LUDWIG-
onwversirar [l Theoretical Computer Science

UNIVERSITAT
MUNCHEN Institute of Informatics

Program Equivalence in a
Typed Probabilistic Call-by-Need
Functional Language

David Sabel and Manfred Schmidt-Schaul

WPTE 2022
31 July 2022, Haifa, Israel

Motivation and Goals

+ +
@ programs express o declarative, high-level and @ declarative: only needed
probabilistic models generic programming bindings are evaluated
@ evaluation results in o clean (mathematical) o efficient implementation of
(multi-)distributions definition lazy evaluation
@ apply correct program @ equational reasoning @ in the probabilistic setting:
transformations different from call-by-name

A lot of related work on probabilistic lambda calculi with and call-by-value

call-by-name or call-by-value evaluation
(see Ugo Dal Lago: On Probabilistic Lambda-Calculi, 2020)

— Investigate the semantics of a probabilistic call-by-need functional language

Previous Work and This Work

Sabel, Schmidt-SchauB & Maio
PPDP’22 (to appear)

@ analysis of an untyped call-by-need @ program equivalence in a typed
lambda calculus probabilistic PCF-like language with
with probabilistic choice and recursive let call-by-need evaluation
@ contextual equivalence observes the @ built-in natural numbers
expected termination in all contexts @ contextual equivalence observes expected
@ several proof techniques to show termination in contexts of type nat only
equivalences e distribution-equivalence as other (more
@ extension to data types and natural) notion of equality
case-expressions @ main goal: simpler characterisation of

contextual equivalence (work in progress)

ProbPCF™: Syntax

Syntax of Expressions and Types

Expressions: s,t,re Expz=x | Ax.s|(st)|fixs|letx=sint| (s&t)
| if r then s else ¢ | pred s | succ s | n where n e Ny

Values: vi=n|Ar.s

WHNFs: LR[v] where LR :=[-] | let z =s in LR

Types: T,p,0 € Typu=nat | 7—p

Probabilistic choice (s @ t) randomly evaluates to s or ¢ (both with probability 0.5)
Type checking: standard monomorphic type system, e € Exp is well-typed iff ¢ : 7

s:To>pt:T t:1,s:p,p=T(x) s:p,t:p s:nat

(st):p (letx=sint):7 (s@t):p (succs):nat

D. Sabel | Program Equivalence in ProbPCF ™4 | WPTE 2022 4/17 Intro ProbPCF™% Contextual Equ. Distribution-Equ. Concl. Conclusi

Examples

(1e2)e (3@4)
@ evaluates to 1,2,3,4, each with probability 0.25
@ represents the distribution {(0.25,1), (0.25,2),(0.25,3), (0.25,4) }

D. Sabel | Program Equivalence in ProbPCF"™ ¢4 | WPTE 2022 5/17 ProbPCF™¢ed

Examples

(1e2)e (3@4)
@ evaluates to 1,2,3,4, each with probability 0.25
@ represents the distribution {(0.25,1), (0.25,2),(0.25,3), (0.25,4) }
(v ®v2) ® (v3 @ vy)
e represents the multi-distribution {(0.25,v1), (0.25,v2), (0.25,v3), (0.25,v4) }

@ the corresponding distribution depends on
e whether v; = v; and
e on the interpretation =

D. Sabel | Program Equivalence in ProbPCF"**¢ | WPTE 2022 5/17

Examples

(l1e2)e (3@4)
@ evaluates to 1,2,3,4, each with probability 0.25
@ represents the distribution {(0.25,1), (0.25,2),(0.25,3), (0.25,4) }
(’01 @ UQ) D (1)3 ® ’()4)
e represents the multi-distribution {(0.25,v1), (0.25,v2), (0.25,v3), (0.25,v4) }
@ the corresponding distribution depends on
e whether v; = v; and
e on the interpretation =

fix (Au.(0 ® succ u))

@ evaluates to 0 or recursively proceeds with the successor
@ generates the distribution

{0152 (o) = i) e

D. Sabel | Program Equivalence in ProbPCF"**? | WPTE 2022 [J4¥@ 1ntro ProbPCF"™® Contextual Equ. Distribution-Equ. Concl. Conclusi

Call-by-Name, Call-by-Value, Call-By-Need

possible evaluation results
call-by-name call-by-need call-by-value
(A\y.1) L 1 1 diverges
Azx+z) (1 @ 2) 2,34 2 and 4 2 and 4

D. Sabel | Program Equivalence in ProbPCF"*%¢ | WPTE 2022 6/17

ProbPCEF™: QOperational Semantics

(sribeta) R[(\x.s) t] > R[let z =t in s]

(snep) LR[let = v in R[z]] <> LR[let z = v in R[v]]
(sr,probl) R[s ® t] = R[s]

(sr,probr) R[S ® t] i R[t]

(sr,succ) R[succ n] 5 Rln+1]

“prob-reductions”

where reduction contexts R are

R == LR[A] | LR[1let z = A in R[z]]
Au=[]](As)|if A then selset|pred A |succ A |fix A
LR :=[-] | let z=s in LR

ST . sroo.
o for —, redexes are unique and — is only non-deterministic for prob-reductions

@ type safety (progress and type preserveration)

D. Sabel | Program Equivalence in ProbPCF™¢? | WPTE 2022 7/17 Intro ProbPCF™% Contextual Equ. Distribution-Equ. Concl. Conclusi

Tracking Probabilities

Weighted expression (p, s) with rational number p € (0,1] and expression s

Weighted standard reduction step =L

(p.5) 2% (p,t) iff s =%t and a ¢ {probl, probr}
yS sr,a
P (%,t) iff s —— t and a € {probl, probr}

WST,*
—", denotes the reflexive-transitive closure of —s

Evaluation

An evaluation of (p, s) is a sequence (p, s) L (q,t) where t is a WHNF.
Eval(p,s) = set of all evaluations starting with (p, s)
Notation: (p,s)$1(q,t) € Eval(p, s) where L = sequence of labels of prob-reductions

D. Sabel | Program Equivalence in ProbPCF ™% | WPTE 2022 8/17 Intro ProbPCF™% Contextual Equ. Distribution-Equ. Concl. Conclusi

Expected Convergence

Expected convergence

ExCv(s) = > q-
(1,8)$1.(q,t) € Eval(1,s)

“= probability that evaluation of s ends with a WHNF”
Expected value convergence

ExVCv(s,n) = > q,
(1,5)$1(q,LR[n]) € Eval(1,s)

“= probability that evaluations of s ends with number n”

Lemma

For all expressions s : nat: EXCv(s) = Y EXVCv(s,1)
i=0

D. Sabel | Program Equivalence in ProbPCF"™ ¢4 | WPTE 2022 9/17 ProbPCF™eed

Contextual Equivalence

Contextual Preorder and Equivalence
For equally typed expressions s,t: o:

e contextual preorder s <.t iff VC[-,] : nat: EXCv(C[s]) < EXCv(C[t])
“in any context: t converges at least as often as s”

o contextual equivalence s ~.t iff s< .t At <. s

Refuting equivalences requires one context acting as counter-example

Example: (20 (3@4)) 4. ((203)®4):
o C' =if pred (pred[-nat]) then 0 else L (where L =fix \z.z)
o EXCV(C[(2® (3@4))]) =0.5 but EXCv(C[((2®3)®4)]) =0.25

Proving equivalences is harder due to the quantification over all contexts.

D. Sabel | Program Equivalence in ProbPCF"**? | WPTE 2022 10/17 ProbPCF"““ Contextual Equ. Distribution-Equ. Concl. Conclusi

Expected Convergence with Bounded Number of Prob-Reductions

Expected convergence of s with bound k£ = number prob-reductions

ExXCV(s, k) = > q

(1>S)§L(Q>t) € EVal(l7S)7
LI <k

— allows inductive proofs and constructions on the number k&,
and in the limit, differences in k do not matter:

Lemma

Let s,¢: 7 such that Vk > 0:3d: ExCv(s, k) < EXCV(t,k +d).
Then ExCv(s) < EXCv(t).

D. Sabel | Program Equivalence in ProbPCF"**4 | WPTE 2022 11/17 Contextual Equ.

Context Lemma

Context Lemma

Let N >0, for 1 <i< N: s;,t; : 0, such that Yk >0, Vreduction contexts R[] : nat
there exists d > 0: EXCV(R[s;],k) < EXCV(R[t;],k + d).

Let Cl-1,0,...,"No] : Nat be a multicontext with N holes of type o.

Then the inequation EXCV(C(s1,...,sn5]) < EXCV(C[t1,...,tn]) holds.

@ Instantiation for N = 1:

If V>0, R[-,]:nat, 3:d>0: EXCV(R[s],k) < EXCV(R[t],k+d), then s <. t.]

@ Valuable proof tool to show contextual equivalences

D. Sabel | Program Equivalence in ProbPCF"**¢ | WPTE 2022 12/17 Contextual Equ.

Program Transformations

A program transformation T is a binary relation of equally typed expressions.

. oo T
T is correct iff — C ~,

Some Correct Program Transformations

(fix) fix Az.s —> (Az.s) (fix Az.s) (llet) let x=(lety=sint) inr
(beta) ((A\x.s) t) >let x=tin s —>lety=s,x=tinr
(succ) (succn)->n+1 (cp) let z =v in C[z]
(pred) (pred m) - max(0,n —1) —let z =v in C[v]
(ifthen) if 0 then s else t — s (gc) letx=sint—tifax ¢ FV(¢)
(ifelse) if n then s elset—>tifn#0 (e-id) (s®s)—>s
(Iflata) Al[(let r=s1in t)] (&-comm) (s @ t) - (to® S)
—let x=s in Al[t] (e-distr) (r@(s@t)) > ((ros)e(raot))

@ green transformations can be shown correct by the context lemma.
e red transformations require other techniques (e.g. the diagram method).

D. Sabel | Program Equivalence in ProbPCF™? | WPTE 2022 13/17 ProbPCF™*““ Contextual Equ. Distribution-Equ. Concl. Conclusi

Distribution-Equivalence

Distribution-Equivalence

Let s,t: nat be two closed expressions. Then s and t are distribution-equivalent,
s ~g t, iff for all n € Ng: ExVCv(s,n) = EXVCv(t,n).

Example:
o (0dl)+2x%(0&1)
“tossing two coins, one for each digit of a binary number of length 2"
e (Del)w(2@3)
“throwing a fair 4-sided dice”

@ both expressions produce the same distribution
{(0.25,0),(0.25,1),(0.25,2),(0.25,3) }

D. Sabel | Program Equivalence in ProbPCF"ecd | WPTE 2022 14/17 Distribution-Equ.

Further Examples

fix (Au.(0 @ succ u)) generates the distribution

(G} (G1) (2) (59) = A ero)

(fix (Afdu.u @ (f (succ u)))) O generates the same distribution

{(3:0)- (1) (52 (5o9) - = i) e

(fix (Af A uu@ (f (u+2))))) (0@ 1) generates a different distribution
{(G0)- G- (62) (52) (o) (5:9))

D. Sabel | Program Equivalence in ProbPCF"**? | WPTE 2022 15/17 ProbPCF"*“ Contextual Equ. Distribution-Equ. Concl. Conclusi

Distribution-Equivalence vs. Contextual Equivalence

Contextual equivalence implies distribution-equivalence:

Theorem

Let s,t: 0 be two typed expressions with s ~. t.
Then for any context C[-,]: nat, C[s] ~q C[t].

Reverse direction:

Conjecture

If the distribution of closed expressions s,t : nat in the empty context is the same
(i.e. s ~q 1), then s,t are contextually equivalent.

Proof: work in progress (maybe by applicative bisimulation)

D. Sabel | Program Equivalence in ProbPCF"e¢d | WPTE 2022 16/17 Distribution-Equ.

Conclusion & Future Work

Conclusions
@ Analysis of a typed call-by-need functional language with fair probabilistic choice

@ Two program equivalences:
@ Contextual Equivalence observes expected convergence in all contexts
@ Distribution-equivalence: evaluation leads to the same probability distribution

Future work
@ Work out proofs
@ Proof of the conjecture
@ Practical examples

o Extensions of the language: data constructors, case, ...

D. Sabel | Program Equivalence in ProbPCF™¢? | WPTE 2022 17/17 ' Contextual Equ. Distribution-Equ. Concl. Conclusi

Thank You!

	Intro
	ProbPCFneed
	Contextual Equ.
	Distribution-Equ.
	Concl.
	Conclusion

