GOETHE @4

UNIVERSITAT

FRANKFURT AM MAIN

Algorithms for Extended
Alpha-Equivalence and Complexity

Manfred Schmidt-SchauBB, Conrad Rau, David Sabel

Goethe-University, Frankfurt, Germany

RTA 2013, Eindhoven, The Netherlands

Motivation ced

Reasoning, deduction, rewriting, program transformation ...
requires to identify expressions

Functional core languages have (recursive) bindings, e.g.

letrec
map = \f,zs.case s of {[1 > [1; (y:ys) > (fy): (map f ys)};
square = \x.x * x;
myList = [1, 2, 3]

in map square myList

@ These bindings are sets, i.e. they are commutable

@ ldentify expressions upto extended a-equivalence:

a-renaming and commutation of bindings

Algorithms for Extended Alpha-Equivalence and Complexity

Questions cormne B

o What is the complexity of deciding extended a-equivalence?
@ Is there a difference for languages with non-recursive let?
e Find efficient algorithms for special cases.

o Complexity of extended a-equivalence in process calculi?

Algorithms for Extended Alpha-Equivalence and Complexity

Gl-Completeness

Extended a-Equivalence for let-languages oo

Abstract language CH with recursive let, where c € X

$i € Lcy =1 ‘ C(Sl, - ,Sar(c)) ’ Ax.s
| letrec zy =s1;...;@, =S, in s
Extended a-Equivalence ~, cy in CH:

. aVcomm ,*
5 ~q,cH t iff s ¢&——= 1 where

« . .
@ s — 1 1s a-renaming

o Clletrec ...;x; = 8;;...,&j = Sj;... in s
comm .
—— C[letrec ...;2j = sj;...;2; = S;...1in s

CHNR: Variant of CH with non-recursive let instead of letrec

Algorithms for Extended Alpha-Equivalence and Complexity

Gl-Completeness

Graph Isomorphism B

Graph Isomorphism

Undirected graphs G; = (V4, E1) and Gy = (V3, E9) are
isomorphic iff there exists a bijection ¢ : V; — V5 such that
(U’w) S El <~ (¢(U)> gb(w)) € E2

Graph Isomorphism Problem (GI)

Graph-isomorphism (GI) is the following problem: Given two finite
(unlabelled, undirected) graphs G1 = (V1, E1) and Gy = (Va, E»),
are (G1 and G5 isomorphic?

e PCGICNP
@ GI is neither known to be in P nor NP-hard

@ A lot of other isomorphism problems on labelled / directed
graphs are GI-complete (see e.g. Booth & Colboum’ 79)

Algorithms for Extended Alpha-Equivalence and Complexity 5/21

Gl-Completeness

GI-Hardness of Extended a-Equivalence o

Theorem
Deciding ~, cH is GI-hard. J

Proof: Polytime reduction of the Digraph-lsomorphism-Problem:

Digraph G = (V, E) is encoded as:
enc(G) = letrec Envy, Envg in x

such that
o Envy =, e {vi=a} wherea € ¥
e Fnvg = U(Ui,fuj)eE{xi,j = c¢(v;,v;)} where c € ¥

Verify: G, G2 are isomorphic <= enc(G1) ~q,cH enc(G2)

Algorithms for Extended Alpha-Equivalence and Complexity

Gl-Completeness

Example cormne B

L

letrec uy = a;u2 = a;us = a; letrec v1 = a;vV2 = a; V3 = a;
x1,3 = c(u1,u3); x1,3 = c(v1,v3);
x32 = c(ug, u2); 733 = ¢(v3,v3);
w20 = c(ug, u2); x32 = c(v3,v2);
$2,1 = C(UQ, ul); 33‘273 = C(Ug, 3)7
r12 = c(u1, u2); r1 = c(v2,v1)
inxr inxr

Algorithms for Extended Alpha-Equivalence and Complexity

Gl-Completeness

Example cormne B

L

letrec uz = a;u; = a;u2 = a; letrec v1 = a;vV2 = a; V3 = a;
w32 = c(u3, u2); x1,3 = c(v1,v3);
$2,2 = C(’LLQ, ug); x3,3 = C(U3, 113)7
w1 = c(ug, u1); x32 = c(v3,v2);
$1,2 = c(ul,uQ); 33‘273 = C(Ug, 3)7
713 = c(u1,u3); w21 = c(ve,v1)
in x in x

Algorithms for Extended Alpha-Equivalence and Complexity

Gl-Completeness

Example cormne B

L

letrec uz = a;u; = a;u2 = a; letrec v1 = a;vV2 = a; V3 = a;
x1,3 = c(uz, u2); x1,3 = c(v1,v3);
x33 = c(ug, u2); 733 = ¢(v3,v3);
w32 = c(ug,u1); x32 = c(v3,v2);
$2,3 = c(ul, UQ); 33‘273 = C(Ug, 3)7
To1 = c(uy, u3); r1 = c(v2,v1)
inxr inxr

Algorithms for Extended Alpha-Equivalence and Complexity

Gl-Completeness

Example cormne B

L

letrec uz = a;u; = a;u2 = a; letrec v1 = a;vV2 = a; V3 = a;
x1,3 = c(uz, u2); x1,3 = c(v1,v3);
x33 = c(ug, u2); 733 = ¢(v3,v3);
x32 = c(ug,u1); x32 = c(v3,v2);
$2,3 = c(ul, UQ); 33‘273 = C(Ug, 3)7
To1 = c(u1,u3); r1 = c(v2,v1)
inxr inxr

Algorithms for Extended Alpha-Equivalence and Complexity

Gl-Completeness

Example cormne B

& = =

letrec uz = a;v2 = a;uz = a; letrec v1 = a;vV2 = a; V3 = a;
x1,3 = c(uz, u2); x1,3 = c(v1,v3);
x33 = c(ug, u2); 733 = ¢(v3,v3);
w32 = c(u2,v2); x32 = c(v3,v2);
$2,3 = C(’Uz, UQ); 33‘273 = C(Ug, 3)7
To1 = c(v2, u3); r1 = c(v2,v1)
inxr inxr

Algorithms for Extended Alpha-Equivalence and Complexity

Gl-Completeness

Example cormne B

& = =

letrec uz = a;v2 = a;us = a; letrec v1 = a;vV2 = a; V3 = a;
21,3 = c(uz, u2); x1,3 = c(v1,v3);
$3,3 = C(’ILQ, ’ltz); x3,3 = C(U3, 113)7
x32 = c(uz,v2); x32 = c(v3,v2);
$2,3 = C(’Uz, 112); 33‘273 = C(Ug, 3)7
w1 = c(v2, u3); w21 = c(ve,v1)
in x in x

Algorithms for Extended Alpha-Equivalence and Complexity

Gl-Completeness

Example cormne B

L GWECRENC S

letrec uz = a;v2 = a;v3 = a; letrec v1 = a;vV2 = a; V3 = a;
21,3 = c(u3,v3); x1,3 = c(v1,v3);
r33 = ¢(v3,v3); 733 = ¢(v3,v3);
w32 = c(v3,v2); x32 = c(v3,v2);
$2,3 = C(’Uz, ’Ug); 33‘273 = C(Ug, 3)7
w1 = c(v2, u3); w21 = c(ve,v1)
inx inx

Algorithms for Extended Alpha-Equivalence and Complexity

Gl-Completeness

Example cormne B

L GWECRENC S

letrec uz = a;v2 = a;v3 = a; letrec v1 = a;vV2 = a; V3 = a;
x1,3 = c(u3,v3); x1,3 = c(v1,v3);
r33 = ¢(v3,v3); 733 = ¢(v3,v3);
w32 = c(v3,v2); x32 = c(v3,v2);
$2,3 = C(’Uz, ’Ug); 33‘273 = C(Ug, 3)7
w1 = c(v2, u3); w21 = c(ve,v1)
inx inx

Algorithms for Extended Alpha-Equivalence and Complexity

Gl-Completeness

Example cormne B

@« "9 o9

letrec v1 = a;v2 = a;v3 = a; letrec v1 = a;vV2 = a; V3 = a;
x1,3 = c(v1,v3); x1,3 = c(v1,v3);
r33 = ¢(v3,v3); 733 = ¢(v3,v3);
w32 = c(v3,v2); x32 = c(v3,v2);
$2,3 = C(’Uz, ’Ug); 33‘273 = C(Ug, 3)7
r21 = c(v2,v1); w21 = c(ve,v1)
inx inx

Algorithms for Extended Alpha-Equivalence and Complexity

Gl-Completeness

Exam p le e

@« "9 o9
o

letrec v1 = a;v2 = a;v3 = a; letrec v1 = a;vV2 = a; V3 = a;
x1,3 = c(v1,v3); x1,3 = c(v1,v3);
r33 = ¢(v3,v3); 733 = ¢(v3,v3);
w32 = c(v3,v2); x32 = c(v3,v2);
.%2,3 = C(’Uz, ’Ug); 33‘273 = C(Ug, 3)7
r21 = c(v2,v1); w21 = c(ve,v1)
inx inx

Isomorphism: {[u] =93, [us + v3 |, fug ¥y

Algorithms for Extended Alpha-Equivalence and Complexity 7/21

Gl-Completeness

Easy Variations / Consequences cormne B

@ Deciding ~, cH is still GI-hard if
expressions are restricted to one-level letrecs
(since our encoding uses a one-level letrec)

e Non-recursive let: Deciding ~, cHnr is GI-hard:
Use enc(G) = let Envy in (let Envg in x)

@ Hardness also holds for empty signature >:

e replace a by a free variable x,,
o replace ¢(v;,v;) by let y = v; in v,

Algorithms for Extended Alpha-Equivalence and Complexity

Gl-Completeness

GI-Completeness of Extended a-Equivalence o

@ We use labelled digraph isomorphism
@ Encode CH-expressions s into a labelled digraph G(s), example:

s =1letrec x=y; y==z in x

letrec

@ Full encoding is given in the paper

o Verify: G(s1), G(s2) are isomorphic iff s1 >~ cH 2

Theorem
Deciding ~ cH is GI-complete. J

Algorithms for Extended Alpha-Equivalence and Complexity 9/21

Gl-Completeness

GI-Completeness of Extended a-Equivalence o

@ We use labelled digraph isomorphism
@ Encode CH-expressions s into a labelled digraph G(s), example:

s =letrec x=y; Yy=2 in x

letrec

@ Full encoding is given in the paper

o Verify: G(s1), G(s2) are isomorphic iff s1 >~ cH 2

Theorem
Deciding ~ cH is GI-complete. J

Algorithms for Extended Alpha-Equivalence and Complexity 9/21

Special Case:
Removing Garbage

Algorithms for Extended Alpha-Equivalence and Complexity

Garbage Collection o

Garbage collection (gc): removing unused bindings

letrec 1 = 81;...;%p = Sy in AN if FV(t) N {a1,..., 20} =0

letrec 1 = S1;...;%n = Sp; 2 letrec Y1 =115 ;Ym = tm
yr =115 ;Ym =1lm in tmy1

in tp41 if UM FV () 0 {a, . an) =

Expression s is garbage-free if it is in (gc)-normal form

Lemma

For every CH-expression, its (gc¢)-normal form can be computed in
time O(nlogn)

Algorithms for Extended Alpha-Equivalence and Complexity

The Garbage-Free Case cormne B

Theorem

If 51,52 are garbage free then s; ~, cH s2
can be decided in O(nlogn) where n = |s1| + |s2].

Informal argument:
@ Since the s1, 5o are garbage free they can be uniquely traversed:

(letrec Env in s)* — (letrec Env in s*)

letrec ...z =s ...C[z*] — 1letrec ...z =s" ...C[z]

(if £ = s was not visited already)

@ This traversal can be used to fix an order of the bindings
letrec z1 = §15...;Tn = Sp in t = 1rin(Tr1) = Sp(1)s -« > Tr(n) = Sn(n))

@ Now usual algorithms for deciding a-equivalence of terms can be
used (see e.g. Calves & Fernandez '10)

Algorithms for Extended Alpha-Equivalence and Complexity

The Garbage-Free Case (2)

Formal proof in the paper (sketch):
e Compute G(s;), i =1,2
e OO(-) removes all var-edges from G(s;) resulting in OO(G(s;))

Algorithms for Extended Alpha-Equivalence and Complexity

The Garbage-Free Case (2) B

Formal proof in the paper (sketch):
e Compute G(s;), i =1,2
e OO(-) removes all var-edges from G(s;) resulting in OO(G(s;))

@ Since s; are garbage-free, the graphs OO(G(s;)) are
rooted outgoing-ordered labelled digraphs (OOLDGs)

Isomorphism of rooted OOLDGs can be decided in O(nlogn)
G(s1) and G(s2) are isom. iff OO(G(s1)) and OO (G(s2)) are isom.

OOLDG: Labelled digraph s.t. Rooted OOLDG:
h @ @ weakly-connected

Q :> h# 2 @ exists root v: every other node
L2 is reachable from v

Algorithms for Extended Alpha-Equivalence and Complexity 13/21

The Garbage-Free Case (2) B

Formal proof in the paper (sketch):
e Compute G(s;), i =1,2
e OO(-) removes all var-edges from G(s;) resulting in OO(G(s;))

@ Since s; are garbage-free, the graphs OO(G(s;)) are
rooted outgoing-ordered labelled digraphs (OOLDGs)

Isomorphism of rooted OOLDGs can be decided in O(nlogn)
G(s1) and G(s2) are isom. iff OO(G(s1)) and OO (G(s2)) are isom.

OOLDG: Labelled digraph s.t. Rooted OOLDG:
h @ @ weakly-connected

Q :> h# 2 @ exists root v: every other node
L2 is reachable from v

Algorithms for Extended Alpha-Equivalence and Complexity 13/21

OOLDGs vs. OLDGs cocne @

@ Outgoing ordered LDG (OOLDG):
l1 #ls, but I3 =14 or I3 = [allowed

e Ordered LDG (OLDG):
{l1,12,13,14} required to be pairwise distinct

Remark:
e OOLDG-Isomorphism is GI-complete (proof in the paper)
e OLDG-Isomorphism is in P (Jian & Bunke, 99)

Algorithms for Extended Alpha-Equivalence and Complexity

Alpha-Equivalence Including Garbage Collection o

Further consequences:

Extended a-Equivalence up to Garbage-Collection

CH-expressions s, t are alpha-equivalent up to
garbage-collection written as s ~, 4. cH t, iff the (gc)-normal
forms s’ and t’ of s and ¢ are alpha-equivalent.

Theorem
51 ~a,ge,CH S2 can be decided in O(nlogn) where n = |s1| + |s2].

Algorithms for Extended Alpha-Equivalence and Complexity

Applications

Applications B

Extended a-equivalence is GI-complete in

@ several letrec-calculi (Ariola’95, Ariola & Blom'97,...)

@ extended and non-deterministic letrec-calculi
(Moran, Sands & Carlsson '03, S. & Schmidt-SchauB'08,...)

o fragment of Haskell: Recursive functions, data constructors,

letrec-expressions

Remark: The result does not hold for 1et-calculi with non-recursive,
single-binding let-expressions (e.g. Maraist, Odersky & Wadler '98)

Algorithms for Extended Alpha-Equivalence and Complexity

m-Calculus

Structural Congruence in the 7-Calculus

Algorithms for Extended Alpha-Equivalence and Complexity

m-Calculus

The m-calculus

Syntax: Pu=n.P| (P | P)|!P|0|vz.P

m = z(y) [T(y)

where z,y € N

Milner’s structural congruence =:
The least congruence satisfying the equations

P

P | (P | Ps)
Pl P

PlO
vz.vw.P
vz.0

I/Z.(Pl | PQ)
'P

Q, if P and @ are a-equivalent

(P Py) | P

P Py

P

vw.vz.P

0

P1 | Z/Z.PQ, if z € fn(Pl)
PI'P

Open Question: Is = decidable?

Algorithms for Extended Alpha-Equivalence and Complexity

m-Calculus: Specific Cases and Results (1)

Lemma (see also (Khomenko & Meyer '09))
Structural congruence = is GI-hard even without replication. J

Alternative proof: Polytime reduction of Digraph-lsomorphism:
Encode digraph G = (V, E) with V = {vy,...,v,}, E ={e1,...,en} as
@(G) ==vvr, .. on(p(u1) | T(vn) Lo(er) | ... T o(em)) where

e for v; € V: p(v;) = vi(a).0

o for ¢; = (vj,v,) € E: ¢(e;) = vj(vi).0

Then ¢(G1) = ¢(G2) <= G4, G2 are isomorphic.

Algorithms for Extended Alpha-Equivalence and Complexity

m-Calculus

m-Calculus: Specific Cases and Results (2) o

Fragment with replication but without binders
$,8 € PIR:=C | (s11s2)|!'s (C represents constants)

Structural congruence =,,, is the least congruence satisfying

(511s2) =, (s21s1)
(s11(s2183)) = ((s11852)1s3)
ls =, slls

Algorithms for Extended Alpha-Equivalence and Complexity

m-Calculus: Specific Cases and Results (2) ol

Fragment with replication but without binders
$,8 € PIR:=C | (s11s2)|!'s (C represents constants)

Structural congruence =,,, is the least congruence satisfying

(81 I 82) =rm (82 I 81)
(sil(s21s3)) = ((s11s2)]1s3)
I's =.. Sl!s
Theorem
Deciding s1 =,.. s2 is EXPSPACE-complete J

Proof: In EXPSPACE was shown by Engelfriet & Gelsema’ 07.
Hardness: Reduction of the word problem over commutative semigroups

Remark: Structural congruence in the full m-calculus with replication is
thus EXPSPACE-hard, however decidability is still open.

Algorithms for Extended Alpha-Equivalence and Complexity

Conclusion

Conclusion g

Extended a-equivalence in let- / letrec-calculi is
GI-complete

Complexity arises from garbage bindings (unless GI # P)

Including garbage-collection in the equivalence makes the
decision problem efficiently solvable.

m-calculus with replication:
Deciding structural congruence is a very hard problem

Algorithms for Extended Alpha-Equivalence and Complexity

	Motivation
	GI-Completeness
	GC
	Applications
	pi-Calculus
	Conclusion

