
Theoretical Computer Science
Institute of Informatics

Program Equivalence in a
Typed Probabilistic Call-by-Need

Functional Language

David Sabel and Manfred Schmidt-Schauß

WPTE 2022
31 July 2022, Haifa, Israel

Motivation and Goals

Probabilistic
Programming

+ +
Functional

Programming
Call-by-Need
Evaluation

programs express
probabilistic models

evaluation results in
(multi-)distributions

apply correct program
transformations

declarative, high-level and
generic programming

clean (mathematical)
definition

equational reasoning

declarative: only needed
bindings are evaluated

efficient implementation of
lazy evaluation

in the probabilistic setting:
different from call-by-name
and call-by-value

A lot of related work on probabilistic lambda calculi with
call-by-name or call-by-value evaluation
(see Ugo Dal Lago: On Probabilistic Lambda-Calculi, 2020)

→ Investigate the semantics of a probabilistic call-by-need functional language

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 2/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Previous Work and This Work

Sabel, Schmidt-Schauß & Maio
PPDP’22 (to appear)

Sabel & Schmidt-Schauß
WPTE’22

analysis of an untyped call-by-need
lambda calculus
with probabilistic choice and recursive let

contextual equivalence observes the
expected termination in all contexts

several proof techniques to show
equivalences

extension to data types and
case-expressions

program equivalence in a typed
probabilistic PCF-like language with
call-by-need evaluation

built-in natural numbers

contextual equivalence observes expected
termination in contexts of type nat only

distribution-equivalence as other (more
natural) notion of equality

main goal: simpler characterisation of
contextual equivalence (work in progress)

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 3/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

ProbPCF need : Syntax

Syntax of Expressions and Types

Expressions: s, t, r ∈ Exp ∶∶= x ∣ λx.s ∣ (s t) ∣ fix s ∣ let x = s in t ∣ (s⊕ t)
∣ if r then s else t ∣ pred s ∣ succ s ∣ n where n ∈ N0

Values: v ∶∶= n ∣ λx.s
WHNFs: LR[v] where LR ∶∶= [⋅] ∣ let x = s in LR
Types: τ, ρ, σ ∈ Typ ∶∶= nat ∣ τ → ρ

Probabilistic choice (s⊕ t) randomly evaluates to s or t (both with probability 0.5)

Type checking: standard monomorphic type system, e ∈ Exp is well-typed iff e ∶ τ

s ∶ τ → ρ, t ∶ τ
(s t) ∶ ρ

t ∶ τ, s ∶ ρ, ρ = Γ(x)
(let x = s in t) ∶ τ

s ∶ ρ, t ∶ ρ
(s⊕ t) ∶ ρ

s ∶ nat

(succ s) ∶ nat
⋯

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 4/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Examples

(1⊕ 2) ⊕ (3⊕ 4)
evaluates to 1,2,3,4, each with probability 0.25

represents the distribution {(0.25,1), (0.25,2), (0.25,3), (0.25,4)}

(v1 ⊕ v2) ⊕ (v3 ⊕ v4)
represents the multi-distribution {(0.25, v1), (0.25, v2), (0.25, v3), (0.25, v4)}
the corresponding distribution depends on
● whether vi = vj and
● on the interpretation =

fix (λu.(0⊕ succ u))
evaluates to 0 or recursively proceeds with the successor

generates the distribution

{(1

2
,0) ,(1

4
,1) ,(1

8
,2) ,(1

16
,3) , . . .} = {(1

2i+1
, i) ∣ i ∈ N0}

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 5/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Examples

(1⊕ 2) ⊕ (3⊕ 4)
evaluates to 1,2,3,4, each with probability 0.25

represents the distribution {(0.25,1), (0.25,2), (0.25,3), (0.25,4)}
(v1 ⊕ v2) ⊕ (v3 ⊕ v4)

represents the multi-distribution {(0.25, v1), (0.25, v2), (0.25, v3), (0.25, v4)}
the corresponding distribution depends on
● whether vi = vj and
● on the interpretation =

fix (λu.(0⊕ succ u))
evaluates to 0 or recursively proceeds with the successor

generates the distribution

{(1

2
,0) ,(1

4
,1) ,(1

8
,2) ,(1

16
,3) , . . .} = {(1

2i+1
, i) ∣ i ∈ N0}

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 5/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Examples

(1⊕ 2) ⊕ (3⊕ 4)
evaluates to 1,2,3,4, each with probability 0.25

represents the distribution {(0.25,1), (0.25,2), (0.25,3), (0.25,4)}
(v1 ⊕ v2) ⊕ (v3 ⊕ v4)

represents the multi-distribution {(0.25, v1), (0.25, v2), (0.25, v3), (0.25, v4)}
the corresponding distribution depends on
● whether vi = vj and
● on the interpretation =

fix (λu.(0⊕ succ u))
evaluates to 0 or recursively proceeds with the successor

generates the distribution

{(1

2
,0) ,(1

4
,1) ,(1

8
,2) ,(1

16
,3) , . . .} = {(1

2i+1
, i) ∣ i ∈ N0}

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 5/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Call-by-Name, Call-by-Value, Call-By-Need

possible evaluation results

call-by-name call-by-need call-by-value

(λy.1) � 1 1 diverges

(λ x.x + x) (1 ⊕ 2) 2,3,4 2 and 4 2 and 4

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 6/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

ProbPCF need : Operational Semantics

“prob-reductions”

(sr,lbeta) R[(λx.s) t] srÐ→ R[let x = t in s]
(sr,cp) LR[let x = v in R[x]] srÐ→ LR[let x = v in R[v]]
(sr,probl) R[s⊕ t] srÐ→ R[s]
(sr,probr) R[s⊕ t] srÐ→ R[t]
(sr,succ) R[succ n] srÐ→ R[n + 1]
.

where reduction contexts R are

R ∶∶= LR[A] ∣ LR[let x = A in R[x]]
A ∶∶= [⋅] ∣ (A s) ∣ if A then s else t ∣ pred A ∣ succ A ∣ fix A

LR ∶∶= [⋅] ∣ let x = s in LR

for
srÐ→, redexes are unique and

srÐ→ is only non-deterministic for prob-reductions

type safety (progress and type preserveration)

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 7/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Tracking Probabilities

Weighted expression (p, s) with rational number p ∈ (0,1] and expression s

Weighted standard reduction step
wsrÐÐ→

(p, s) wsr ,aÐÐÐ→
⎧⎪⎪⎨⎪⎪⎩

(p, t) iff s
sr ,aÐÐ→ t and a /∈ {probl ,probr}

(p
2 , t) iff s

sr ,aÐÐ→ t and a ∈ {probl ,probr}

wsr ,∗ÐÐÐ→ denotes the reflexive-transitive closure of
wsrÐÐ→

Evaluation

An evaluation of (p, s) is a sequence (p, s) wsr ,∗ÐÐÐ→ (q, t) where t is a WHNF.
Eval(p, s) = set of all evaluations starting with (p, s)
Notation: (p, s)«L(q, t) ∈ Eval(p, s) where L = sequence of labels of prob-reductions

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 8/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Expected Convergence

Expected convergence

ExCv(s) = ∑
(1, s)«L(q, t) ∈ Eval(1, s)

q.

“= probability that evaluation of s ends with a WHNF”
Expected value convergence

ExVCv(s, n) = ∑
(1, s)«L(q,LR[n]) ∈ Eval(1, s)

q,

“= probability that evaluations of s ends with number n”

Lemma

For all expressions s ∶ nat: ExCv(s) =
∞

∑
i=0

ExVCv(s, i)

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 9/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Contextual Equivalence

Contextual Preorder and Equivalence

For equally typed expressions s, t ∶ σ:

contextual preorder s ≤c t iff ∀C[⋅σ] ∶ nat: ExCv(C[s]) ≤ ExCv(C[t])
“in any context: t converges at least as often as s”

contextual equivalence s ∼c t iff s ≤c t ∧ t ≤c s

Refuting equivalences requires one context acting as counter-example

Example: (2⊕ (3⊕ 4)) /∼c ((2⊕ 3) ⊕ 4):

C = if pred (pred [⋅nat]) then 0 else � (where � = fix λx.x)

ExCv(C[(2⊕ (3⊕ 4))]) = 0.5 but ExCv(C[((2⊕ 3) ⊕ 4)]) = 0.25

Proving equivalences is harder due to the quantification over all contexts.

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 10/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Expected Convergence with Bounded Number of Prob-Reductions

Expected convergence of s with bound k = number prob-reductions

ExCv(s, k) = ∑
(1, s)«L(q, t) ∈ Eval(1, s),

∣L∣ ≤ k

q

→ allows inductive proofs and constructions on the number k,
and in the limit, differences in k do not matter:

Lemma

Let s, t ∶ τ such that ∀k ≥ 0 ∶ ∃d ∶ ExCv(s, k) ≤ ExCv(t, k + d).
Then ExCv(s) ≤ ExCv(t).

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 11/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Context Lemma

Context Lemma

Let N ≥ 0, for 1 ≤ i ≤ N : si, ti ∶ σ, such that ∀k ≥ 0, ∀reduction contexts R[⋅σ] ∶ nat
there exists d ≥ 0 ∶ ExCv(R[si], k) ≤ ExCv(R[ti], k + d).
Let C[⋅1,σ, . . . , ⋅N,σ] ∶ nat be a multicontext with N holes of type σ.
Then the inequation ExCv(C[s1, . . . , sN]) ≤ ExCv(C[t1, . . . , tN]) holds.

Instantiation for N = 1:

If ∀k ≥ 0, R[⋅σ] ∶ nat, ∃ ∶ d ≥ 0 ∶ ExCv(R[s], k) ≤ ExCv(R[t], k + d), then s ≤c t.

Valuable proof tool to show contextual equivalences

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 12/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Program Transformations

A program transformation T is a binary relation of equally typed expressions.

T is correct iff
TÐ→ ⊆ ∼c

Some Correct Program Transformations

(fix) fix λx.s→ (λx.s) (fix λx.s)
(lbeta) ((λx.s) t) → let x = t in s
(succ) (succ n) → n + 1
(pred) (pred n) →max(0, n − 1)
(if-then) if 0 then s else t→ s
(if-else) if n then s else t→ t if n /= 0
(lflata) A1[(let x = s in t)]

→ let x = s in A1[t]

(llet) let x = (let y = s in t) in r
→ let y = s, x = t in r

(cp) let x = v in C[x]
→ let x = v in C[v]

(gc) let x = s in t→ t if x /∈ FV (t)
(⊕-id) (s⊕ s) → s
(⊕-comm) (s⊕ t) → (t⊕ s)
(⊕-distr) (r ⊕ (s⊕ t)) → ((r ⊕ s) ⊕ (r ⊕ t))

green transformations can be shown correct by the context lemma.

red transformations require other techniques (e.g. the diagram method).

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 13/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Distribution-Equivalence

Distribution-Equivalence

Let s, t ∶ nat be two closed expressions. Then s and t are distribution-equivalent,
s ∼d t, iff for all n ∈ N0: ExVCv(s, n) = ExVCv(t, n).

Example:

(0⊕ 1) + 2 ∗ (0⊕ 1)
“tossing two coins, one for each digit of a binary number of length 2”

(0⊕ 1) ⊕ (2⊕ 3)
“throwing a fair 4-sided dice”

both expressions produce the same distribution
{(0.25,0), (0.25,1), (0.25,2), (0.25,3)}

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 14/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Further Examples

fix (λu.(0⊕ succ u)) generates the distribution

{(1

2
,0) ,(1

4
,1) ,(1

8
,2) ,(1

16
,3) , . . .} = {(1

2i+1
, i) ∣ i ∈ N0}

(fix (λf.λu.u⊕ (f (succ u)))) 0 generates the same distribution

{(1

2
,0) ,(1

4
,1) ,(1

8
,2) ,(1

16
,3) , . . .} = {(1

2i+1
, i) ∣ i ∈ N0}

(fix (λf.λu.u⊕ (f (u + 2))))) (0⊕ 1) generates a different distribution

{(1

4
,0) ,(1

4
,1) ,(1

8
,2) ,(1

8
,3) ,(1

16
,4) ,(1

16
,5) , . . .}

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 15/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Distribution-Equivalence vs. Contextual Equivalence

Contextual equivalence implies distribution-equivalence:

Theorem

Let s, t ∶ σ be two typed expressions with s ∼c t.
Then for any context C[⋅σ] ∶ nat, C[s] ∼d C[t].

Reverse direction:

Conjecture

If the distribution of closed expressions s, t ∶ nat in the empty context is the same
(i.e. s ∼d t), then s, t are contextually equivalent.

Proof: work in progress (maybe by applicative bisimulation)

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 16/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Conclusion & Future Work

Conclusions

Analysis of a typed call-by-need functional language with fair probabilistic choice

Two program equivalences:
Contextual Equivalence observes expected convergence in all contexts
Distribution-equivalence: evaluation leads to the same probability distribution

Future work

Work out proofs

Proof of the conjecture

Practical examples

Extensions of the language: data constructors, case, . . .

D. Sabel ∣ Program Equivalence in ProbPCFneed ∣ WPTE 2022 17/17 Intro ProbPCFneed Contextual Equ. Distribution-Equ. Concl. Conclusion

Thank You!

	Intro
	ProbPCFneed
	Contextual Equ.
	Distribution-Equ.
	Concl.
	Conclusion

