is **correct** iff

$$\forall \ell \to r \in T : \forall \text{ contexts } C : C[\ell] \downarrow \iff C[r] \downarrow$$

where $\downarrow =$ successful evaluation w.r.t. standard reduction

Application: Correctness of Program Transformations SORTHER SO

Program transformation T is **correct** iff

$$\forall \ell \to r \in T : \forall \text{ contexts } C : C[\ell] \downarrow \iff C[r] \downarrow$$

where $\downarrow =$ successful evaluation w.r.t. standard reduction

Diagram method to show correctness of transformations:

- Compute overlaps between standard reductions and program transformations (requires unification, see [SSS16, PPDP])
- Join the overlaps ⇒ forking and commuting diagrams
- Induction using the diagrams (automatable, see [RSSS12, IJCAR])

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

```
A ::= [\cdot] \mid (A \ e)
```

$$R ::= A \mid \mathtt{letrec} \ Env \ \mathtt{in} \ A \mid \mathtt{letrec} \ \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env \ \mathtt{in} \ A[x_1] \}_{i=1}^{n-1}$$

Standard-reduction rules and some program transformations:

```
(SR,lbeta) R[(\lambda x.e_1)\ e_2] \to R[\mathtt{letrec}\ x = e_2\ \mathtt{in}\ e_1]
```

(SR,llet) letrec Env_1 in letrec Env_2 in e o letrec Env_1, Env_2 in e

(T,cpx)
$$T[\text{letrec } x = y, Env \text{ in } C[x]] \rightarrow T[\text{letrec } x = y, Env \text{ in } C[y]]$$

 $(\mathsf{T},\mathsf{gc}) \qquad T[\mathsf{letrec}\ Env\ \mathsf{in}\ e]\ \to\ T[e] \qquad \mathsf{if}\ LetVars(Env)\cap FV(e) = \emptyset$

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

$$A ::= [\cdot] \mid (A \ e)$$

$$R ::= A \mid \mathtt{letrec} \ Env \ \mathtt{in} \ A \mid \mathtt{letrec} \ \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env \ \mathtt{in} \ A[x_1] \mid A[x_1]$$

Standard-reduction rules and some program transformations:

```
\begin{array}{ll} \text{(SR,lbeta)} \ R[(\lambda x.e_1) \ e_2] \rightarrow R[\texttt{letrec} \ x = e_2 \ \texttt{in} \ e_1] \\ \text{(SR,llet)} \quad \texttt{letrec} \ Env_1 \ \texttt{in} \ \texttt{letrec} \ Env_2 \ \texttt{in} \ e \rightarrow \texttt{letrec} \ Env_1, Env_2 \ \texttt{in} \ e \\ \text{(T,cpx)} \quad T[\texttt{letrec} \ x = y, Env \ \texttt{in} \ C[x]] \rightarrow T[\texttt{letrec} \ x = y, Env \ \texttt{in} \ C[y]] \\ \text{(T,gc)} \quad T[\texttt{letrec} \ Env \ \texttt{in} \ e] \ \rightarrow \ T[e] \quad \text{if} \ LetVars(Env) \cap FV(e) = \emptyset \end{array}
```

- contexts of different classes
- environments Env_i ,
- environment chains $\{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}$

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

```
A ::= [\cdot] \mid (A \ e)
```

$$R ::= A \mid \mathtt{letrec} \ Env \ \mathtt{in} \ A \mid \mathtt{letrec} \ \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env \ \mathtt{in} \ A[x_1] \}_{i=1}^{n-1}$$

Standard-reduction rules and some program transformations:

```
 \begin{array}{lll} (\mathsf{SR},\mathsf{lbeta}) \ R[(\lambda x.e_1) \ e_2] \to R[\mathsf{letrec} \ x = e_2 \ \mathsf{in} \ e_1] \\ (\mathsf{SR},\mathsf{llet}) & \mathsf{letrec} \ Env_1 \ \mathsf{in} \ \mathsf{letrec} \ Env_2 \ \mathsf{in} \ e \to \mathsf{letrec} \ Env_1, Env_2 \ \mathsf{in} \ e \\ (\mathsf{T},\mathsf{cpx}) & T[\mathsf{letrec} \ x = y, Env \ \mathsf{in} \ C[x]] \to T[\mathsf{letrec} \ x = y, Env \ \mathsf{in} \ C[y]] \\ (\mathsf{T},\mathsf{gc}) & T[\mathsf{letrec} \ Env \ \mathsf{in} \ e] \ \to \ T[e] & \mathsf{if} \ LetVars(Env) \cap FV(e) = \emptyset \\ \end{array}
```

- contexts of different classes
- environments Env_i ,
- environment chains $\{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}$

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

```
A ::= [\cdot] \mid (A \ e)
```

$$R := A \mid \text{letrec } Env \text{ in } A \mid \text{letrec } \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env \text{ in } A[x_1] \}$$

Standard-reduction rules and some program transformations:

```
 \begin{array}{lll} (\mathsf{SR},\mathsf{lbeta}) \ R[(\lambda x.e_1) \ e_2] \to R[\mathsf{letrec} \ x = e_2 \ \mathsf{in} \ e_1] \\ (\mathsf{SR},\mathsf{llet}) & \mathsf{letrec} \ Env_1 \ \mathsf{in} \ \mathsf{letrec} \ Env_2 \ \mathsf{in} \ e \to \mathsf{letrec} \ Env_1, Env_2 \ \mathsf{in} \ e \\ (\mathsf{T},\mathsf{cpx}) & T[\mathsf{letrec} \ x = y, Env \ \mathsf{in} \ C[x]] \to T[\mathsf{letrec} \ x = y, Env \ \mathsf{in} \ C[y]] \\ (\mathsf{T},\mathsf{gc}) & T[\mathsf{letrec} \ Env \ \mathsf{in} \ e] \ \to \ T[e] & \mathsf{if} \ LetVars(Env) \cap FV(e) = \emptyset \\ \end{array}
```

- contexts of different classes
 - environments Env_i ,
- environment chains $\{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}$

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

```
A ::= [\cdot] \mid (A \ e)
```

$$R ::= A \mid \mathtt{letrec} \ Env \ \mathtt{in} \ A \mid \mathtt{letrec} \ \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env \ \mathtt{in} \ A[x_1] \}_{i=1}^{n-1}$$

Standard-reduction rules and some program transformations:

```
\begin{array}{ll} \text{(SR,lbeta)} \ R[(\lambda x.e_1) \ e_2] \to R[\texttt{letrec} \ x = e_2 \ \texttt{in} \ e_1] \\ \text{(SR,llet)} \quad \texttt{letrec} \ Env_1 \ \texttt{in} \ \texttt{letrec} \ Env_2 \ \texttt{in} \ e \to \texttt{letrec} \ Env_1, Env_2 \ \texttt{in} \ e \\ \text{(T,cpx)} \quad T[\texttt{letrec} \ x = y, Env \ \texttt{in} \ C[x]] \to T[\texttt{letrec} \ x = y, Env \ \texttt{in} \ C[y]] \\ \text{(T,gc)} \quad T[\texttt{letrec} \ Env \ \texttt{in} \ e] \ \to \ T[e] \quad \text{if} \ LetVars(Env) \cap FV(e) = \emptyset \end{array}
```

- contexts of different classes
 - environments Env_i ,
 - environment chains $\{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}$

Syntax of the Meta-Language LRSX

Variables	$x \in Var ::=$	X	(variable meta-variable)
		X	(concrete variable)
Expressions	$s \in \mathbf{Expr} ::=$	S	(expression meta-variable)
		$\mathtt{var}\ x$	(variable)
		$(f r_1 \dots r_{ar(f)})$	(function application)
		where r_i is o_i, s_i ,	or x_i specified by f
		D[s]	(context meta-variable)
		$\mathtt{letrec}\ env\ \mathtt{in}\ s$	(letrec-expression)
	$o \in HExpr^n {::=}$	$x_1x_n.s$	(higher-order expression)
Environments	$s \ env \in \mathbf{Env} ::=$	Ø	(empty environment)
		E; env	(environment meta-variable)
		Ch[x, s]; env x=s; env	(chain meta-variable)
		x=s; env	(binding)

- \bullet Context variables D and $\mathit{Ch}\text{-}\mathsf{variables}$ have a context class cl(D)
- instances of Ch[x, s]: chains $x = D_1[var x_1]; x_1 = D_2[var x_2]; \dots; x_n = D_n[s]$ where D_i are contexts of class cl(Ch).

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

$$A ::= [\cdot] \mid (A \ e)$$

$$R ::= A \mid \mathtt{letrec} \ Env \ \mathtt{in} \ A \mid \mathtt{letrec} \ \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env \ \mathtt{in} \ A[x_1] \}_{i=1}^{n-1}$$

Standard-reduction rules and some program transformations:

$$\begin{array}{ll} (\mathsf{SR},\mathsf{lbeta}) \ R[(\lambda x.e_1) \ e_2] \to R[\mathsf{letrec} \ x = e_2 \ \mathsf{in} \ e_1] \\ (\mathsf{SR},\mathsf{llet}) & \mathsf{letrec} \ Env_1 \ \mathsf{in} \ \mathsf{letrec} \ Env_2 \ \mathsf{in} \ e \to \mathsf{letrec} \ Env_1, Env_2 \ \mathsf{in} \ e \\ (\mathsf{T},\mathsf{cpx}) & T[\mathsf{letrec} \ x = y, Env \ \mathsf{in} \ C[x]] \to T[\mathsf{letrec} \ x = y, Env \ \mathsf{in} \ C[y]] \\ (\mathsf{T},\mathsf{gc}) & T[\mathsf{letrec} \ Env \ \mathsf{in} \ e] \to T[e] & \mathsf{if} \ LetVars(Env) \cap FV(e) = \emptyset \end{array}$$

- (gc): Env must not be empty; side condition on variables
- (llet): $FV(Env_1) \cap LetVars(Env_2) = \emptyset$
- (cpx): x, y are not captured by C in C[x]

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

$$A ::= [\cdot] \mid (A \ e)$$

$$R ::= A \mid \text{letrec } Env \text{ in } A \mid \text{letrec } \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env \text{ in } A[x_1] \}$$

Standard-reduction rules and some program transformations:

(SR,lbeta)
$$R[(\lambda x.e_1)\ e_2] \to R[$$
letrec $x=e_2$ in $e_1]$ (SR,llet) letrec Env_1 in letrec Env_2 in $e \to$ letrec Env_1 , Env_2 in $e \to$ (T,cpx) $T[$ letrec $x=y,Env$ in $C[x]] \to T[$ letrec $x=y,Env$ in $C[y]]$ (T,gc) $T[$ letrec Env in $e] \to T[e]$ if $LetVars(Env) \cap FV(e) = \emptyset$

- (gc): Env must not be empty; side condition on variables
- (llet): $FV(Env_1) \cap LetVars(Env_2) = \emptyset$
- (cpx): x, y are not captured by C in C[x]

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

```
A ::= [\cdot] \mid (A \ e)
```

$$R ::= A \mid \mathtt{letrec} \ Env \ \mathtt{in} \ A \mid \mathtt{letrec} \ \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env \ \mathtt{in} \ A[x_1] \}_{i=1}^{n-1}$$

Standard-reduction rules and some program transformations:

$$\begin{array}{lll} (\mathsf{SR},\mathsf{lbeta}) \ R[(\lambda x.e_1) \ e_2] \to R[\mathsf{letrec} \ x = e_2 \ \mathsf{in} \ e_1] \\ (\mathsf{SR},\mathsf{llet}) & \mathsf{letrec} \ Env_1 \ \mathsf{in} \ \mathsf{letrec} \ Env_2 \ \mathsf{in} \ e \to \mathsf{letrec} \ Env_1, Env_2 \ \mathsf{in} \ e \\ (\mathsf{T},\mathsf{cpx}) & T[\mathsf{letrec} \ x = y, Env \ \mathsf{in} \ C[x]] \to T[\mathsf{letrec} \ x = y, Env \ \mathsf{in} \ C[y]] \\ (\mathsf{T},\mathsf{gc}) & T[\mathsf{letrec} \ Env \ \mathsf{in} \ e] & \to T[e] & \mathsf{if} \ LetVars(Env) \cap FV(e) = \emptyset \\ \end{array}$$

- (gc): Env must not be empty; side condition on variables
- (llet): $FV(Env_1) \cap LetVars(Env_2) = \emptyset$
- (cpx): x, y are not captured by C in C[x]

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

$$A ::= [\cdot] \mid (A \ e)$$

$$R ::= A \mid \mathtt{letrec} \ Env \ \mathtt{in} \ A \mid \mathtt{letrec} \ \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env \ \mathtt{in} \ A[x_1] \}_{i=1}^{n-1}$$

Standard-reduction rules and some program transformations:

$$\begin{array}{lll} (\mathsf{SR},\mathsf{lbeta}) \ R[(\lambda x.e_1) \ e_2] \to R[\mathsf{letrec} \ x = e_2 \ \mathsf{in} \ e_1] \\ (\mathsf{SR},\mathsf{llet}) & \mathsf{letrec} \ Env_1 \ \mathsf{in} \ \mathsf{letrec} \ Env_2 \ \mathsf{in} \ e \to \mathsf{letrec} \ Env_1, Env_2 \ \mathsf{in} \ e \\ (\mathsf{T},\mathsf{cpx}) & T[\mathsf{letrec} \ x = y, Env \ \mathsf{in} \ C[x]] \to T[\mathsf{letrec} \ x = y, Env \ \mathsf{in} \ C[y]] \\ (\mathsf{T},\mathsf{gc}) & T[\mathsf{letrec} \ Env \ \mathsf{in} \ e] & \to T[e] & \mathsf{if} \ LetVars(Env) \cap FV(e) = \emptyset \\ \end{array}$$

- (gc): Env must not be empty; side condition on variables
- (llet): $FV(Env_1) \cap LetVars(Env_2) = \emptyset$
- (cpx): x, y are not captured by C in C[x]

Constrained Expressions

- A constraint tuple $\Delta = (\Delta_1, \Delta_2, \Delta_3)$ consists of
 - Δ_1 : set of context variables (non-empty context constraint) Δ_2 : set of environment variables (non-empty environment constraint)
 - Δ_3 : set of pairs (s,d) (s an expression, d a context) (non-capture constraint)
- Ground substitution ρ satisfies $(\Delta_1, \Delta_2, \Delta_3)$ iff
 - $-\rho(D) \neq [\cdot]$ for all $D \in \Delta_1$
 - $-\ \rho(E) \neq \emptyset \text{ for all } E \in \Delta_2$
 - hole of $\rho(d)$ does not capture variables of $\rho(s),$ for all $(s,d)\in\Delta_3$

Constrained Expressions

- A constraint tuple $\Delta = (\Delta_1, \Delta_2, \Delta_3)$ consists of
 - Δ_1 : set of context variables (non-empty context constraint) Δ_2 : set of environment variables (non-empty environment constraint) Δ_3 : set of pairs (s,d) (s an expression, d a context) (non-capture constraint)
- Ground substitution ρ satisfies $(\Delta_1, \Delta_2, \Delta_3)$ iff
 - $-\rho(D) \neq [\cdot]$ for all $D \in \Delta_1$
 - $-\ \rho(E)
 eq \emptyset$ for all $E \in \Delta_2$
 - hole of $\rho(d)$ does not capture variables of $\rho(s)$, for all $(s,d)\in\Delta_3$
- A pair (s,Δ) is called a **constrained expression** $sem(s,\Delta) = \{\rho(s) \mid \rho(s) \text{ fulfills LVC and } \rho \text{ satisfies } \Delta\}$ (LVC = let variable convention, binders of the same environment are different)

Example:

$$\begin{array}{ll} s &= \texttt{letrec} \ E_1 \ \texttt{in} \ \texttt{letrec} \ E_2 \ \texttt{in} \ S \\ \Delta &= (\emptyset, \{E_1, E_2\}, \{(\texttt{letrec} \ E_2 \ \texttt{in} \ S, \texttt{letrec} \ E_1 \ \texttt{in} \ [\cdot])\})) \\ sem(s, \Delta) &= \texttt{nested} \ \texttt{letrec-expressions} \ \texttt{with} \ \texttt{unused} \ \texttt{outer} \ \texttt{environment} \end{array}$$

Computing Diagrams

- ullet t_1,t_2 are meta-expressions restricted by constraints abla
- computing joins $\stackrel{*}{\to}$ requires abstract rewriting by rewrite rules $\ell \to_{\Delta} r$ with Δ restricting ℓ and r
- matching equations $\ell \unlhd t$ together with constraint tuples ∇, Δ
- ullet a matcher σ may instantiate ℓ but not t, i.e. $\sigma(\ell)=t$
- ullet l contains instantiable meta-variables and t contains fixed meta-variables, denoted by $MV_I(\cdot)$ and $MV_F(\cdot)$

Letrec Matching Problem

A letrec matching problem is a tuple $P=(\Gamma, \Delta, \nabla)$ where

- Γ is a set of matching equations $s \leq t$ s.t. $MV_I(t) = \emptyset$
- $\Delta = (\Delta_1, \Delta_2, \Delta_3)$ is a constraint tuple (needed constraints);
- $\nabla = (\nabla_1, \nabla_2, \nabla_3)$ is a constraint tuple (given constraints), s.t. $MV_I(\nabla) = \emptyset$ and ∇ is satisfiable.

Occurrence restrictions for instantiable meta variables:

- Each instantiable S-variable occurs at most twice in Γ
- Each E-, Ch-, D-variable occurs at most once in Γ

Matcher of $P = (\Gamma, \Delta, \nabla)$

A substitution σ is a matcher of $P = (\Gamma, \Delta, \nabla)$ iff

- \bullet σ instantiates the instantiable variables and does not introduce new instantiable or fixed variables
- for any ground substitution ρ on $MV_F(P)$ that satisfies ∇ and where $\rho(\sigma(s))$ and $\rho(t)$ for $s \leq t \in \Gamma$ fullfill the LVC:
 - $-\rho(\sigma(s))\sim_{let}\rho(t)$ for all $s \leq t \in \Gamma$
 - the Δ -constraints hold ($\exists \ \rho_0 \ \text{with} \ \mathrm{Dom}(\rho_0) = MV_I(\rho(\sigma(\Delta))) \ \text{s.t.} \ \rho_0(\rho(\sigma(\Delta))) \ \text{is satisfied.})$

 \sim_{let} = syntactic equality upto permuting bindings in environments

NP-Hardness of the Letrec Matching Problem

Theorem (NP-Hardness)

The decision problem whether a matcher for a letrec matching problem exists is **NP-hard**.

Proof by a reduction from MONOTONE ONE-IN-THREE-3-SAT.

Sketch: For each clause $C_i = \{S_{i,1}, S_{i,2}, S_{i,3}\}$, add the matching equation

letrec
$$Y_{i,1} = S_{i,1}$$
; $Y_{i,2} = S_{i,2}$; $Y_{i,3} = S_{i,3}$ in $c \le 1$ letrec $y_{i,1} = false$; $y_{i,2} = false$; $y_{i,3} = true$ in c

Matching Algorithm MatchLRS

Intermediate data structure of the algorithm: $(Sol, \Gamma, \Delta, \nabla)$ where

- ullet Sol is a computed substitution
- ullet Γ is a set of equations
- $(\Delta_1, \Delta_2, \Delta_3)$ are needed constraints
- \bullet $(\nabla_1,\nabla_2,\nabla_3)$ are given constraints

Input:

For
$$P = (\Gamma, \Delta, \nabla)$$
, MatchLRS starts with $(Id, \Gamma, \Delta, \nabla)$

Output (on each branch):

Fail or final state $(Sol, \emptyset, \Delta, \nabla)$

Matching Algorithm MatchLRS: Rules

Inference rules of the form

$$\frac{\mathsf{State}}{\mathsf{State}_1 \mid \ldots \mid \mathsf{State}_n}$$

Rule application is non-deterministic:

- don't care non-determinsm between the rules
- ullet don't know non-determinism between $\mathsf{State}_1 \mid \ldots \mid \mathsf{State}_n$

Selection of Rules (1)

Solving an expression-variable:

$$\frac{(Sol, \Gamma \cup \{S \le s\}, \Delta)}{(Sol \circ \{S \mapsto s\}, \Gamma[s/S], \Delta[s/S])}$$

Decomposition of letrec:

$$\frac{\Gamma \cup \{ \texttt{letrec} \ env \ \texttt{in} \ s \ \unlhd \ \texttt{letrec} \ env' \ \texttt{in} \ t \}}{\Gamma \cup \{ env \ \unlhd \ env', s \ \unlhd \ t \}}$$

Prefix-rule for contexts: D' is a prefix of D

$$\frac{(Sol, \Gamma \cup \{D[s] \unlhd \textbf{\textit{D'}}[s']\}, \Delta, \nabla)}{(Sol \circ \sigma, \Gamma \cup \{D''[s] \unlhd s'\}, \Delta \sigma, \nabla)} \text{ if } D \in \Delta_1 \iff \textbf{\textit{D'}} \in \nabla_1 \\ \text{s.t. } \sigma = \{D \mapsto \textbf{\textit{D'}}[D'']\}, cl(D'') = cl(D)$$

Selection of Rules (2)

$(Sol, \Gamma \cup \{env \leq b; env'\}, \Delta, \nabla)$

```
| (Sol, \Gamma \cup \{b' \leq b, env'' \leq env'\}, \Delta, \nabla) |
 \forall b' : env = b' : env''
 | | (Sol \circ \sigma, \Gamma \cup \{E'; env'' \leq env'\}, \Delta \sigma, \nabla) \text{ where } \sigma = \{E \mapsto b; E'\}
 \forall E: env = E: env''
\left| \begin{array}{l} (Sol \circ \sigma, \Gamma \cup \{y.D[s] \leq b, env'' \leq env'\}, \Delta \sigma, \nabla) \\ \text{where } \sigma = \{Ch[\cdot_1, \cdot_2] \mapsto [\cdot_1].D[\cdot_2]\} \text{ and } cl(D) = cl(Ch) \end{array} \right|
\forall Ch: env = Ch[y,s]; env''
    \left| (Sol \circ \sigma, \Gamma \cup \{y.D[X] \leq b, \mathit{Ch}_2[X, s]; \mathit{env}'' \leq \mathit{env}'\}, \Delta \sigma, \nabla) \right|  where \sigma = \{\mathit{Ch}[\cdot_1, \cdot_2] \mapsto [\cdot_1].D[X]; \mathit{Ch}_2[X, \cdot_2]\}, \mathit{cl}(D) = \mathit{cl}(\mathit{Ch}_2) = \mathit{cl}(\mathit{Ch}) 
\forall Ch: env = Ch[y,s]: env''
    |(Sol \circ \sigma, \Gamma \cup \{Y = D_1[X] \leq b, Ch_1[y, D_2[Y]]; Ch_2[X, s]; env'' \leq env'\}, \Delta \sigma, \nabla) | where \sigma = \{Ch[\cdot_1, \cdot_2] \mapsto Ch_1[\cdot_1, D_2[Y]]; Y = D_1[X]; Ch_2[X, \cdot_2]\}, cl(D_i) = cl(Ch_i) = cl(Ch) |
\forall Ch: env = Ch[y,s]: env''
   |(Sol \circ \sigma, \Gamma \cup \{X_1 = D[s] \leq b, Ch_1[y, D'[X_1]]; env'' \leq env'\}, \Delta \sigma, \nabla) \text{ where } 
 \sigma = \{Ch[\cdot_1, \cdot_2] \mapsto Ch_1[\cdot_1, D'[X_1]]; X_1.D[\cdot_2]\}, cl(D) = cl(D') = cl(Ch_1) = cl(Ch) 
\forall Ch: env = Ch[y,s]; env''
```

environment with at least one binding b on the rhs of the equation

Selection of Rules (2)

 $(Sol, \Gamma \cup \{env \leq b; env'\}, \Delta, \nabla)$

```
 | (Sol, \Gamma \cup \{b' \leq b, env'' \leq b \text{ equals a binding } b' \text{ on the lhs} | b' \text{ equals a binding } b' \text{ on the lhs} | b' \text{ equals a binding } b' \text{ on the lhs} | b' \text{ equals a binding } b' \text{ equals } b' \text{ equa
 |\int (Sol \circ \sigma, \Gamma \cup \{E'; env'' \le b \text{ is part of an environment variable } E \text{ on the lhs}|
      (Sol \circ \sigma, \Gamma \cup \{y.D[s] \leq b, env'' \leq env'\}, \Delta \sigma, \nabla) where \sigma = \{Ch[\cdot_1, \cdot_2] \mapsto [\cdot_1].D[\cdot_2]\} and cl(D) = cl(Ch)
\forall Ch: env = Ch[y,s]; env''
    (Sol \circ \sigma, \Gamma \cup \{y.D[X] \leq b \text{ is part of a chain variable } Ch \text{ on the lhs}
\text{where } \sigma = \{Ch[\cdot_1, \cdot_2] \mapsto [\cdot_1] \text{ 4 cases:}
\forall Ch: env = Ch[y,s]; env''
                                                                                                                                                                                                     ullet chain consists of the single binding b
       |(Sol \circ \sigma, \Gamma \cup \{Y = D_1[X]\})|
where \sigma = \{Ch[\cdot_1, \cdot_2] \mapsto Ch_1[]\}
                                                                                                                                                                                                     • b is a prefix of the chain
\forall Ch: env = Ch[y,s]; env''
                                                                                                                                                                                             • b is an infix of the chain
 |\begin{cases} (Sol \circ \sigma, \Gamma \cup \{X_1 = D[s] \\ \sigma = \{Ch[\cdot_1, \cdot_2] \mapsto Ch_1[\cdot_1, D'] \end{cases}

    b is a suffix of the chain

\forall Ch: env = Ch[y,s]; env''
```

environment with at least one binding \boldsymbol{b} on the rhs of the equation

Failure Rules

Usual cases:

- ullet Γ not empty, but no matching rule applicable Examples:
 - $f s_1 \ldots s_n \leq g t_1 \ldots t_m$, or
 - $D[s] \leq D'[t]$ and cl(D) < cl(D').

Extraordinary cases:

- $(Sol,\emptyset,\Delta,\nabla)$ but for some s in an input equation $s \leq t,$ Sol(s) violates the LVC
- NCC-implication check fails:
 - ullet check that given constraints abla imply needed constraints Δ
 - also infers constraints from the LVC for input expressions

Example: letrec $X_1=S_1; X_2=S_2$ in ... implies validity of the non-capture constraint $(\text{var } X_1, \lambda X_2.[])$

Soundness, Completeness and Complexity

Theorem

MatchLRS is sound and complete, i.e.

- (soundness) if MatchLRS delivers $S = (Sol, \emptyset, \Delta, \nabla)$ for input P, then Sol is a matcher of P; and
- (completeness) if $P = (\Gamma, \Delta, \nabla)$ has a matcher σ , then there exists an output $(\sigma, \emptyset, \Delta_S, \nabla_S)$ of MatchLRS for input P.

Theorem

MatchLRS runs in NP-time.

The letrec matching problem is **NP-complete**.

Conclusion

- Sound and complete matching algorithm for LRSX
- Designed to represent program calculi with recursive bindings
- Letrec matching problem is NP-complete
- Automated computation of overlaps and joins for call-by-need core languages is possible Implementation: LRSX Tool (http://goethe.link/LRSXTOOL)

- Sound and complete matching algorithm for LRSX
- Designed to represent program calculi with recursive bindings
- Letrec matching problem is NP-complete
- Automated computation of overlaps and joins for call-by-need core languages is possible Implementation: LRSX Tool (http://goethe.link/LRSXTOOL)

Further work:

- join more cases by meta alpha-renaming (PPDP 2017, to appear)
- automated correctness of translations between program calculi