GOETHE

UNIVERSITAT
FRANKFURT AM MAIN

Automating the Diagram Method
to Prove Correctness
of Program Transformations

David Sabelt
Goethe-University Frankfurt am Main, Germany

WPTE 2018, July 8th, Oxford, UK

T Research supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1

GOETHE gg

Motivation UNIVERSITAT

@ reasoning on program transformations
w.r.t. operational semantics

o for program calculi with higher-order constructs and recursive
bindings, e.g. letrec-expressions:

letrec 1 = 81;...;%p = Sy in t

o extended call-by-need lambda calculi with letrec that model
core languages of lazy functional programming languages
like Haskell

2/22

GOETHE gz

Correctness of Program Transformations UNIVERSITAT

A program transformation T is a binary relation on expressions.
It is correct iff e = ¢/ = (Veontexts C': Cle]]l < Cle'|)) J

. srk ;-
J means successful evaluation e} := e —— ¢’ and €’ is a successful result

o where 5 is the small-step operational semantics (standard reduction)

STk . . . sr
@ and —— is the reflexive-transitive closure of —

As a core proof method, we need to show

. T
convergence preservation: e — ¢ = (e | = €' |)

where T is a contextual closure of T

3/22

Idea of the Diagram Method

@ Base case: For all successful e

program

transformation
e —— ¢/
1
v standard
: reduction
1 steps
¥
e’

successful

successful

@ General case: For all programs e

program
transformation

e — ¢
1
¥

standard standard
reduction : reduction
1 steps
~
el mmm e i a sy I

program
transformation steps

GOETHE g

UNIVERSITAT

FRANKFURT AM MAIN

@ Inductive construction

by the

successful succ.

€/

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
¥

1

induction
hypothesis

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
v

€

>

&3

successful

4/22

GOETHE 53

Focused Languages and Previous Results UNIVERSITAT

The diagram technique was, for instance, used for

o call-by-need lambda calculi with letrec, data constructors, case, and
seq [SSSS08, JFP] and non-determinism [SSS08, MSCS]

@ process calculi with call-by-value [NSSSS07, MFPS] or call-by-need
evaluation [SSS11, PPDP] and [SSS12, LICS]

@ reasoning on whether program transformations are improvements
w.r.t. the run-time [SSS15, PPDP], [SSS17, SCP], [SSSD18,PPDP]
and space [SSD18,WPTE]

5/22

GOETHE gz

Focused Languages and Previous Results UNIVERSITAT

The diagram technique was, for instance, used for

o call-by-need lambda calculi with letrec, data constructors, case, and
seq [SSSS08, JFP] and non-determinism [SSS08, MSCS]

@ process calculi with call-by-value [NSSSS07, MFPS] or call-by-need
evaluation [SSS11, PPDP] and [SSS12, LICS]

@ reasoning on whether program transformations are improvements
w.r.t. the run-time [SSS15, PPDP], [SSS17, SCP], [SSSD18,PPDP]
and space [SSD18,WPTE]

Conclusions from these works
@ The diagram method works well
@ The method requires to compute overlaps (error-prone, tedious,...)

@ Automation of the method would be valuable

5/22

GOETHE 32

Automation of the Diagram-Method UNIVERSITAT
compute translate
calculus overlaps diagrams

description

overlaps

¥

diagrams
. p:cogra”;_ join prove termination
ransformations overlaps (AProVE/CeTA)

Diagram Automated
calculator induction

Input

Structure of the LRSX-Tool

6/22

Representation of the Input

calculus
description

program
transformations

Input

()
compute

>
overlaps

overlaps

join
overlaps

Diagram
calculator

J-> diagrams

GOETHE @

UNIVERSI

FRANKFURT AM

TAT
1A

™

translate
diagrams

(DTRS

prove termination
(AProVE/CeTA)

|

Automated
induction

Structure of the LRSX-Tool

7/22

GOETHE gg

Requirements on the Meta-Syntax UNIVERSITAT

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:

Az=[]](4e)

R:= A | letrec Envin A | letrec {z;=A;[z;11]}'"}, zn=A,, Env, in Alz1]
Standard-reduction rules and some program transformations:

(SR,Ibeta) R[(Az.e1) ea] — R[letrec x = ey in e1]

(T.epx) T[letrec z =y, Env in Cfz]] — T[letrec x =y, Env in C[y]]
(T,gc,1) T[letrec Env, Env' in €] — T[letrec Env’ in €],

if LetVars(Env) N FV (e, Env') =0
(T,gc,2) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0

Meta-syntax must be capable to represent:
@ contexts of different classes

e environments Env; and environment chains {z;=A;[z;1]}/}

8/22

GOETHE 12

Syntax of the Meta-Language LRSX ONIVERSITAT
Variables x € Var := X (variable meta-variable)

| x (concrete variable)
Expressions s € Expr =S (expression meta-variable)

| DIs] (context meta-variable)

| letrecenvins (letrec-expression)

| varz (variable)

|

(fri...rar(ry) (function application)
where r; is 0, s;, or x; specified by f

o€ HExpr':= xy....2,.5 (higher-order expression)
Environments env € Env ::= () (empty environment)
| E; env (environment meta-variable)
| Chlz, s]; env (chain meta-variable)
| x=s;env (binding)
Chlx, s] represents chains ©=C1[var xi];x;=Cs[var xal;...;xp,=Cy[s]

where C; are contexts of class cl(Ch)

9/22

. . .) GOETHE Q
Binding and Scoping Constraints UNIVERSTTAT

There are restrictions on scoping and emptiness:

(T,cpx) T[letrec z =y, Env in C[z]] — T[letrec x =y, Env in C[y]]
x,y are not captured by C in C[x], C[y]

(T.gc.2) T[letrec Env ine] — Tle] if Env # 0, LetVars(Env) N FV(e) =0

We express them by constraint tuples A = (A, Ay, As):

@ non-empty context constraints Ay: set of context variables
- ground substitution p satisfies D € Ay iff p(D) # []

@ non-empty environment constraints As: set of environment variables
- p satisfies E € Ay iff p(E) # 0

@ non-capture constraints (NCCs) As: set of pairs (s, d)
- p satisfies (s, d) iff the hole of p(d) does not capture variables of p(s)

10/22

GOETHE gz

Representation of Rules ONIVERSITAT

Standard reductions and transformations are represented as
4 —AT
where £, 7 are LRSX-expressions and A is a constraint-tuple
Example:
(T,gc.2) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0
is represented as

Dlletrec E in S| =y (5} ,{(S1etrec E in [])}) PIS]

11/22

GOETHE @

Computing Overlaps UNIVERSITAT

FRANKFURT AM M

e B
compute translate
calculus overlaps diagrams
description

overlaps

¥

diagrams

program {1 _—
formations Join prove termination
trans overlaps (AProVE/CeTA)

Diagram Automated
Input . -
calculator L induction
[

Structure of the LRSX-Tool

12/22

Computing Overlaps by Unification corrne SR

UNIVERSITAT
program
transformation
o(ly) = o(lp) —— o(rp)
1
standard '*
reduction :
¥
o(rg) ====-=-=--mmmmemmo >
(ra) .

unifier o for {{4 = (B}

13/22

GOETHE 53

Computing Overlaps by Unification UNIVERSITAT
program
transformation
o(ly) = o(lp) —— o(rp)
standard :
reductionl : *
o(rg) =--------- MEREEEE > -

unifier o for ({{4 = (B}, Ag UAR)

@ Unification also has to respect the constraints A4 U Ap

13/22

GOETHE gz

Computing Overlaps by Unification UNIVERSITAT
program
transformation
o(ly) = o(lp) —— o(rp)
standardl :*
reduction :
o(rg) =--------- MEREEEE > -

unifier o for ({{4 = (B}, Ag UAR)

Unification also has to respect the constraints A4 U Ap

Occurrence Restrictions: S-variables at most twice, E-, Ch-,
D-variables at most once

The Letrec Unification Problem is NP-complete [SSS16, PPDP]
Algorithm UnifLRS [SSS16, PPDP] is sound and complete

13/22

GOETHE 12

Computing Overlaps by Unification ONIVERSITAT
program
transformation
o(la) = o(tp) ——— (o(rp), A)
dard !
| +
(0(ra),A) -==-------- ST -

output (o, A) for ({{4 ={p},AsUAR)

Unification also has to respect the constraints A4 U Ap

Occurrence Restrictions: S-variables at most twice, E-, Ch-,
D-variables at most once

The Letrec Unification Problem is NP-complete [SS516, PPDP]

Algorithm UnifLRS [SSS16, PPDP] is sound and complete
and computes a finite representation of solutions

13/22

Computing Joins

calculus
description

program
transformations

Input

compute
overlaps

overlaps

join
overlaps

Diagram
calculator

diagrams

GOETHE 4%

UNIVERSI

FRANKFURT AM

TAT
AN

M

translate
diagrams

prove termination
(AProVE/CeTA)

J

Automated
induction

Structure of the LRSX-Tool

14/22

GOETHE 12

Computing Diagrams UNIVERSITAT
program
transformation
> (tlv v)

standard :

reductionl : *
1

(t27 v) ------------- >

e computing joins —: abstract rewriting by rules £ —a r
@ meta-variables in £, r are instantiable and meta-variables in t; are fixed

o rewriting: match ¢ against ¢; and show that the given constraints V
imply the needed constraints A

@ Sound and complete matching algorithm MatchLRS [Sab17, UNIF]

15/22

GOETHE gz

Example: (gc)-Transformation ONIVERSTTAT

(T.ge) :=(T,gc,1) U (T,gc,2)

Unification computes 192 overlaps and joining results in 324
diagrams which can be represented by the diagrams

T,gc T,gc
SR,lbeta\L ‘VSR,Zbeta SR,Cp\L \‘VSR,cp
—_ - — > c—_ = = >
T,gc T,gc
T,gc T,gc
A s
| -
SR,llw y SRl SR,ZW e
—_ — — > . ’

and the answer diagram

T,gc
Ans Ans

16/22

Automated Induction

Structure of the LRSX-Tool

compute
>
calculus overlaps
description
overlaps
rogram —
program join
transformations
overlaps
Diagram
Input g
calculator

GOETHE g

UNIVERSITAT

FRANKFURT AM MAIN

diagrams

[

translate
diagrams

prove termination
(AProVE/CeTA)

Automated
induction

17/22

Automated Induction: Ideas [RSSS12, IJCAR] txnresir

@ Ignore the concrete expressions, only keep: kind of rule (SR or
transformation) and rule-names, and answers as abstract constant
T,gc
L
SR, lbeta)| y SRilbeta Ans T,gc Ans

- —_ — > .

T,gc

18/22

Automated Induction: Ideas [RSSS12, [JCAR] %

FRANKFURT AM MAI

@ Ignore the concrete expressions, only keep: kind of rule (SR or
transformation) and rule-names, and answers as abstract constant
T,gc
L
SR,lbeta¢ \;SR,lb(zta Ans

- —_ — > .

T,gc

Ans

@ Diagrams represent string rewrite rules on strings consisting of
elements (SR, name), (T, name), and Answer

(T, gc), (SR, lbeta) — (SR, lbeta), (T, gc) (T, gc), Answer — Answer

18/22

Automated Induction: Ideas [RSSS12, 1JCAR] %

FRANKFURT AM MAI

@ Ignore the concrete expressions, only keep: kind of rule (SR or
transformation) and rule-names, and answers as abstract constant
T,gc
L
SR,lbetcw \;SR,lbeta Ans

- —_ — > .

T,gc

Ans

@ Diagrams represent string rewrite rules on strings consisting of
elements (SR, name), (T, name), and Answer

(T, gc), (SR, lbeta) — (SR, lbeta), (T, gc) (T, gc), Answer — Answer

@ Termination of the string rewrite system implies successful induction

@ We use term rewrite systems and innermost-termination and apply
AProVE and certifier CeTA

18/22

GOETHE 53

Advanced Techniques UNIVERSITAT

Symbolic a-Renaming
@ Joining overlaps requires a-renaming

T,
(AX.S) (letrec Ey in 5) Ll (AX.S) (letrec Ey;Ey in ')

sr, lbeta J

sr, lbeta

letrec
X=(letrec E; in ') letrec X=(letrec Eq;E9 in S’) in S
in S X= may capture free occurrences of X in Es!

@ Solution: Extend the meta-language and algorithms with symbolic
a-renamings [Sab17,PPDP]

19/22

GOETHE gg

Advanced Techniques (continued) UNIVERSITAT
Transitive Closures
e Transitive closures of reduction / transformation rules, e.g.
Alletrec Env in s] %, Jetrec Env in Als]

@ Encoding of diagrams into TRSs uses free variables on right hand
sides to “guess’ the number of steps

Case-distinctions during search for joins
@ Apply case distinctions whether environments E or contexts D are
empty/non-empty and
@ treat the cases separately
Rule reformulation (not automated)
e for a copy rule (cp) the diagram set is a nonterminating TRS

@ Solution: cpT: target of copy not below an abstraction
cpd: target of copy inside an abstraction

@ The diagram set for (cpT),(cpd) is a terminating TRS.

20/22

GOETHE 32

Experiments UNIVERSITAT
o LRSX Tool available from http://goethe.link/LRSXTO0L61
@ computes diagrams and performs the automated induction
overlaps # joins computation time

Calculus Lyeeq (11 SR rules, 16 transformations, 2 answers)

- 2242 5425 48 secs.

A 3001 7273 116 secs.
Calculus L°° (17 SR rules, 18 transformations, 2 answers)
- 4898 14729 149 secs.

« 6437 18089 255 secs.
Calculus LR (76 SR rules, 43 transformations, 17 answers)
- 87041 391264 ~ 19 hours
— 107333 429104 ~ 16 hours

21/22

GOETHE gz

Conclusion and Outlook UNIVERSITAT

Conclusion
@ Automation of the diagram method for meta-language LRSX
@ Algorithms for unification, matching, symbolic a-renaming
@ Encoding technique to apply termination provers for TRSs

@ Experiments show: automation works well for call-by-need calculi

Further work
@ Further calculi, e.g., process calculi with structural congruence
@ Proving improvements
@ Nominal techniques to ease reasoning on a-renamings:

o Nominal unification with letrec [SSKLV16, LOPSTR]
o Nominal unification with context variables [SSS18, FSCD]

22/22

Thank youl!

