

1

Transforming Cycle Rewriting
into String Rewriting

David Sabel1 and Hans Zantema2,3

1Goethe University Frankfurt, Germany

2TU Eindhoven, The Netherlands
3Radboud University Nijmegen, The Netherlands

RTA 2015, Warsaw, Poland

Cycle Rewriting

A cycle is a string in which
the start and end are connected.

b a b c b a b b b a c c b
a

bcb

a
b

c

c a b

b

Cycle rewriting ◦→
applies string rewrite rules to cycles, e.g. R ={cba → aabbcc}

b
a

b
cb

a
b

c

c a b

b
b

a

b
cb

a
b

c

c a b

b

◦→R

b

c
c

b

b
aa

b

a
b

c
c

a b b
b

c
c

b

b
aa

b

a
b

c
c

a b b

◦→R

b
c

c
b

b

aabc

c
b

b
a

a

c a b b

2/18

Cycle Rewriting

A cycle is a string in which
the start and end are connected.

b a b c b a b b b a c c b
a

bcb

a
b

c

c a b

b

Cycle rewriting ◦→
applies string rewrite rules to cycles, e.g. R ={cba → aabbcc}

b
a

b
cb

a
b

c

c a b

b

b
a

b
cb

a
b

c

c a b

b

◦→R

b

c
c

b

b
aa

b

a
b

c
c

a b b
b

c
c

b

b
aa

b

a
b

c
c

a b b

◦→R

b
c

c
b

b

aabc

c
b

b
a

a

c a b b

2/18

Cycle Rewriting

A cycle is a string in which
the start and end are connected.

b a b c b a b b b a c c b
a

bcb

a
b

c

c a b

b

Cycle rewriting ◦→
applies string rewrite rules to cycles, e.g. R ={cba → aabbcc}

b
a

b
cb

a
b

c

c a b

b

b
a

b
cb

a
b

c

c a b

b

◦→R

b

c
c

b

b
aa

b

a
b

c
c

a b b
b

c
c

b

b
aa

b

a
b

c
c

a b b

◦→R

b
c

c
b

b

aabc

c
b

b
a

a

c a b b

2/18

Cycle Rewriting

A cycle is a string in which
the start and end are connected.

b a b c b a b b b a c c b
a

bcb

a
b

c

c a b

b

Cycle rewriting ◦→
applies string rewrite rules to cycles, e.g. R ={cba → aabbcc}

b
a

b
cb

a
b

c

c a b

b

b
a

b
cb

a
b

c

c a b

b

◦→R

b

c
c

b

b
aa

b

a
b

c
c

a b b

b

c
c

b

b
aa

b

a
b

c
c

a b b

◦→R

b
c

c
b

b

aabc

c
b

b
a

a

c a b b

2/18

Cycle Rewriting

A cycle is a string in which
the start and end are connected.

b a b c b a b b b a c c b
a

bcb

a
b

c

c a b

b

Cycle rewriting ◦→
applies string rewrite rules to cycles, e.g. R ={cba → aabbcc}

b
a

b
cb

a
b

c

c a b

b

b
a

b
cb

a
b

c

c a b

b

◦→R

b

c
c

b

b
aa

b

a
b

c
c

a b b

b

c
c

b

b
aa

b

a
b

c
c

a b b

◦→R

b
c

c
b

b

aabc

c
b

b
a

a

c a b b

2/18

Cycle Rewriting

A cycle is a string in which
the start and end are connected.

b a b c b a b b b a c c b
a

bcb

a
b

c

c a b

b

Cycle rewriting ◦→
applies string rewrite rules to cycles, e.g. R ={cba → aabbcc}

b
a

b
cb

a
b

c

c a b

b

b
a

b
cb

a
b

c

c a b

b

◦→R

b

c
c

b

b
aa

b

a
b

c
c

a b b

b

c
c

b

b
aa

b

a
b

c
c

a b b

◦→R

b
c

c
b

b

aabc

c
b

b
a

a

c a b b

2/18

Applications of Cycle Rewriting

Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]

Some systems are naturally cycle rewrite systems:

T: thinking philosopher
F: fork

L: philosopher has left fork
E: eating philosopher

Rewrite rules:

T F → L (pick up left fork)

F L → E (pick up right fork and eat)

E → F T F (stop eating and put down forks)

3/18

Applications of Cycle Rewriting

Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]

Some systems are naturally cycle rewrite systems:

F

TF
T

F
T

F T
F

T

T: thinking philosopher
F: fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:

T F → L (pick up left fork)

F L → E (pick up right fork and eat)

E → F T F (stop eating and put down forks)

3/18

Applications of Cycle Rewriting

Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]

Some systems are naturally cycle rewrite systems:

F

TF
T

F
T

F T
F

T

T: thinking philosopher
F: fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:

T F → L (pick up left fork)

F L → E (pick up right fork and eat)

E → F T F (stop eating and put down forks)

3/18

Applications of Cycle Rewriting

Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]

Some systems are naturally cycle rewrite systems:

F

TL

F
T

F T
F

T

T: thinking philosopher
F: fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:

T F → L (pick up left fork)

F L → E (pick up right fork and eat)

E → F T F (stop eating and put down forks)

3/18

Applications of Cycle Rewriting

Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]

Some systems are naturally cycle rewrite systems:

F

TL

F
T

F T
F

T

T: thinking philosopher
F: fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:

T F → L (pick up left fork)

F L → E (pick up right fork and eat)

E → F T F (stop eating and put down forks)

3/18

Applications of Cycle Rewriting

Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]

Some systems are naturally cycle rewrite systems:

FT
E

T
F T

F

T

T: thinking philosopher
F: fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:

T F → L (pick up left fork)

F L → E (pick up right fork and eat)

E → F T F (stop eating and put down forks)

3/18

Applications of Cycle Rewriting

Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]

Some systems are naturally cycle rewrite systems:

FT
E

T
F T

F

T

T: thinking philosopher
F: fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:

T F → L (pick up left fork)

F L → E (pick up right fork and eat)

E → F T F (stop eating and put down forks)

3/18

Applications of Cycle Rewriting

Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]

Some systems are naturally cycle rewrite systems:

F

TF
T

F
T

F T
F

T

T: thinking philosopher
F: fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:

T F → L (pick up left fork)

F L → E (pick up right fork and eat)

E → F T F (stop eating and put down forks)

3/18

Applications of Cycle Rewriting

Termination analysis for graph transformation systems
[Bruggink,König,Zantema 2014, IFIP TCS]

Some systems are naturally cycle rewrite systems:

F

TF
T

F
T

F T
F

T

T: thinking philosopher
F: fork
L: philosopher has left fork
E: eating philosopher

Rewrite rules:

T F → L (pick up left fork)

F L → E (pick up right fork and eat)

E → F T F (stop eating and put down forks)

3/18

Cycle Rewriting (Formally)

Let Σ be an alphabet, R be an SRS over Σ

u ∼ v = strings u, v ∈ Σ∗ represent the same cycle:

u ∼ v iff ∃w1, w2 : u = w1w2 and v = w2w1

cycle [u] = equivalence class of string u w.r.t. ∼

cycle rewrite relation ◦→R ⊆ (Σ/∼× Σ/∼) of R:

[u] ◦→R [v] iff ∃w ∈ Σ∗ : u ∼ `w, (`→ r) ∈ R, and rw ∼ v

4/18

Cycle Termination

◦→R is non-terminating iff there exists an infinite sequence

[u0] ◦→R [u1] ◦→R [u2] ◦→R · · ·

Otherwise, ◦→R is terminating.

Cycle-termination is different from string-termination:

for R = {ab→ ba}

→R is terminating, but

◦→R is non-terminating

But non-termination of →R implies non-termination of ◦→R

5/18

Cycle Termination

◦→R is non-terminating iff there exists an infinite sequence

[u0] ◦→R [u1] ◦→R [u2] ◦→R · · ·

Otherwise, ◦→R is terminating.

Cycle-termination is different from string-termination:

for R = {ab→ ba}

→R is terminating, but

◦→R is non-terminating

But non-termination of →R implies non-termination of ◦→R

5/18

Previous Work [Zantema,König,Bruggink 2014,RTA-TLCA]

Termination techniques

arctic and tropical matrix interpretations based on type-graphs

implemented in torpacyc, iteratively removes rewrite rules using
relative termination

technique can only remove rules which are applied at most
polynomially often in any derivation

Complexity

Transformation φ on SRSs R (“string rewriting → cycle rewriting”) s.t.

→R is string-terminating ⇐⇒ ◦→φ(R) is cycle-terminating

Consequences:

proving cycle-termination is at least as hard as string-termination

proving cycle-termination is undecidable

6/18

Previous Work [Zantema,König,Bruggink 2014,RTA-TLCA]

Termination techniques

arctic and tropical matrix interpretations based on type-graphs

implemented in torpacyc, iteratively removes rewrite rules using
relative termination

technique can only remove rules which are applied at most
polynomially often in any derivation

Complexity

Transformation φ on SRSs R (“string rewriting → cycle rewriting”) s.t.

→R is string-terminating ⇐⇒ ◦→φ(R) is cycle-terminating

Consequences:

proving cycle-termination is at least as hard as string-termination

proving cycle-termination is undecidable

6/18

Our Contributions: Improved Termination Techniques

Transformational approach

1 reduce cycle-termination to string-termination

2 apply state-of-the-art ATPs to prove string-termination

required: transformation ψ : “cycle rewriting → string rewriting” which is

sound: →ψ(R) is string-terminating =⇒ ◦→R is cycle-terminating

complete: ◦→R is cycle-terminating =⇒ →ψ(R) is string-terminating

We provide three sound and complete transformations split, rotate, shift

Trace-decreasing matrix interpreations

following a suggestion of Johannes Waldmann

extend the matrix interpretations from
[Zantema,König,Bruggink 2014,RTA]

7/18

Our Contributions: Improved Termination Techniques

Transformational approach

1 reduce cycle-termination to string-termination

2 apply state-of-the-art ATPs to prove string-termination

required: transformation ψ : “cycle rewriting → string rewriting” which is

sound: →ψ(R) is string-terminating =⇒ ◦→R is cycle-terminating

complete: ◦→R is cycle-terminating =⇒ →ψ(R) is string-terminating

We provide three sound and complete transformations split, rotate, shift

Trace-decreasing matrix interpreations

following a suggestion of Johannes Waldmann

extend the matrix interpretations from
[Zantema,König,Bruggink 2014,RTA]

7/18

The Transformation Split: Idea

For a cycle rewrite step [u1] ◦→{`→r} [u2] and v1 ∈ [u1]

case 1: v1→{`→r} v2 where v2 ∈ [u2]

c
d

cba

d
c

b

a a c

d

c
a

aaa

d
c

b

a a c

d

c d a b c d c d c a a b c d a a a a c d c a a b

◦→{abcd→aaaa}

→{abcd→aaaa}

8/18

The Transformation Split: Idea

For a cycle rewrite step [u1] ◦→{`→r} [u2] and v1 ∈ [u1]

case 1: v1→{`→r} v2 where v2 ∈ [u2]

c
d

cba

d
c

b

a a c

d

c
a

aaa

d
c

b

a a c

d

c d a b c d c d c a a b c d a a a a c d c a a b

◦→{abcd→aaaa}

→{abcd→aaaa}

8/18

The Transformation Split: Idea

For a cycle rewrite step [u1] ◦→{`→r} [u2] and v1 ∈ [u1]

case 2: we can split ` = `A`B s.t.

prefix string rewrite step︷ ︸︸ ︷

v1 = `Bu`A→{`B→ε} u`A→{`A→r} ur where ur ∈ [u2]

︸ ︷︷ ︸
suffix string rewrite step

c
d

cba

d
c

b

a a c

d

c
d

cba

a
a

a

a a c

d

c d a b c d c d c a a b a b c d c d c a a a a a

◦→{abcd→aaaa}

cdabcdcdcaab→{cd→ε} abcdcdcaab→{ab→aaaa} abcdcdaaaa

cd→εab→aaaa

8/18

The Transformation Split: Idea

For a cycle rewrite step [u1] ◦→{`→r} [u2] and v1 ∈ [u1]

case 2: we can split ` = `A`B s.t.

prefix string rewrite step︷ ︸︸ ︷
v1 = `Bu`A→{`B→ε} u`A→{`A→r} ur where ur ∈ [u2]︸ ︷︷ ︸

suffix string rewrite step

c
d

cba

d
c

b

a a c

d

c
d

cba

a
a

a

a a c

d

c d a b c d c d c a a b a b c d c d c a a a a a

◦→{abcd→aaaa}

cdabcdcdcaab→{cd→ε} abcdcdcaab→{ab→aaaa} abcdcdaaaa

cd→εab→aaaa

8/18

The Transformation Split

Naive (but sound) transformation:

Add all rewrite rules (`→ r)

Add all splitting rules (`A→ r) and (`B → ε) for ` = `A`B

⇒ results in non-terminating SRSs in most of the cases
(i.e. whenever r contains some prefix `A)

Requirements for a better transformation (and for completeness)

ensure that split rules are only applied to a prefix or a suffix, resp.
⇒ surround the string by fresh begin symbol B and end symbol E

synchronize the application of the prefix and the suffix rewrite step
⇒ use fresh symbols a for a ∈ Σ, and W, L and Ri,j

9/18

The Transformation Split

Naive (but sound) transformation:

Add all rewrite rules (`→ r)

Add all splitting rules (`A→ r) and (`B → ε) for ` = `A`B

⇒ results in non-terminating SRSs in most of the cases
(i.e. whenever r contains some prefix `A)

Requirements for a better transformation (and for completeness)

ensure that split rules are only applied to a prefix or a suffix, resp.
⇒ surround the string by fresh begin symbol B and end symbol E

synchronize the application of the prefix and the suffix rewrite step
⇒ use fresh symbols a for a ∈ Σ, and W, L and Ri,j

9/18

The Transformation Split

Definition of the transformation split(.)

For an SRS R over alphabet Σ, the SRS split(R) over
Σsplit = Σ ∪ Σ ∪ {B,E, L,W,Ri,j} is constructed as follows:

Let (`→ r) ∈ R be the ith rule of R:

add rule `→ r (for case 1)

for every splitting ` = `A`B with |`A| = j, add the rules:

B`B → WRi,j (prefix rewrite step)

Ri,j a → aRi,j (synchronize, shift Ri,j in front of the suffix)

Ri,j `AE→ LrE (suffix rewrite step)

add rules aL→ La for all a ∈ Σ (clean up)

add rule WL→ B (finish)

10/18

Split is Sound and Complete

Theorem

The transformation split is sound and complete,
i.e. →split(R) is string-terminating iff ◦→R is cycle-terminating.

Soundness follows by construction:

[u] ◦→R [v] =⇒ BuE→+
split(R) Bv′E where v′ ∼ v

Completeness can be shown by

type introduction [Zantema 1994, JSC]

a mapping Φ :: Σ∗split → Σ∗ with

∀u :: T : u→split(R) u
′ =⇒ [Φ(u)] ◦→∗R [Φ(u′)]

11/18

Trace-Decreasing Matrix Interpretations

Md := all d× d matrices A over IN s.t. A11 > 0

for A,B ∈Md,

A > B ⇐⇒ A11 > B11 ∧ ∀i, j : Aij ≥ Bij
A ≥ B ⇐⇒ ∀i, j : Aij ≥ Bij

a matrix interpretation 〈·〉 : Σ→Md is extended to strings as

〈ε〉 = I and 〈ua〉 = 〈u〉 × 〈a〉 for all u ∈ Σ∗, a ∈ Σ

where I is the identity matrix, × is matrix multiplication

12/18

Trace-Decreasing Matrix Interpretations

Md := all d× d matrices A over IN s.t. A11 > 0

for A,B ∈Md,

A > B ⇐⇒ A11 > B11 ∧ ∀i, j : Aij ≥ Bij
A ≥ B ⇐⇒ ∀i, j : Aij ≥ Bij

a matrix interpretation 〈·〉 : Σ→Md is extended to strings as

〈ε〉 = I and 〈ua〉 = 〈u〉 × 〈a〉 for all u ∈ Σ∗, a ∈ Σ

where I is the identity matrix, × is matrix multiplication

12/18

Trace-Decreasing Matrix Interpretations

Theorem

Let R′ ⊆ R be SRSs over Σ and let 〈·〉 : Σ→Md such that

◦→R′ is terminating,

〈`〉 ≥ 〈r〉 for all (`→ r) ∈ R′, and

〈`〉 > 〈r〉 for all (`→ r) ∈ R \R′.
Then ◦→R is terminating.

Proof: The main observations are

trace(〈a〉 × 〈u〉) = trace(〈u〉 × 〈a〉) and thus
trace(〈u〉) = trace(〈v〉) if u ∼ v
>,≥ are stable w.r.t ×, and thus 〈`〉 > 〈r〉 =⇒ 〈`w〉 > 〈rw〉
[u] ◦→R′ [v] =⇒ trace(〈u〉) ≥ trace(〈v〉), and

[u] ◦→R\R′ [v] =⇒ trace(〈u〉) > trace(〈v〉)

13/18

Trace-Decreasing Matrix Interpretations

Theorem

Let R′ ⊆ R be SRSs over Σ and let 〈·〉 : Σ→Md such that

◦→R′ is terminating,

〈`〉 ≥ 〈r〉 for all (`→ r) ∈ R′, and

〈`〉 > 〈r〉 for all (`→ r) ∈ R \R′.
Then ◦→R is terminating.

Proof: The main observations are

trace(〈a〉 × 〈u〉) = trace(〈u〉 × 〈a〉) and thus
trace(〈u〉) = trace(〈v〉) if u ∼ v
>,≥ are stable w.r.t ×, and thus 〈`〉 > 〈r〉 =⇒ 〈`w〉 > 〈rw〉
[u] ◦→R′ [v] =⇒ trace(〈u〉) ≥ trace(〈v〉), and

[u] ◦→R\R′ [v] =⇒ trace(〈u〉) > trace(〈v〉)

13/18

Improvements and Limitations

Trace-decreasing matrix interpretations

can remove rules which are applied exponentially often
(improves [Zantema, König, Bruggink 2014,RTA])

impossible to remove rules which are applied more often

Example (adapted from [Hofbauer and Waldmann 2006,RTA])

R := φ({ab→ bca, cb→ bbc})
= {RE → LE, aL→ La′, bL→ Lb′, cL→ Lc′, Ra′ → aR,

Rb′ → bR,Rc′ → cR, abL→ bcaR, cbL→ bbcR}

has cycle rewrite derivations where the number of rule
applications is a tower of exponentials for each rule

impossible to prove cycle termination by trace-decreasing
matrix interpretations

but AProVE proves string termination of split(R)
⇒ transformational approach succeeds

14/18

Improvements and Limitations

Trace-decreasing matrix interpretations

can remove rules which are applied exponentially often
(improves [Zantema, König, Bruggink 2014,RTA])

impossible to remove rules which are applied more often

Example (adapted from [Hofbauer and Waldmann 2006,RTA])

R := φ({ab→ bca, cb→ bbc})
= {RE → LE, aL→ La′, bL→ Lb′, cL→ Lc′, Ra′ → aR,

Rb′ → bR,Rc′ → cR, abL→ bcaR, cbL→ bbcR}

has cycle rewrite derivations where the number of rule
applications is a tower of exponentials for each rule

impossible to prove cycle termination by trace-decreasing
matrix interpretations

but AProVE proves string termination of split(R)
⇒ transformational approach succeeds

14/18

Improvements and Limitations

Trace-decreasing matrix interpretations

can remove rules which are applied exponentially often
(improves [Zantema, König, Bruggink 2014,RTA])

impossible to remove rules which are applied more often

Example (adapted from [Hofbauer and Waldmann 2006,RTA])

R := φ({ab→ bca, cb→ bbc})
= {RE → LE, aL→ La′, bL→ Lb′, cL→ Lc′, Ra′ → aR,

Rb′ → bR,Rc′ → cR, abL→ bcaR, cbL→ bbcR}

has cycle rewrite derivations where the number of rule
applications is a tower of exponentials for each rule

impossible to prove cycle termination by trace-decreasing
matrix interpretations

but AProVE proves string termination of split(R)
⇒ transformational approach succeeds

14/18

Experiments

Techniques

torpacyc: trace decreasing matrix interpretations

transformations split, rotate, shift with AProVE and TTT2
combination 1: first torpacyc then transformation split

combination 2: like combination 1, but first string-nontermination
check by AProVE, or TTT2, resp.

Tools and webinterface available via

http://www.ki.cs.uni-frankfurt.de/research/cycsrs

15/18

Cycle Non-/Termination of TPDB/SRS-Standard

309

168

45

65

310

161

335

173

336

36torpacyc 2014

46torpacyc 2015

40split(AProVE)

30split(TTT2)

10rotate(AProVE)

6rotate(TTT2)

10shift(AProVE)

8shift(TTT2)

55comb1(AProVE)

55comb1(TTT2)

54comb2(AProVE)

54comb2(TTT2)

63any

cycle termination proved, cycle nontermination proved
1315 problems, timeout 60sec, 916 problems remain open

16/18

Cycle Non-/Termination of 50000 Random SRS

50000 randomly generated problems

of size 12 with |Σ| = 3

no obviously nonterminating problems

Results

rotate and shift show termination of 74 % of the problems

torpacyc and split show termination of 94 % of the problems

In total (combining all results):

No

4.7%

Maybe

1.1%

Yes

94.2%

17/18

Conclusion & Future Work

Conclusion

new techniques to prove cycle termination

three sound and complete transformations
from cycle into string rewriting

transformation split seems to be useful in practice

trace-decreasing matrix interpretations

new techniques solve problems for which the
earlier techniques failed

Future work

extend the benchmark problem set

specific methods for cycle non-termination

applications for cycle rewriting

18/18

Conclusion & Future Work

Conclusion

new techniques to prove cycle termination

three sound and complete transformations
from cycle into string rewriting

transformation split seems to be useful in practice

trace-decreasing matrix interpretations

new techniques solve problems for which the
earlier techniques failed

Future work

extend the benchmark problem set

specific methods for cycle non-termination

applications for cycle rewriting

18/18

Conclusion & Future Work

Conclusion

new techniques to prove cycle termination

three sound and complete transformations
from cycle into string rewriting

transformation split seems to be useful in practice

trace-decreasing matrix interpretations

new techniques solve problems for which the
earlier techniques failed

Future work

extend the benchmark problem set

specific methods for cycle non-termination

applications for cycle rewriting

18/18

Conclusion & Future Work

Conclusion

new techniques to prove cycle termination

three sound and complete transformations
from cycle into string rewriting

transformation split seems to be useful in practice

trace-decreasing matrix interpretations

new techniques solve problems for which the
earlier techniques failed

Future work

extend the benchmark problem set

specific methods for cycle non-termination

applications for cycle rewriting

18/18

Conclusion & Future Work

Conclusion

new techniques to prove cycle termination

three sound and complete transformations
from cycle into string rewriting

transformation split seems to be useful in practice

trace-decreasing matrix interpretations

new techniques solve problems for which the
earlier techniques failed

Future work

extend the benchmark problem set

specific methods for cycle non-termination

applications for cycle rewriting

18/18

