

Theoretical Computer Science Institute of Informatics

Program Equivalence in a Typed Probabilistic Call-by-Need Functional Language

David Sabel and Manfred Schmidt-Schauß

WPTE 2022 31 July 2022, Haifa, Israel

Motivation and Goals

Probabilistic

- **•** programs express probabilistic models
- evaluation results in (multi-)distributions
- apply correct program transformations

Programming ⁺ Programming ⁺ Functional

- o declarative, high-level and generic programming
- clean (mathematical) definition
- **•** equational reasoning

Call-by-Need Evaluation

- **o** declarative: only needed bindings are evaluated
- **•** efficient implementation of lazy evaluation
- in the probabilistic setting: different from call-by-name

A lot of related work on probabilistic lambda calculi with and call-by-value call-by-name or call-by-value evaluation (see Ugo Dal Lago: On Probabilistic Lambda-Calculi, 2020)

→ Investigate the semantics of a probabilistic call-by-need functional language

D. Sabel | [Program Equivalence in](#page-0-0) ProbPCF^{need} | WPTE 2022 2/17 | [Intro](#page-1-0) [ProbPCF](#page-3-0)^{need} [Contextual Equ.](#page-11-0) [Distribution-Equ.](#page-15-0) [Concl.](#page-18-0) Conclusi

Previous Work and This Work

Sabel, Schmidt-Schauß & Maio PPDP'22 (to appear)

- analysis of an **untyped** call-by-need lambda calculus with probabilistic choice and recursive let
- **•** contextual equivalence **observes the** expected termination in all contexts
- several proof techniques to show equivalences
- extension to data types and case-expressions

Sabel & Schmidt-Schauß WPTE'₂₂

- **•** program equivalence in a **typed** probabilistic **PCF-like** language with call-by-need evaluation
- **•** built-in natural numbers
- contextual equivalence observes expected termination in contexts of type nat only
- distribution-equivalence as other (more natural) notion of equality
- **main goal:** simpler characterisation of contextual equivalence (work in progress)

Syntax of Expressions and Types

Expressions: $s, t, r \in Exp ::= x \mid \lambda x. s \mid (s \ t) \mid \text{fix } s \mid \text{let } x = s \text{ in } t \mid (s \oplus t)$ | if r then s else t | pred s | succ s | n where $n \in \mathbb{N}_0$ Values: $v ::= n | \lambda x . s$ WHNFs: $LR[v]$ where $LR ::= [\cdot] | \text{let } x = s \text{ in } LR$ **Types:** $\tau, \rho, \sigma \in \mathsf{Typ} ::= \mathsf{nat} | \tau \to \rho$

Probabilistic choice ($s \oplus t$) randomly evaluates to s or t (both with probability 0.5)

Type checking: standard monomorphic type system, $e \in Exp$ is well-typed iff $e : \tau$

$$
\frac{s:\tau \to \rho, t:\tau}{(s\ t):\rho} \quad \frac{t:\tau, s:\rho, \rho = \Gamma(x)}{(\text{let } x=s \text{ in } t):\tau} \quad \frac{s:\rho, t:\rho}{(s \oplus t):\rho} \quad \frac{s:\text{nat}}{(\text{succ } s):\text{nat}} \quad \cdots
$$

Examples

 $(1 \oplus 2) \oplus (3 \oplus 4)$

- \bullet evaluates to 1,2,3,4, each with probability 0.25
- represents the distribution $\{(0.25, 1), (0.25, 2), (0.25, 3), (0.25, 4)\}\$

Examples

 $(1 \oplus 2) \oplus (3 \oplus 4)$

- \bullet evaluates to 1,2,3,4, each with probability 0.25
- represents the distribution $\{(0.25, 1), (0.25, 2), (0.25, 3), (0.25, 4)\}\$

 $(v_1 \oplus v_2) \oplus (v_3 \oplus v_4)$

- represents the **multi-distribution** $\{(0.25, v_1), (0.25, v_2), (0.25, v_3), (0.25, v_4)\}\$
- the corresponding distribution depends on
	- whether $v_i = v_j$ and
	- \bullet on the interpretation =

Examples

 $(1 \oplus 2) \oplus (3 \oplus 4)$

- \bullet evaluates to 1,2,3,4, each with probability 0.25
- represents the distribution $\{(0.25, 1), (0.25, 2), (0.25, 3), (0.25, 4)\}\$

 $(v_1 \oplus v_2) \oplus (v_3 \oplus v_4)$

- represents the **multi-distribution** $\{(0.25, v_1), (0.25, v_2), (0.25, v_3), (0.25, v_4)\}\$
- the corresponding distribution depends on
	- whether $v_i = v_j$ and
	- \bullet on the interpretation =
- fix $(\lambda u. (0 \oplus \text{succ } u))$
	- evaluates to 0 or recursively proceeds with the successor
	- **•** generates the distribution

$$
\left\{ \left(\frac{1}{2}, 0 \right), \left(\frac{1}{4}, 1 \right), \left(\frac{1}{8}, 2 \right), \left(\frac{1}{16}, 3 \right), \ldots \right\} = \left\{ \left(\frac{1}{2^{i+1}}, i \right) \middle| i \in \mathbb{N}_0 \right\}
$$

possible evaluation results call-by-name call-by-need call-by-value $(\lambda y.1)$ 1 1 diverges $(\lambda x.x + x) (1 \oplus 2)$ 2,3,4 2 and 4 2 and 4

$Problem C F^{need}$: Operational Semantics

$$
(sr, lbeta) R[(\lambda x. s) t] \xrightarrow{sr} R[\text{let } x = t \text{ in } s]
$$
\n
$$
(sr, cp) LR[\text{let } x = v \text{ in } R[x]] \xrightarrow{sr} LR[\text{let } x = v \text{ in } R[v]]
$$
\n
$$
(sr, prob) R[s \oplus t] \xrightarrow{sr} R[s]
$$
\n
$$
(sr, prob) R[s \oplus t] \xrightarrow{sr} R[t]
$$
\n
$$
(sr, succ) R[\text{succ } n] \xrightarrow{sr} R[n+1]
$$
\n
$$
\dots
$$

where **reduction contexts** R are

$$
R ::= \text{LR}[A] | \text{LR}[\text{let } x = A \text{ in } R[x]]
$$

$$
A ::= [\cdot] | (A \ s) | \text{ if } A \text{ then } s \text{ else } t | \text{ pred } A | \text{ succ } A | \text{ fix } A
$$

LR ::= [\cdot] | \text{let } x = s \text{ in } \text{LR}

for $\stackrel{sr}{\longrightarrow}$, redexes are unique and $\stackrel{sr}{\longrightarrow}$ is only non-deterministic for prob-reductions

• type safety (progress and type preserveration)

Weighted expression (p, s) with rational number $p \in (0, 1]$ and expression s Weighted standard reduction step $\overset{wsr}{\longrightarrow}$

$$
(p,s) \xrightarrow{wsr,a} \begin{cases} (p,t) & \text{iff } s \xrightarrow{sr,a} t \text{ and } a \notin \{probl, probr\} \\ (\frac{p}{2},t) & \text{iff } s \xrightarrow{sr,a} t \text{ and } a \in \{probl, probr\} \end{cases}
$$

 $\xrightarrow{wsr,*}$ denotes the reflexive-transitive closure of \xrightarrow{wsr}

Evaluation

An evaluation of (p,s) is a sequence $(p,s) \xrightarrow{wsr,*} (q,t)$ where t is a WHNF. $Eval(p, s) = set$ of all evaluations starting with (p, s) Notation: (p, s) $\zeta_L(q, t) \in \text{Eval}(p, s)$ where L = sequence of labels of prob-reductions

Expected Convergence

Expected convergence

$$
\text{ExCV}(s) = \sum_{(1,s)\{L\}} Q.
$$

"= probability that evaluation of s ends with a WHNF" Expected value convergence

$$
\text{EXVCv}(s,n) = \sum_{(1,s)\xi_L(q,\text{LR}[n]) \in \text{Eval}(1,s)} q,
$$

"= probability that evaluations of s ends with number n "

Lemma

For all expressions $s : \text{nat: } \text{ExcV}(s) = \sum_{n=0}^{\infty}$ \sum ExVCv (s, i) $i=0$

Contextual Preorder and Equivalence

For equally typed expressions $s, t : \sigma$:

- **contextual preorder** $s \leq_c t$ iff $\forall C[\cdot_{\sigma}]$: nat: $\text{Exc}_V(C[s]) \leq \text{Exc}_V(C[t])$ "in any context: t converges at least as often as s "
- contextual equivalence $s \sim_c t$ iff $s \leq_c t \wedge t \leq_c s$

Refuting equivalences requires one context acting as counter-example

Example: $(2 \oplus (3 \oplus 4))$ $\neq_c ((2 \oplus 3) \oplus 4)$: \bullet C = if pred (pred [⋅nat]) then 0 else \perp (where \perp = fix $\lambda x.x$) \bullet ExCv($C[(2 \oplus (3 \oplus 4))] = 0.5$ but ExCv($C[((2 \oplus 3) \oplus 4)]) = 0.25$

Proving equivalences is harder due to the quantification over all contexts.

Expected convergence of s with bound $k =$ number prob-reductions

$$
\text{EXCV}(s,k) = \sum_{\substack{(1,s)\{L\mid q,t\} \in \text{Eval}(1,s),\\ |L| \le k}} q
$$

 \rightarrow allows inductive proofs and constructions on the number k, and in the limit, differences in k do not matter:

Lemma

Let $s, t : \tau$ such that $\forall k \geq 0 : \exists d : \text{EXCV}(s, k) \leq \text{EXCV}(t, k + d)$. Then $\text{ExCV}(s) \leq \text{ExCV}(t)$.

Context Lemma

Let $N\geq 0$, for $1\leq i\leq N\colon\, s_i,t_i:\sigma$, such that $\forall k\geq 0$, \forall reduction contexts $R[\cdot_\sigma]$:nat there exists $d \geq 0$: $\text{EXCV}(R[s_i], k) \leq \text{EXCV}(R[t_i], k + d)$. Let $C[\cdot_{1,\sigma}, \ldots, \cdot_{N,\sigma}]$: nat be a multicontext with N holes of type σ . Then the inequation $\text{Exc}_V(C[s_1, \ldots, s_N]) \leq \text{Exc}_V(C[t_1, \ldots, t_N])$ holds.

• Instantiation for $N = 1$:

If $\forall k \ge 0$, $R[\cdot_{\sigma}]$: nat, $\exists : d \ge 0$: ExC $V(R[s], k) \le EXCV(R[t], k + d)$, then $s \le c t$.

Valuable proof tool to show contextual equivalences

Program Transformations

A program transformation T is a binary relation of equally typed expressions. T is correct iff $\stackrel{T}{\to}$ $\subseteq \sim_c$

Some Correct Program Transformations

(fix)	$fix \lambda x.s \rightarrow (\lambda x.s)$	$fix \lambda x.s$	(let)	$let x = (let y = s in t) in r$
$(theta)$	$((\lambda x.s) t) \rightarrow let x = t in s$	$\rightarrow let y = s, x = t in r$		
$(succ)$	$(succ)$	$(succ)$	$let x = v in C[x]$	
$(pred)$	$(pred n) \rightarrow max(0, n - 1)$	$\rightarrow let x = v in C[v]$		
$(if-then)$ if 0 then s else $t \rightarrow s$	(gc)	$let x = s in t \rightarrow t if x \notin FV(t)$		
$(if-else)$ if n then s else $t \rightarrow t$ if $n \neq 0$	$(\oplus \text{-id})$	$(s \oplus s) \rightarrow s$		
$(If\text{lata})$	$A^1[(let x = s in t)]$	$(\oplus \text{-comm})$	$(s \oplus t) \rightarrow (t \oplus s)$	
\rightarrow let x = s in A ¹ [t]	$(\oplus \text{-comm})$	$(s \oplus t) \rightarrow (t \oplus s)$	$(r \oplus (s \oplus t)) \rightarrow ((r \oplus s) \oplus (r \oplus t))$	

e green transformations can be shown correct by the context lemma.

• red transformations require other techniques (e.g. the diagram method).

Distribution-Equivalence

Let s, t : nat be two closed expressions. Then s and t are **distribution-equivalent**, $s \sim_d t$, iff for all $n \in \mathbb{N}_0$: EXVCv (s, n) = EXVCv (t, n) .

Example:

 \bullet $(0 \oplus 1) + 2 * (0 \oplus 1)$

"tossing two coins, one for each digit of a binary number of length 2"

- \bullet $(0 \oplus 1) \oplus (2 \oplus 3)$ "throwing a fair 4-sided dice"
- both expressions produce the same distribution $\{(0.25, 0), (0.25, 1), (0.25, 2), (0.25, 3)\}\$

fix $(\lambda u. (0 \oplus \text{succ } u))$ generates the distribution

$$
\left\{ \left(\frac{1}{2}, 0 \right), \left(\frac{1}{4}, 1 \right), \left(\frac{1}{8}, 2 \right), \left(\frac{1}{16}, 3 \right), \ldots \right\} = \left\{ \left(\frac{1}{2^{i+1}}, i \right) \mid i \in \mathbb{N}_0 \right\}
$$

(fix $(\lambda f.\lambda u.u \oplus (f (succ u))))$) 0 generates the same distribution

$$
\left\{ \left(\frac{1}{2}, 0 \right), \left(\frac{1}{4}, 1 \right), \left(\frac{1}{8}, 2 \right), \left(\frac{1}{16}, 3 \right), \ldots \right\} = \left\{ \left(\frac{1}{2^{i+1}}, i \right) \middle| i \in \mathbb{N}_0 \right\}
$$

 $(fix (\lambda f.\lambda u.u \oplus (f (u+2))))$ $(0 \oplus 1)$ generates a different distribution

$$
\left\{ \left(\frac{1}{4}, 0 \right), \left(\frac{1}{4}, 1 \right), \left(\frac{1}{8}, 2 \right), \left(\frac{1}{8}, 3 \right), \left(\frac{1}{16}, 4 \right), \left(\frac{1}{16}, 5 \right), \ldots \right\}
$$

Contextual equivalence implies distribution-equivalence:

Theorem Let s, $t : \sigma$ be two typed expressions with $s \sim ct$. Then for any context $C[\cdot_{\sigma}]$: nat, $C[s] \sim_d C[t]$.

Reverse direction:

Conjecture

If the distribution of closed expressions s, t : nat in the empty context is the same (i.e. $s \sim_d t$), then s, t are contextually equivalent.

Proof: work in progress (maybe by applicative bisimulation)

Conclusions

- Analysis of a typed call-by-need functional language with fair probabilistic choice
- Two program equivalences:
	- Contextual Equivalence observes expected convergence in all contexts
	- Distribution-equivalence: evaluation leads to the same probability distribution

Future work

- Work out proofs
- Proof of the conjecture
- Practical examples
- Extensions of the language: data constructors, case, . . .

Thank You!