

Algorithms for Extended Alpha-Equivalence and Complexity

Manfred Schmidt-Schauß, Conrad Rau, David Sabel

Goethe-University, Frankfurt, Germany

RTA 2013, Eindhoven, The Netherlands

Reasoning, deduction, rewriting, program transformation ... requires to identify expressions

Functional core languages have (recursive) bindings, e.g.

```
letrec \begin{aligned} &\max = \lambda f, xs. \texttt{case} \ xs \ \texttt{of} \ \{ \texttt{[]} \ \ \text{->} \ \texttt{[]}; \ (y:ys) \ \ \text{->} \ (f \ y): (\texttt{map} \ f \ ys) \}; \\ &\mathsf{square} = \lambda x. x*x; \\ &\mathsf{myList} = [1,2,3] \\ &\texttt{in} \ \mathsf{map} \ \mathsf{square} \ \mathsf{myList} \end{aligned}
```

- These bindings are **sets**, i.e. they are **commutable**
- Identify expressions upto extended α -equivalence: α -renaming and commutation of bindings

- What is the **complexity** of deciding extended α -equivalence?
- Is there a difference for languages with non-recursive let?
- Find efficient algorithms for special cases.
- Complexity of extended α -equivalence in **process calculi**?

Extended α -Equivalence for let-languages

Abstract language CH with recursive let, where $c \in \Sigma$

$$s_i \in \mathcal{L}_{\mathsf{CH}} ::= x \mid c(s_1, \dots, s_{\mathrm{ar}(c)}) \mid \lambda x.s$$

 $\mid \mathsf{letrec} \ x_1 = s_1; \dots; x_n = s_n \mathsf{in} \ s$

Extended α -**Equivalence** $\simeq_{\alpha,CH}$ in CH:

$$s \simeq_{\alpha, \mathsf{CH}} t \mathsf{iff} \ s \xrightarrow{\alpha \vee \mathit{comm}, *} t \mathsf{where}$$

- $s \xrightarrow{\alpha} t$ is α -renaming
- $C[\text{letrec } \dots; x_i = s_i; \dots, x_j = s_j; \dots \text{ in } s] \xrightarrow{comm} C[\text{letrec } \dots; x_j = s_j; \dots; x_i = s_i; \dots \text{ in } s]$

CHNR: Variant of CH with non-recursive let instead of letrec

Graph Isomorphism

Undirected graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic iff there exists a bijection $\phi: V_1 \to V_2$ such that $(v, w) \in E_1 \iff (\phi(v), \phi(w)) \in E_2$

Graph Isomorphism Problem (GI)

Graph-isomorphism (GI) is the following problem: Given two finite (unlabelled, undirected) graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$, are G_1 and G_2 isomorphic?

- $P \subseteq GI \subseteq NP$
- GI is neither known to be in P nor NP-hard
- A lot of other isomorphism problems on labelled / directed graphs are **GI**-complete (see e.g. Booth & Colboum' 79)

GI-Hardness of Extended α -Equivalence

Theorem

Deciding $\simeq_{\alpha,CH}$ is **GI**-hard.

Proof: Polytime reduction of the Digraph-Isomorphism-Problem:

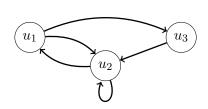
Digraph G = (V, E) is encoded as:

$$enc(G) =$$
letrec Env_V, Env_E in x

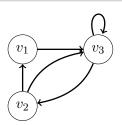
such that

- $Env_V = \bigcup_{v_i \in V} \{v_i = a\}$ where $a \in \Sigma$
- $Env_E = \bigcup_{(v_i,v_j)\in E} \{x_{i,j} = c(v_i,v_j)\}$ where $c\in \Sigma$

Verify: G_1, G_2 are isomorphic $\iff enc(G_1) \simeq_{\alpha, \mathsf{CH}} enc(G_2)$



letrec
$$u_1=a;u_2=a;u_3=a;$$
 $x_{1,3}=c(u_1,u_3);$ $x_{3,2}=c(u_3,u_2);$ $x_{2,2}=c(u_2,u_2);$ $x_{2,1}=c(u_2,u_1);$ $x_{1,2}=c(u_1,u_2);$ in x



letrec
$$v_1=a; v_2=a; v_3=a;$$

$$x_{1,3}=c(v_1,v_3);$$

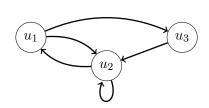
$$x_{3,3}=c(v_3,v_3);$$

$$x_{3,2}=c(v_3,v_2);$$

$$x_{2,3}=c(v_2,v_3);$$

$$x_{2,1}=c(v_2,v_1)$$

 $\mathtt{in}\ x$



letrec
$$u_3=a; u_1=a; u_2=a;$$

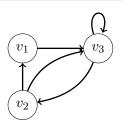
$$x_{3,2}=c(u_3,u_2);$$

$$x_{2,2}=c(u_2,u_2);$$

$$x_{2,1}=c(u_2,u_1);$$

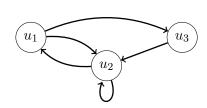
$$x_{1,2}=c(u_1,u_2);$$

$$x_{1,3}=c(u_1,u_3);$$
 in x



letrec
$$v_1=a; v_2=a; v_3=a;$$
 $x_{1,3}=c(v_1,v_3);$ $x_{3,3}=c(v_3,v_3);$ $x_{3,2}=c(v_3,v_2);$ $x_{2,3}=c(v_2,v_3);$ $x_{2,1}=c(v_2,v_1)$ in x

111 d



letrec
$$u_3=a; u_1=a; u_2=a;$$

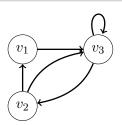
$$x_{1,3}=c(u_3,u_2);$$

$$x_{3,3}=c(u_2,u_2);$$

$$x_{3,2}=c(u_2,u_1);$$

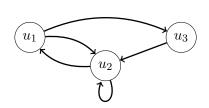
$$x_{2,3}=c(u_1,u_2);$$

$$x_{2,1}=c(u_1,u_3);$$
 in x

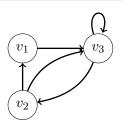


letrec
$$v_1=a; v_2=a; v_3=a;$$
 $x_{1,3}=c(v_1,v_3);$ $x_{3,3}=c(v_3,v_3);$ $x_{3,2}=c(v_3,v_2);$ $x_{2,3}=c(v_2,v_3);$ $x_{2,1}=c(v_2,v_1)$.

 $\mathtt{in}\ x$



letrec
$$u_3=a; u_1=a; u_2=a;$$
 $x_{1,3}=c(u_3,u_2);$ $x_{3,3}=c(u_2,u_2);$ $x_{3,2}=c(u_2,u_1);$ $x_{2,3}=c(u_1,u_2);$ $x_{2,1}=c(u_1,u_3);$ in x



letrec
$$v_1=a; v_2=a; v_3=a;$$

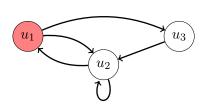
$$x_{1,3}=c(v_1,v_3);$$

$$x_{3,3}=c(v_3,v_3);$$

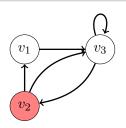
$$x_{3,2}=c(v_3,v_2);$$

$$x_{2,3}=c(v_2,v_3);$$

$$x_{2,1}=c(v_2,v_1)$$
 in x



letrec
$$u_3=a; v_2=a; u_2=a;$$
 $x_{1,3}=c(u_3,u_2);$ $x_{3,3}=c(u_2,u_2);$ $x_{3,2}=c(u_2,v_2);$ $x_{2,3}=c(v_2,u_2);$ $x_{2,1}=c(v_2,u_3);$ in x



letrec
$$v_1=a; v_2=a; v_3=a;$$

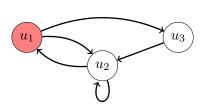
$$x_{1,3}=c(v_1,v_3);$$

$$x_{3,3}=c(v_3,v_3);$$

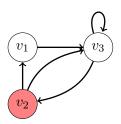
$$x_{3,2}=c(v_3,v_2);$$

$$x_{2,3}=c(v_2,v_3);$$

$$x_{2,1}=c(v_2,v_1)$$
 in x



letrec
$$u_3=a; v_2=a; \mathbf{u_2}=a;$$
 $x_{1,3}=c(u_3,\mathbf{u_2});$ $x_{3,3}=c(\mathbf{u_2},\mathbf{u_2});$ $x_{3,2}=c(\mathbf{u_2},v_2);$ $x_{2,3}=c(v_2,\mathbf{u_2});$ $x_{2,1}=c(v_2,u_3);$ in x



letrec
$$v_1=a; v_2=a; v_3=a;$$

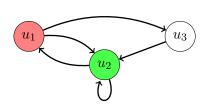
$$x_{1,3}=c(v_1,v_3);$$

$$x_{3,3}=c(v_3,v_3);$$

$$x_{3,2}=c(v_3,v_2);$$

$$x_{2,3}=c(v_2,v_3);$$

$$x_{2,1}=c(v_2,v_1)$$
 in x



letrec
$$u_3=a; v_2=a; v_3=a;$$

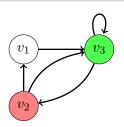
$$x_{1,3}=c(u_3,v_3);$$

$$x_{3,3}=c(v_3,v_3);$$

$$x_{3,2}=c(v_3,v_2);$$

$$x_{2,3}=c(v_2,v_3);$$

$$x_{2,1}=c(v_2,u_3);$$
 in x



letrec
$$v_1=a; v_2=a; v_3=a;$$

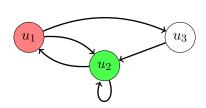
$$x_{1,3}=c(v_1,v_3);$$

$$x_{3,3}=c(v_3,v_3);$$

$$x_{3,2}=c(v_3,v_2);$$

$$x_{2,3}=c(v_2,v_3);$$

$$x_{2,1}=c(v_2,v_1)$$
 in x



letrec
$$\mathbf{u_3} = a; v_2 = a; v_3 = a;$$

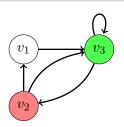
$$x_{1,3} = c(\mathbf{u_3}, v_3);$$

$$x_{3,3} = c(v_3, v_3);$$

$$x_{3,2} = c(v_3, v_2);$$

$$x_{2,3} = c(v_2, v_3);$$

$$x_{2,1} = c(v_2, \mathbf{u_3});$$
in x



letrec
$$v_1=a; v_2=a; v_3=a;$$

$$x_{1,3}=c(v_1,v_3);$$

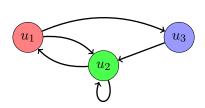
$$x_{3,3}=c(v_3,v_3);$$

$$x_{3,2}=c(v_3,v_2);$$

$$x_{2,3}=c(v_2,v_3);$$

$$x_{2,1}=c(v_2,v_1)$$
 in x

el Algorithms for Extended Alpha-Equivalence and Complexity



letrec
$$v_1=a; v_2=a; v_3=a;$$

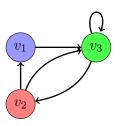
$$x_{1,3}=c(v_1,v_3);$$

$$x_{3,3}=c(v_3,v_3);$$

$$x_{3,2}=c(v_3,v_2);$$

$$x_{2,3}=c(v_2,v_3);$$

$$x_{2,1}=c(v_2,v_1);$$
 in x



letrec
$$v_1=a; v_2=a; v_3=a;$$
 $x_{1,3}=c(v_1,v_3);$ $x_{3,3}=c(v_3,v_3);$ $x_{3,2}=c(v_3,v_2);$ $x_{2,3}=c(v_2,v_3);$ $x_{2,1}=c(v_2,v_1)$ in x

___ ...

Example



letrec
$$v_1=a; v_2=a; v_3=a;$$

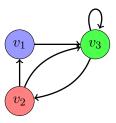
$$x_{1,3}=c(v_1,v_3);$$

$$x_{3,3}=c(v_3,v_3);$$

$$x_{3,2}=c(v_3,v_2);$$

$$x_{2,3}=c(v_2,v_3);$$

$$x_{2,1}=c(v_2,v_1);$$
 in x



letrec
$$v_1=a; v_2=a; v_3=a;$$
 $x_{1,3}=c(v_1,v_3);$ $x_{3,3}=c(v_3,v_3);$ $x_{3,2}=c(v_3,v_2);$ $x_{2,3}=c(v_2,v_3);$ $x_{2,1}=c(v_2,v_1)$

Isomorphism: $\{u_1 \mapsto v_2, u_2 \mapsto v_3, u_3 \mapsto v_1\}$

in x

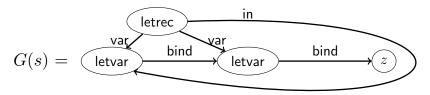
Easy Variations / Consequences

- Deciding $\simeq_{\alpha, \mathsf{CH}}$ is still \mathbf{GI} -hard if expressions are **restricted to one-level letrecs** (since our encoding uses a one-level letrec)
- Non-recursive let: Deciding $\simeq_{\alpha, \mathsf{CHNR}}$ is \mathbf{GI} -hard: Use $enc(G) = \mathsf{let}\ Env_V$ in $(\mathsf{let}\ Env_E\ \mathsf{in}\ x)$
- Hardness also holds for empty signature Σ :
 - replace a by a free variable x_a ,
 - replace $c(v_i, v_j)$ by let $y = v_i$ in v_j

GI-Completeness of Extended α -Equivalence

- We use labelled digraph isomorphism
- Encode CH-expressions s into a labelled digraph G(s), example:

$$s =$$
letrec $x = y$; $y = z$ in x



- Full encoding is given in the paper
- Verify: $G(s_1), G(s_2)$ are isomorphic iff $s_1 \simeq_{\alpha, \mathsf{CH}} s_2$

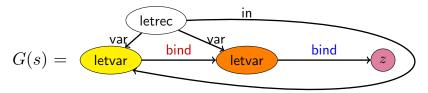
Theorem

Deciding $\simeq_{\alpha,CH}$ is **GI**-complete.

GI-Completeness of Extended α -Equivalence

- We use labelled digraph isomorphism
- Encode CH-expressions s into a labelled digraph G(s), example:

$$s =$$
letrec $x = y$; $y = z$ in x



- Full encoding is given in the paper
- Verify: $G(s_1), G(s_2)$ are isomorphic iff $s_1 \simeq_{\alpha, \mathsf{CH}} s_2$

Theorem

Deciding $\simeq_{\alpha,CH}$ is GI-complete.

Special Case: Removing Garbage

Garbage Collection

Garbage collection (gc): removing unused bindings

$$\begin{array}{ll} \textbf{letrec } x_1 = s_1; \ldots; x_n = s_n \textbf{ in } t \xrightarrow{gc} t & \text{if } \mathit{FV}(t) \cap \{x_1, \ldots, x_n\} = \emptyset \\ \\ \textbf{letrec } x_1 = s_1; \ldots; x_n = s_n; & \xrightarrow{gc} \textbf{ letrec } y_1 = t_1; \ldots; y_m = t_m \\ \\ y_1 = t_1; \ldots; y_m = t_m & \text{in } t_{m+1} \\ \\ \textbf{in } t_{m+1} & \text{if } \bigcup_{i=1}^{m+1} \mathit{FV}(t_i) \cap \{x_1, \ldots, x_n\} = \emptyset \end{array}$$

Expression s is **garbage-free** if it is in (gc)-normal form

Lemma

For every CH-expression, its (gc)-normal form can be computed in time $O(n\log n)$

The Garbage-Free Case

Theorem

If s_1, s_2 are garbage free then $s_1 \simeq_{\alpha, CH} s_2$ can be decided in $O(n \log n)$ where $n = |s_1| + |s_2|$.

Informal argument:

• Since the s_1, s_2 are garbage free they can be **uniquely traversed**:

. . .

This traversal can be used to fix an order of the bindings

letrec
$$x_1 = s_1; \dots; x_n = s_n \text{ in } t \to \text{lrin}(x_{\pi(1)} = s_{\pi(1)}, \dots, x_{\pi(n)} = s_{\pi(n)}, t)$$

• Now usual algorithms for deciding α -equivalence of terms can be used (see e.g. Calvès & Fernández '10)

The Garbage-Free Case (2)

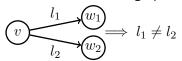
Formal proof in the paper (sketch):

- Compute $G(s_i)$, i = 1, 2
- ullet $OO(\cdot)$ removes all var-edges from $G(s_i)$ resulting in $OO(G(s_i))$

Formal proof in the paper (sketch):

- Compute $G(s_i)$, i = 1, 2
- $OO(\cdot)$ removes all var-edges from $G(s_i)$ resulting in $OO(G(s_i))$
- Since s_i are garbage-free, the graphs $OO(G(s_i))$ are rooted outgoing-ordered labelled digraphs (OOLDGs)
- Isomorphism of rooted OOLDGs can be decided in $O(n \log n)$
- ullet $G(s_1)$ and $G(s_2)$ are isom. iff $OO(G(s_1))$ and $OO(G(s_2))$ are isom.

OOLDG: Labelled digraph s.t.



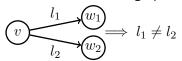
Rooted OOLDG:

- weakly-connected
- exists root v: every other node is reachable from v

Formal proof in the paper (sketch):

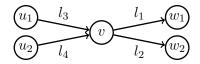
- Compute $G(s_i)$, i = 1, 2
- $OO(\cdot)$ removes all var-edges from $G(s_i)$ resulting in $OO(G(s_i))$
- Since s_i are garbage-free, the graphs $OO(G(s_i))$ are rooted outgoing-ordered labelled digraphs (OOLDGs)
- Isomorphism of rooted OOLDGs can be decided in $O(n \log n)$
- ullet $G(s_1)$ and $G(s_2)$ are isom. iff $OO(G(s_1))$ and $OO(G(s_2))$ are isom.

OOLDG: Labelled digraph s.t.



Rooted OOLDG:

- weakly-connected
- exists root v: every other node is reachable from v



Outgoing ordered LDG (OOLDG):

$$l_1 \neq l_2$$
, but $l_3 = l_4$ or $l_3 = l_1$ allowed

Ordered LDG (OLDG):

$$\{l_1, l_2, l_3, l_4\}$$
 required to be pairwise distinct

Remark:

- OOLDG-Isomorphism is GI-complete (proof in the paper)
- OLDG-Isomorphism is in P (Jian & Bunke, 99)

Alpha-Equivalence Including Garbage Collection

Further consequences:

Extended α -Equivalence up to Garbage-Collection

CH-expressions s,t are alpha-equivalent up to garbage-collection written as $s \simeq_{\alpha,gc,\text{CH}} t$, iff the (gc)-normal forms s' and t' of s and t are alpha-equivalent.

Theorem

 $s_1 \simeq_{\alpha,gc,\mathsf{CH}} s_2$ can be decided in $O(n\log n)$ where $n = |s_1| + |s_2|$.

Applications

Extended α -equivalence is **GI**-complete in

- several letrec-calculi (Ariola'95, Ariola & Blom'97,...)
- extended and non-deterministic letrec-calculi
 (Moran, Sands & Carlsson '03, S. & Schmidt-Schauß'08,...)
- fragment of Haskell: Recursive functions, data constructors, letrec-expressions

Remark: The result does not hold for let-calculi with non-recursive, single-binding let-expressions (e.g. Maraist, Odersky & Wadler '98)

Structural Congruence in the π -Calculus

The π -calculus

$$\begin{array}{ll} \mathsf{Syntax:} & P ::= \pi.P \mid (P_1 \mid P_2) \mid \mathbf{!} \ P \mid \mathbf{0} \mid \nu x.P \\ & \pi ::= x(y) \mid \overline{x} \langle y \rangle & \text{where } x,y \in \mathcal{N} \end{array}$$

Milner's structural congruence ≡:

The least congruence satisfying the equations

$$\begin{array}{rcl} P &\equiv& Q, \text{ if } P \text{ and } Q \text{ are } \alpha\text{-equivalent} \\ P_1 \mid (P_2 \mid P_3) &\equiv& (P_1 \mid P_2) \mid P_3 \\ P_1 \mid P_2 &\equiv& P_2 \mid P_1 \\ P \mid \mathbf{0} &\equiv& P \\ \nu z.\nu w.P &\equiv& \nu w.\nu z.P \\ \nu z.\mathbf{0} &\equiv& \mathbf{0} \\ \nu z.(P_1 \mid P_2) &\equiv& P_1 \mid \nu z.P_2, \text{ if } z \not\in \text{fn}(P_1) \\ \vdots P &\equiv& P \mid \vdots P \end{array}$$

Open Question: Is \equiv decidable?

π -Calculus: Specific Cases and Results (1)

Lemma (see also (Khomenko & Meyer '09))

Structural congruence \equiv is GI-hard even without replication.

Alternative proof: Polytime reduction of Digraph-Isomorphism:

Encode digraph
$$G=(V,E)$$
 with $V=\{v_1,\ldots,v_n\}$, $E=\{e_1,\ldots,e_m\}$ as

$$\varphi(G) := \nu v_1, \dots, v_n.(\varphi(v_1) \mid \dots \mid \varphi(v_n) \mid \varphi(e_1) \mid \dots \mid \varphi(e_m)) \text{ where }$$

- for $v_i \in V$: $\varphi(v_i) = \overline{v_i} \langle a \rangle.0$
- for $e_i = (v_j, v_k) \in E$: $\varphi(e_i) = v_j(v_k).0$

Then $\varphi(G_1) \equiv \varphi(G_2) \iff G_1, G_2$ are isomorphic.

π -Calculus: Specific Cases and Results (2)

Fragment with replication but without binders

$$s, s_i \in \mathcal{PIR} := C \mid (s_1 \mid s_2) \mid !s$$
 (C represents constants)

Structural congruence $\equiv_{p_{IR}}$ is the least congruence satisfying

$$\begin{array}{lll} (s_1 \mid s_2) & \equiv_{\scriptscriptstyle \mathit{PIR}} & (s_2 \mid s_1) \\ (s_1 \mid (s_2 \mid s_3)) & \equiv_{\scriptscriptstyle \mathit{PIR}} & ((s_1 \mid s_2) \mid s_3) \\ ! \, s & \equiv_{\scriptscriptstyle \mathit{PIR}} & s \mid ! \, s \\ \end{array}$$

π -Calculus: Specific Cases and Results (2)

Fragment with replication but without binders

$$s, s_i \in \mathcal{PIR} := C \mid (s_1 \mid s_2) \mid !s$$
 (C represents constants)

Structural congruence $\equiv_{p_{IR}}$ is the least congruence satisfying

$$\begin{array}{lll} (s_1 \mid s_2) & \equiv_{\scriptscriptstyle \mathit{PIR}} & (s_2 \mid s_1) \\ (s_1 \mid (s_2 \mid s_3)) & \equiv_{\scriptscriptstyle \mathit{PIR}} & ((s_1 \mid s_2) \mid s_3) \\ ! \, s & \equiv_{\scriptscriptstyle \mathit{PIR}} & s \mid ! \, s \\ \end{array}$$

Theorem

Deciding $s_1 \equiv_{PIR} s_2$ is **EXPSPACE**-complete

Proof: In EXPSPACE was shown by Engelfriet & Gelsema' 07.

Hardness: Reduction of the word problem over commutative semigroups

Remark: Structural congruence in the full π -calculus with replication is thus **EXPSPACE**-hard, however **decidability** is **still open**.

- Extended α -equivalence in let- / letrec-calculi is ${f GI}$ -complete
- ullet Complexity arises from garbage bindings (unless $\mathbf{GI}
 eq \mathbf{P}$)
- Including garbage-collection in the equivalence makes the decision problem efficiently solvable.
- π -calculus with replication: Deciding structural congruence is a very hard problem