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Motivation

automated reasoning on programs and program
transformations w.r.t. operational semantics

for program calculi with higher-order constructs and recursive
bindings, e.g. letrec-expressions:

letrec x1 = s1; . . . ;xn = sn in t

extended call-by-need lambda calculi with letrec that model
core languages of lazy functional programming languages
like Haskell

2/18



Application: Correctness of Program Transformations

Program transformation T is correct iff

∀`→ r ∈ T : ∀ contexts C: C[`]↓ ⇐⇒ C[r]↓
where ↓= successful evaluation w.r.t. standard reduction

Diagram method to show correctness of transformations:

Compute overlaps between standard reductions and program
transformations (requires unification, see [SSS16, PPDP])

Join the overlaps ⇒ forking and commuting diagrams

Induction using the diagrams (automatable, see [RSSS12, IJCAR])

σ(`)σ(`′) = σ(r)

·σ(r′)

program
transformation

standard
reduction *

*

σ(r)σ(`′) = σ(`)

·σ(r′)

program
transformation

standard
reduction *

*
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Requirements on the Meta-Language

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

A ::= [·] | (A e)

R ::= A | letrecEnv inA | letrec {xi=Ai[xi+1]}n−1
i=1 , xn=An,Env inA[x1]

Standard-reduction rules and some program transformations:

(SR,lbeta) R[(λx.e1) e2]→ R[letrec x = e2 in e1]

(SR,llet) letrec Env1 in letrec Env2 in e→ letrec Env1,Env2 in e

(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]

(T,gc) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

Meta-syntax must be capable to represent:

contexts of different classes

environments Env i,

environment chains {xi=Ai[xi+1]}n−1
i=1
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Syntax of the Meta-Language LRSX

Variables x ∈ Var ::= X (variable meta-variable)

| x (concrete variable)

Expressions s ∈ Expr ::= S (expression meta-variable)

| var x (variable)

| (f r1 . . . rar(f)) (function application)

where ri is oi, si, or xi specified by f

| D[s] (context meta-variable)

| letrec env in s (letrec-expression)

o ∈ HExprn::= x1. . . . xn.s (higher-order expression)

Environments env ∈ Env ::= ∅ (empty environment)

| E; env (environment meta-variable)

| Ch[x, s]; env (chain meta-variable)

| x=s; env (binding)

Context variables D and Ch-variables have a context class cl(D)

instances of Ch[x, s]: chains x=D1[var x1]; x1=D2[var x2]; . . . ; xn=Dn[s]
where Di are contexts of class cl(Ch).
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Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

A ::= [·] | (A e)

R ::= A | letrecEnv inA | letrec {xi=Ai[xi+1]}n−1
i=1 , xn=An,Env inA[x1]

Standard-reduction rules and some program transformations:

(SR,lbeta) R[(λx.e1) e2]→ R[letrec x = e2 in e1]

(SR,llet) letrec Env1 in letrec Env2 in e→ letrec Env1,Env2 in e

(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]

(T,gc) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

restrictions on scoping and emptiness have to be respected, e.g.:

(gc): Env must not be empty; side condition on variables

(llet): FV (Env1) ∩ LetVars(Env2) = ∅
(cpx): x, y are not captured by C in C[x]
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Constrained Expressions

A constraint tuple ∆ = (∆1,∆2,∆3) consists of
∆1: set of context variables (non-empty context constraint)
∆2: set of environment variables (non-empty environment constraint)
∆3: set of pairs (s, d) (s an expression, d a context) (non-capture constraint)

Ground substitution ρ satisfies (∆1,∆2,∆3) iff
− ρ(D) 6= [·] for all D ∈ ∆1

− ρ(E) 6= ∅ for all E ∈ ∆2

− hole of ρ(d) does not capture variables of ρ(s), for all (s, d) ∈ ∆3

A pair (s,∆) is called a constrained expression
sem(s,∆) = {ρ(s) | ρ(s) fulfills LVC and ρ satisfies ∆}
(LVC = let variable convention, binders of the same environment are different)

Example:
s = letrec E1 in letrec E2 in S
∆ = (∅, {E1, E2}, {(letrec E2 in S, letrec E1 in [·])}))
sem(s,∆) = nested letrec-expressions with unused outer environment
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Computing Diagrams

. t1

.t2

program
transformation

standard
reduction *

*

t1, t2 are meta-expressions restricted by constraints ∇
computing joins

∗−→ requires abstract rewriting by
rewrite rules `→∆ r with ∆ restricting ` and r

matching equations ` E t together with constraint tuples ∇,∆
a matcher σ may instantiate ` but not t, i.e. σ(`) = t

l contains instantiable meta-variables and t contains fixed
meta-variables, denoted by MVI (·) and MVF (·)
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Letrec Matching Problem

A letrec matching problem is a tuple P=(Γ,∆,∇) where

Γ is a set of matching equations s E t s.t. MVI (t) = ∅
∆=(∆1,∆2,∆3) is a constraint tuple (needed constraints);

∇=(∇1,∇2,∇3) is a constraint tuple (given constraints),
s.t. MVI (∇)=∅ and ∇ is satisfiable.

Occurrence restrictions for instantiable meta variables:

Each instantiable S-variable occurs at most twice in Γ

Each E-, Ch-, D-variable occurs at most once in Γ

9/18



Matcher

Matcher of P = (Γ,∆,∇)

A substitution σ is a matcher of P = (Γ,∆,∇) iff

σ instantiates the instantiable variables and does not
introduce new instantiable or fixed variables

for any ground substitution ρ on MVF (P ) that satisfies ∇
and where ρ(σ(s)) and ρ(t) for s E t ∈ Γ fullfill the LVC:

− ρ(σ(s)) ∼let ρ(t) for all s E t ∈ Γ

− the ∆-constraints hold
(∃ ρ0 with Dom(ρ0) = MVI (ρ(σ(∆))) s.t. ρ0(ρ(σ(∆))) is satisfied.)

∼let = syntactic equality upto permuting bindings in environments
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NP-Hardness of the Letrec Matching Problem

Theorem (NP-Hardness)

The decision problem whether a matcher for a letrec matching
problem exists is NP-hard.

Proof by a reduction from Monotone one-in-three-3-SAT.

Sketch: For each clause Ci = {Si,1, Si,2, Si,3}, add the matching
equation

letrec Yi,1 = Si,1; Yi,2 = Si,2; Yi,3 = Si,3 in c
E letrec yi,1 = false; yi,2 = false; yi,3 = true in c
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Matching Algorithm MatchLRS

Intermediate data structure of the algorithm: (Sol ,Γ,∆,∇) where

Sol is a computed substitution

Γ is a set of equations

(∆1,∆2,∆3) are needed constraints

(∇1,∇2,∇3) are given constraints

Input:
For P = (Γ,∆,∇), MatchLRS starts with (Id,Γ,∆,∇)

Output (on each branch):
Fail or final state (Sol , ∅,∆,∇)
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Matching Algorithm MatchLRS: Rules

Inference rules of the form

State

State1 | . . . | Staten

Rule application is non-deterministic:

don’t care non-determinsm between the rules

don’t know non-determinism between State1 | . . . | Staten
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Selection of Rules (1)

Solving an expression-variable:

(Sol ,Γ ·∪{S E s},∆)

(Sol◦{S 7→s},Γ[s/S],∆[s/S])

Decomposition of letrec:

Γ ·∪{letrec env in s E letrec env ′ in t}
Γ ·∪{env E env ′, s E t}

Prefix-rule for contexts: D′ is a prefix of D

(Sol ,Γ ·∪{D[s] E D′[s′]},∆,∇)

(Sol ◦ σ,Γ ·∪{D′′[s] E s′},∆σ,∇)
s.t. σ={D 7→ D′[D′′]},cl(D′′)=cl(D)

if D ∈ ∆1 ⇐⇒ D′ ∈ ∇1

and cl(D′) ≤ cl(D)
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Selection of Rules (2)

(Sol ,Γ ·∪{env E b; env ′},∆,∇)

|
∀b′:env=b′;env ′′

(Sol ,Γ ·∪{b′ E b, env ′′ E env ′},∆,∇)

| |
∀E:env=E;env ′′

(Sol ◦ σ,Γ ·∪{E′; env ′′ E env ′},∆σ,∇) where σ = {E 7→ b;E′}

| |
∀Ch:env=Ch[y,s];env ′′

(Sol ◦ σ,Γ ·∪{y.D[s] E b, env ′′ E env ′},∆σ,∇)
where σ = {Ch[·1, ·2] 7→ [·1].D[·2]} and cl(D) = cl(Ch)

| |
∀Ch:env=Ch[y,s];env ′′

(Sol ◦ σ,Γ ·∪{y.D[X] E b,Ch2[X, s]; env ′′ E env ′},∆σ,∇)
where σ = {Ch[·1, ·2] 7→[·1].D[X];Ch2[X, ·2]}, cl(D)=cl(Ch2)=cl(Ch)

| |
∀Ch:env=Ch[y,s];env ′′

(Sol ◦ σ,Γ ·∪{Y = D1[X] E b,Ch1[y,D2[Y ]];Ch2[X,s];env ′′ E env ′},∆σ,∇)
where σ={Ch[·1, ·2]7→Ch1[·1, D2[Y ]];Y = D1[X];Ch2[X, ·2]}, cl(Di)=cl(Chi)=cl(Ch)

| |
∀Ch:env=Ch[y,s];env ′′

(Sol ◦ σ,Γ ·∪{X1 = D[s] E b,Ch1[y,D′[X1]]; env ′′ E env ′},∆σ,∇) where

σ={Ch[·1, ·2] 7→Ch1[·1, D′[X1]];X1.D[·2]}, cl(D)=cl(D′)=cl(Ch1)=cl(Ch)

environment with at least one binding b on the rhs of the equation
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b equals a binding b′ on the lhs

b is part of an environment variable E on the lhs

b is part of a chain variable Ch on the lhs

4 cases:

• chain consists of the single binding b

• b is a prefix of the chain

• b is an infix of the chain

• b is a suffix of the chain
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Failure Rules

Usual cases:

Γ not empty, but no matching rule applicable
Examples:
• f s1 . . . sn E g t1 . . . tm, or
• D[s] E D′[t] and cl(D) < cl(D′).

Extraordinary cases:

(Sol, ∅,∆,∇) but for some s in an input equation s E t, Sol(s)
violates the LVC

NCC-implication check fails:
• check that given constraints ∇ imply needed constraints ∆
• also infers constraints from the LVC for input expressions

Example: letrec X1 = S1;X2 = S2 in . . . implies validity of
the non-capture constraint (var X1, λX2.[])
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Soundness, Completeness and Complexity

Theorem

MatchLRS is sound and complete, i.e.

(soundness) if MatchLRS delivers S = (Sol , ∅,∆,∇) for
input P , then Sol is a matcher of P ; and

(completeness) if P = (Γ,∆,∇) has a matcher σ, then there
exists an output (σ, ∅,∆S ,∇S) of MatchLRS for input P .

Theorem

MatchLRS runs in NP-time.
The letrec matching problem is NP-complete.
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Conclusion

Sound and complete matching algorithm for LRSX

Designed to represent program calculi with recursive bindings

Letrec matching problem is NP-complete

Automated computation of overlaps and joins for call-by-need
core languages is possible
Implementation: LRSX Tool (http://goethe.link/LRSXTOOL)

Further work:

join more cases by meta alpha-renaming (PPDP 2017, to appear)

automated correctness of translations between program calculi
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