GOETHE @4

UNIVERSITAT

FRANKFURT AM MAIN

Matching of Meta-Expressions
with Recursive Bindings

David Sabel

Goethe-University Frankfurt am Main, Germany

UNIF 2017, Oxford, UK

TResearch supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1

Motivation

@ automated reasoning on programs and program
transformations w.r.t. operational semantics

@ for program calculi with higher-order constructs and recursive
bindings, e.g. letrec-expressions:

letrec 1 = 81;...;%p = Sp in t

@ extended call-by-need lambda calculi with letrec that model

core languages of lazy functional programming languages
like Haskell

2/18

Application: Correctness of Program Transformations

Program transformation 7T is correct iff
V¢ — r € T: Y contexts C: C[{]] < C[r]

where |= successful evaluation w.r.t. standard reduction

3/18

Application: Correctness of Program Transformations i

Program transformation 7T is correct iff
V¢ — r € T: Y contexts C: C[{]] < C[r]

where |= successful evaluation w.r.t. standard reduction

Diagram method to show correctness of transformations:

@ Compute overlaps between standard reductions and program
transformations (requires unification, see [SSS16, PPDP])

@ Join the overlaps = forking and commuting diagrams
@ Induction using the diagrams (automatable, see [RSSS12, [JCAR])

program program
transformation transformation

o(l)=o(l) —— o(r) oly=o(r) «——o(¥

1 1

dard ! dard !
v | | e

3 3

A . N,

o(r) ; > o(r') « =

Requirements on the Meta-Language o

Operational semantics of typical call-by-need calculi (excerpt)
Reduction contexts:
A=z=[]](4e)
R:= A | letrec EnvinA | letrec {z;=A;[z; 1]}, 2n=A,, Env in Alz1]
Standard-reduction rules and some program transformations:
(SR,Ibeta) R[(A\x.e1) e2] — R[letrec x = ez in €]
(SR.llet) letrec Env; in letrec Fnvs in e — letrec Envi, Envg in e
(T,epx) Tletrec o =y, Env in C[z]] — T[letrec z =y, Env in Cly|]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

4/18

Requirements on the Meta-Language o

Operational semantics of typical call-by-need calculi (excerpt)
Reduction contexts:
A=z=[]](4e)
R:= A | letrec Envin A | letrec {:BizAi[x,-H]}?:_ll,a:n:An, Env in Alz4]
Standard-reduction rules and some program transformations:
(SR,Ibeta) R[(A\x.e1) e2] — R[letrec x = ez in €]
(SR.llet) letrec Env; in letrec Fnvs in e — letrec Envi, Envg in e
(T,epx) Tletrec o =y, Env in C[z]] — T[letrec z =y, Env in Cly|]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

Meta-syntax must be capable to represent:
@ contexts of different classes
@ environments Env;,

o environment chains {z;=A;[z; 1]}

4/18

Requirements on the Meta-Language o

Operational semantics of typical call-by-need calculi (excerpt)
Reduction contexts:
Az=[]](4e)
R:= A | letrec Envin A | letrec {:m:Ai[x,-H]}?:_ll,a:n:An, Env in Alz4]
Standard-reduction rules and some program transformations:
(SR,Ibeta) R[(A\x.e1) e2] — R[letrec x = ez in €]
(SR.llet) letrec Env; in letrec Fnvs in e — letrec Envi, Envg in e
(T,epx) Tletrec o =y, Env in C[z]] — T[letrec z =y, Env in Cy]]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

Meta-syntax must be capable to represent:
@ contexts of different classes
@ environments Env;,

o environment chains {z;=A;[z; 1]}

4/18

Requirements on the Meta-Language

Operational semantics of typical call-by-need calculi (excerpt)
Reduction contexts:
A=z=[]](4e)
R:= A | letrec EnvinA | letrec {z;=A;[z; 1]}, 2n=Ay, Env in Alzq]
Standard-reduction rules and some program transformations:
(SR,Ibeta) R[(A\x.e1) e2] — R[letrec x = ez in €]
(SR,llet) letrec Env; in letrec Envy in e — letrec Envi, Envg in e
(T,epx) T[letrec x =y, Env in C[z]] — T[letrec z =y, Env in Cly]]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

Meta-syntax must be capable to represent:
@ contexts of different classes
@ environments Env;,

o environment chains {z;=A;[z; 1]}

Requirements on the Meta-Language o

Operational semantics of typical call-by-need calculi (excerpt)
Reduction contexts:
A=z=[]](4e)
R:= A | letrec Envin A | letrec {{l;i:Ai[fI;j+]]}?;ll,xn:An, Env in Alz4]
Standard-reduction rules and some program transformations:
(SR,Ibeta) R[(A\x.e1) e2] — R[letrec x = ez in €]
(SR.llet) letrec Env; in letrec Fnvs in e — letrec Envi, Envg in e
(T,epx) Tletrec o =y, Env in C[z]] — T[letrec z =y, Env in Cly|]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

Meta-syntax must be capable to represent:
@ contexts of different classes

@ environments Env;,

n—1

e environment chains {z;=A;[z; 1]}

4/18

Syntax of the Meta-Language LRSX

GOETHE, 53

Variables z e Var := X

Expressions s € Expr ::= S

0 € HExpr™::

Environments env € Env ::=

(f r1... Ta,n(f))

where r; is 0, s;, or x; specified by f

letrecenvins

Ch[z, s]; env

(variable meta-variable)

(concrete variable)

(expression meta-variable)
(variable)

(function application)

(context meta-variable)

(letrec-expression)
(higher-order expression)

(empty environment)
(environment meta-variable)
(chain meta-variable)
(binding)

o Context variables D and Ch-variables have a context class cl(D)

e instances of Ch[z, s]: chains z=Di[var x;];x;=Da[var xal;...;x,=Dy]s]
where D; are contexts of class cl(Ch).

5/18

Binding and Scoping Constraints o

Operational semantics of typical call-by-need calculi (excerpt)
Reduction contexts:
Az=[]](4e)
R:= A | letrec Envin A | letrec {xizAi[xiH]}?;ll,xn:An, Env in Alz4]
Standard-reduction rules and some program transformations:
(SR,Ibeta) R[(Az.e1) e2] — R[letrec x = e in €]
(SR,llet) letrec Envj in letrec Fnuvs in e — letrec Envy, Envg in e
(T,ecpx) Tletrec o =y, Env in C[z]] — T[letrec = =y, Env in Cy]]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

restrictions on scoping and emptiness have to be respected, e.g.:
@ (gc): Env must not be empty; side condition on variables
o (llet): FV(Envy) N LetVars(Envy) = ()
@ (cpx): x,y are not captured by C' in Clz]

6/18

Binding and Scoping Constraints o

Operational semantics of typical call-by-need calculi (excerpt)
Reduction contexts:
Az=[]](4e)
R:= A | letrec Envin A | letrec {xizAi[xiH]}?;ll,xn:An, Env in Alz4]
Standard-reduction rules and some program transformations:
(SR,Ibeta) R[(Az.e1) e2] — R[letrec x = e in €]
(SR,llet) letrec Envj in letrec Fnuvs in e — letrec Envy, Envg in e
(T,ecpx) Tletrec o =y, Env in C[z]] — T[letrec = =y, Env in Cy]]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

restrictions on scoping and emptiness have to be respected, e.g.:
@ (gc): Env must not be empty; side condition on variables
o (llet): FV(Envy) N LetVars(Envy) = ()
@ (cpx): x,y are not captured by C' in Clz]

6/18

Binding and Scoping Constraints o

Operational semantics of typical call-by-need calculi (excerpt)
Reduction contexts:
Az=[]](4e)
R:= A | letrec Envin A | letrec {xizAi[xiH]}?;ll,xn:An, Env in Alz4]
Standard-reduction rules and some program transformations:
(SR,Ibeta) R[(Az.e1) e2] — R[letrec x = e in €]
(SR,llet) letrec Env; in letrec Fnuvs in e — letrec Envy, Envg in e
(T,ecpx) Tletrec o =y, Env in C[z]] — T[letrec = =y, Env in Cy]]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

restrictions on scoping and emptiness have to be respected, e.g.:
@ (gc): Env must not be empty; side condition on variables
o (llet): FV(Envy) N LetVars(Envy) = ()
@ (cpx): x,y are not captured by C' in Clz]

6/18

Binding and Scoping Constraints o

Operational semantics of typical call-by-need calculi (excerpt)
Reduction contexts:
Az=[]](4e)
R:= A | letrec Envin A | letrec {xizAi[xiH]}?;ll,xn:An, Env in Alz4]
Standard-reduction rules and some program transformations:
(SR,Ibeta) R[(Az.e1) e2] — R[letrec x = e in €]
(SR,llet) letrec Envj in letrec Fnuvs in e — letrec Envy, Envg in e
(T,ecpx) Tletrec x =y, Env in C[z]] — T[letrec = =y, Env in Cy]]
(T.gc) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

restrictions on scoping and emptiness have to be respected, e.g.:
@ (gc): Env must not be empty; side condition on variables
o (llet): FV(Envy) N LetVars(Envy) = ()
@ (cpx): x,y are not captured by C' in Clz]

6/18

Constrained Expressions coerne

UNIVERSITAT

e A constraint tuple A = (A, Ag, A3) consists of
Aq: set of context variables (non-empty context constraint)
As: set of environment variables (non-empty environment constraint)
Ag: set of pairs (s,d) (s an expression, d a context) (non-capture constraint)
e Ground substitution p satisfies (A1, Ag, Ag) iff
— p(D) # [] for all D € Ay
— p(E) #£ 0 for all E € Ay
— hole of p(d) does not capture variables of p(s), for all (s,d) € As

7/18

Constrained Expressions coerne

UNIVERSITAT

e A constraint tuple A = (A, Ag, A3) consists of
Aq: set of context variables (non-empty context constraint)
As: set of environment variables (non-empty environment constraint)
Ag: set of pairs (s,d) (s an expression, d a context) (non-capture constraint)
e Ground substitution p satisfies (A1, Ag, Ag) iff
— p(D) # [] for all D € Ay
— p(E) # 0 for all E € Ay
— hole of p(d) does not capture variables of p(s), for all (s,d) € As

@ A pair (s,A) is called a constrained expression
sem(s, A) = {p(s) | p(s) fulfills LVC and p satisfies A}

(LVC = let variable convention, binders of the same environment are different)

Example:
s = letrec F; in letrec FE5 in S
A = (0,{E1, Ex},{(letrec Ey in S,letrec E; in [])}))

sem(s, A) = nested letrec-expressions with unused outer environment

7/18

Computing Diagrams

program
transformation

1
standard !
reduction : *

1

t1,to are meta-expressions restricted by constraints V

computing joins = requires abstract rewriting by
rewrite rules £ —a r with A restricting £ and r

matching equations ¢ < ¢ together with constraint tuples V, A

a matcher o may instantiate ¢ but not ¢, i.e. o({) =t

[contains instantiable meta-variables and ¢ contains fixed
meta-variables, denoted by MV;(-) and MVE(-)

8/18

Letrec Matching Problem o

A letrec matching problem is a tuple P=(I", A, V) where
e I' is a set of matching equations s I ¢ s.t. MVi(t) =10
o A=(A1,As,A3) is a constraint tuple (needed constraints);

e V=(V1,V2,V3) is a constraint tuple (given constraints),
s.t. MV (V)=0 and V is satisfiable.

Occurrence restrictions for instantiable meta variables:
@ Each instantiable S-variable occurs at most twice in I

@ Each E-, Ch-, D-variable occurs at most once in I

9/18

Matcher CERSTTAY

Matcher of P = (I', A, V)
A substitution o is a matcher of P = (I', A, V) iff

@ o instantiates the instantiable variables and does not
introduce new instantiable or fixed variables

e for any ground substitution p on M Vy(P) that satisfies V
and where p(o(s)) and p(t) for s <t € T fullfill the LVC:

— p(0(8)) ~er p(t) forall s <t el

— the A-constraints hold
(3 po with Dom(po) = MVi(p(c(A))) s.t. po(p(c(A))) is satisfied.)

4

~et = Syntactic equality upto permuting bindings in environments

10/18

NP-Hardness of the Letrec Matching Problem o

Theorem (NP-Hardness)

The decision problem whether a matcher for a letrec matching
problem exists is NP-hard.

Proof by a reduction from MONOTONE ONE-IN-THREE-3-SAT.

Sketch: For each clause C; = {S; 1, Si 2, S 3}, add the matching
equation

letrec Y;1 = S;1; Yio=Si2; Yiz=295i3 inc
< letrec y; 1 = false; y; o = false; y; 3 = true in c

11/18

Matching Algorithm MatchLRS o

Intermediate data structure of the algorithm: (Sol,T", A, V) where
@ Sol is a computed substitution
o I is a set of equations
o (Ay,A2,A3) are needed constraints

e (V1,Vs, V3) are given constraints

Input:
For P = (I, A, V), MatchLRS starts with (Id,I"; A, V)

Output (on each branch):
Fail or final state (Sol,0, A, V)

12/18

Matching Algorithm MatchLRS: Rules

Inference rules of the form

State
State; | ... | State,

Rule application is non-deterministic:
@ don't care non-determinsm between the rules

@ don’t know non-determinism between State; | ... | State,

13/18

Selection of Rules (1) T

Solving an expression-variable:

(Sol,T'W{S < s},A)
(Solo{S+>s},I'[s/S],Als/S])

Decomposition of letrec:

F'u{letrec env ins < letrec env’ int}
I'u{env < env',s <t}

Prefix-rule for contexts: D’ is a prefix of D

(SOZ7FU{D[5] < D’[s’]},A,V) fDeA «<— D' eV,
(Sol o 0, TW{D"[s] < §'}, Ao, V) and cl(D') < cl(D)
st. o={D — D'[D"]},cl(D")=cl(D)

14/18

Selection of Rules (2) ol

(Sol,TW{env <A b; env'}, A, V)

| (Sol, TU{V <b,env” < env'}, A, V)
Vb :env=>b';env’’
|| (Sol 0 0, TW{E'; env” < env'}, Aa, V) where o = {E — b; B}
VE:env=FE;env’
(Sol o 0, TW{y.D[s] < b, env” < env'}, Ao, V)
| where 0 = {Ch[1, 2] = [1].D[-2]} and cl(D) = cl(Ch)
Ch:env=Chly,s];env’’
(Sol o 0, TW{y.D[X] < b, Cha[X, s]; env” < env'}, Ao, V)
| where 0 = {Ch[-1, -2]—[1].D[X]; Ch2[X, 2]}, cl(D)=cl(Chz)=cl(Ch)
V Ch:env=Chly,s];env’
(Sol 0 o, TWH{Y = Dy[X] < b,Chy[y,D2[Y]]; Cha|X,s];env” < env'},Ac,V)
| where O'Z{Ch['l, ‘Q]HCh] [-1, DQ [Y”, Y = D] [X], Chg [X, '2]}, CZ(DL)ZCZ(Ohl):Cl(Oh)

Ch:env=Chly,s];env’

(Sol o o,TW{ X = D[s] < b, Chyly, D'[X1]]; env” < env'}, Ao, V) where
| o={Ch[1, 2]~ Chi[-1, D'[X1]]; X1.D[-2]}, cl(D)=cl(D")=cl(Ch1)=cl(Ch)

V Ch:env=Chly,s];env’

<

<

environment with at least one binding b on the rhs of the equation

15/18

Selection of Rules (2) T

(Sol,TW{env <A b; env'}, A, V)

| (Sol, TU{/ < b, env” f{b equals a binding b' on the Ihs

Vb :env=b;env"’

|| (Sol 0 0, TW{E'; ent” <t == =

VE:env="FE;env” b is part of an environment var/ab/e FE on the lhs }
(Sol oo, TU{y.D[s] < b,env” I env'}, Ao, V)

| where o = {Ch[1, 2] = [1].D[-2]} and cl(D) = cl(Ch)

<

Ch:env=Chly,s];env’’
(Sol o o, TU{y.D[X] <

| where o = {Ch[-1,-2]—[1] 4 cases:
V Ch:env=Chly,s];env’
(Solo o, TW{Y = D1[X] ® chain consists of the single binding b V)

b is part of a chain variable Ch on the lhs

| where o={Ch[-1, 2]~ Ch1| ® b is a prefix of the chain Ch)
Ch:env=Chly,s];env’ . L .
(Soloa,TU{X, = D[s] ® b is an infix of the chain

|| o={Chl1,2hChil1, D'| o b is a suffix of the chain
V Ch:env=Chly,s];env’

<

environment with at least one binding b on the rhs of the equation

15/18

Failure Rules corrne

UNIVERSITAT

Usual cases:

o I' not empty, but no matching rule applicable
Examples:
.fsl Snﬁgtl eoo by, OF
e D[s] < D'[t] and cl(D) < cl(D’).

Extraordinary cases:

e (Sol,0,A,V) but for some s in an input equation s < t, Sol(s)
violates the LVC
@ NCC-implication check fails:
e check that given constraints V imply needed constraints A
e also infers constraints from the LVC for input expressions
Example: letrec X; = S1; X9 =5 in ... implies validity of
the non-capture constraint (var X, AXs.[])

16/18

Soundness, Completeness and Complexity o
Theorem

MatchLRS is sound and complete, i.e.
o (soundness) if MatchLRS delivers S = (Sol, 0, A, V) for
input P, then Sol is a matcher of P; and

o (completeness) if P = (I', A, V) has a matcher o, then there
exists an output (0,0, Ag, Vg) of MatchLRS for input P.

4

Theorem

MatchLRS runs in NP-time.
The letrec matching problem is NP-complete.

17/18

Con C| usion 3OETHES

@ Sound and complete matching algorithm for LRSX
@ Designed to represent program calculi with recursive bindings
@ Letrec matching problem is NP-complete

@ Automated computation of overlaps and joins for call-by-need
core languages is possible
Implementation: LRSX Tool (http://goethe.link/LRSXTOOL)

18/18

Conclusion corrue 8

UNIVERSITAT

@ Sound and complete matching algorithm for LRSX
@ Designed to represent program calculi with recursive bindings
@ Letrec matching problem is NP-complete

@ Automated computation of overlaps and joins for call-by-need
core languages is possible

Implementation: LRSX Tool (http://goethe.link/LRSXTOOL)

Further work:

@ join more cases by meta alpha-renaming (PPDP 2017, to appear)

@ automated correctness of translations between program calculi

18/18

