

Theoretical Computer Science Institute of Informatics

Contextual Equivalence in a Probabilistic Call-by-Need Lambda-Calculus

David Sabel Manfred Schmidt-Schauß Luca Maio

PPDP 2022 22nd September 2022, Tiblisi, Georgia

Motivation and Goals

Probabilistic

- **•** programs express probabilistic models
- evaluation results in (multi-)distributions
- apply correct program transformations

Programming $+$ Programming $+$ Functional

- o declarative, high-level and generic programming
- clean (mathematical) definition
- **•** equational reasoning

Call-by-Need Evaluation

- **o** declarative: only needed bindings are evaluated
- **•** efficient implementation of lazy evaluation
- in the probabilistic setting: different from call-by-name

A lot of related work on probabilistic lambda calculi with and call-by-value call-by-name or call-by-value evaluation (see Ugo Dal Lago: On Probabilistic Lambda-Calculi, 2020)

→ Investigate the semantics of a probabilistic call-by-need functional language

Probabilistic Calculi and Call-by-Name, Call-by-Value, Call-By-Need

where **probabilistic choice** $(1 \oplus 2)$ means: randomly choose between 1 and 2

Expressions and environments:

s, t, $r \in \text{Exp} ::= x \mid \lambda x. s \mid (s \text{ } t) \mid (s \oplus t) \mid \text{let} \text{ } env \text{ in } s$ env ::= $x = s \mid x = s$, env

Reduction contexts:

. . .

$$
A \in \mathbb{A} ::= [\cdot] | (A \ s)
$$

$$
R \in \mathbb{R} ::= A | \text{let } env \text{ in } A | \text{let } env, x_1 = A_1[x_2], \dots, x_n = A_n[y], y = A \text{ in } A[x_1]
$$

Small-step operational semantics: standard reduction relation $\stackrel{sr}{\longrightarrow}$ defined by $(sr, lbeta)$ $R[(\lambda x. s) t)] \rightarrow R$ [let $x = t$ in s] $(sr, cp-in)$ let $x_1 = x_2, \ldots, x_{n-1} = x_n, x_n = \lambda y \cdot s$, env in $A[x_1]$ \rightarrow let $x_1 = x_2, \ldots, x_{n-1} = x_n, x_n = \lambda y \cdot s$, env in $A[\lambda y \cdot s]$ $\begin{array}{lcl} (sr, probl) & R[s \oplus t] \rightarrow R[s] \ (sr, probr) & R[s \oplus t] \rightarrow R[t] \end{array} \bigg\} \; \textit{prob-reductions}$

Evaluation results: weak head normal forms (WHNFs) $\lambda x.s.$ let env in $\lambda x.s$

Tracking Probabilities

Weighted expression (p, s) with rational number $p \in (0, 1]$ and expression s

Weighted standard reduction step $\overset{wsr}{\longrightarrow}$

$$
(p,s) \xrightarrow{wsr,a} \begin{cases} (p,t) & \text{iff } s \xrightarrow{sr,a} t \text{ and } a \notin \{probl, probr\} \\ \left(\frac{p}{2},t\right) & \text{iff } s \xrightarrow{sr,a} t \text{ and } a \in \{probl, probr\} \end{cases}
$$

 $\xrightarrow{wsr,*}$ denotes the reflexive-transitive closure of \xrightarrow{wsr}

Evaluation

An evaluation of (p,s) is a sequence $(p,s) \xrightarrow{wsr,*} (q,t)$ where t is a WHNF. $Eval(p, s)$ = set of all evaluations starting with (p, s)

Notation: $(p,s) \wr_L (q,t) \in \textit{Eval}(p,s)$ where L = sequence of labels of prob-reductions

Expected convergence

$$
\text{ExCV}(s) = \sum_{(1,s)\,\lambda_L} \sum_{(q,t)\,\in\,\text{Eval}(1,s)} q.
$$

"= probability that evaluation of s ends with a WHNF"

Examples

$$
\begin{aligned} \text{ExCV}(\Omega) &= 0\\ \text{ExCV}(\Omega \oplus K) &= 0.5\\ \text{ExCV}(\text{let } x = (x \oplus K) \text{ in } x) = 0.5\\ \text{ExCV}(\text{let } x = (\lambda y. (x \ I) \oplus K) \text{ in } (x \ I)) = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1 \end{aligned}
$$

where

$$
\Omega \coloneqq (\lambda x.x\ x)\ (\lambda x.x\ x)\qquad K \coloneqq \lambda x.\lambda y.x \qquad I \coloneqq \lambda x.x
$$

Contexts: $C ::= \{\cdot\} | \lambda x.C | (C t) | (t C) | (C \oplus t) | (t \oplus C) |$ let env in C | let $env, y = C$ in t

Contextual Preorder and Equivalence

- contextual preorder $s \leq_c t$ iff $\forall C: \text{ExcV}(C[s]) \leq \text{ExcV}(C[t])$ "in any context: t converges at least as often as s "
- contextual equivalence $s \sim_c t$ iff $s \leq_c t \wedge t \leq_c s$

Refuting equivalences requires one context acting as counter-example

Example: $K \oplus I \nmid_{c} K$ since for for $C = [\cdot] (\lambda z. z) \Omega$: \bullet EXCV($C[K]$) = 1, but \bullet ExCv($C[K \oplus I]$) = 0.5

Proving equivalences is harder due to the quantification over all contexts.

Program Transformations

A program transformation T (=binary relation on expressions) is $\mathbf{correct} \text{ iff } \frac{T}{\rightarrow} \;\; \subseteq \;\; \sim_c$

Some Correct Program Transformations

$$
(theta)(\lambda x.s) t) \rightarrow let x = t in s
$$
\n
$$
(lapp) ((let env in s) t) \rightarrow let env in (s t)
$$
\n
$$
(let) let env_1 ... let env_2 ... \rightarrow let env_1, env_2 ...
$$
\n
$$
(cp) let x = \lambda y.s, ... C[x] ... \rightarrow let x = \lambda y.s, ... C[\lambda y.s] ...
$$
\n
$$
(ucp) let x = t ... S[x] ... \rightarrow let ... S[t] ... , if x occurs only in S[x]
$$
\n
$$
(gc) let env in s \rightarrow s, if bindings of env are not used in env', s
$$
\n
$$
(probid) s \oplus s \rightarrow s \qquad (probability) r \oplus (s \oplus t) \rightarrow (r \oplus s) \oplus (r \oplus t)
$$
\n
$$
(probcomm) s \oplus t \rightarrow t \oplus s \qquad (probreorder) (s_1 \oplus s_2) \oplus (t_1 \oplus t_2) \rightarrow (s_1 \oplus t_1) \oplus (s_2 \oplus t_2)
$$

• Proving correctness requires proof tools and techniques: we provide a context lemma, a diagram technique, a "same distribution"-criterion

Context Lemma

If $\forall k \geq 0$, for all reduction contexts R , $\exists d \geq 0$: $\text{Exc}_V(R[s], k) \leq \text{Exc}_V(R[t], k+d)$, then $s \leq_c t$.

 \leq_c holds if expected convergence (with bounded number of prob-reduction) is never decreased in any **reduction context** (and for any bound)"

• where $\text{ExCV}(r, k) = \sum$ $(1,r) \; \lambda_L \; (q,r') \in \text{Eval}(1,r), \; |L| \leq k$ q

(probability to converge using not more than k prob-reductions)

• In the paper: a more general context lemma using multiple expressions and multi-contexts.

Correctness Criterion: Same Prob-Sequences

Let $\stackrel{X,T}{\longrightarrow}$ the closure of $\stackrel{T}{\longrightarrow}$ by reduction or surface contexts. If for all $s \xrightarrow{X,T} t$: for all evaluations $s\wr_L s'\in \mathsf{Eval}(s)$ there exists an evaluation $t\wr_L t'\in \mathsf{Eval}(t)$ then $\stackrel{T}{\to} \subseteq \, \leq_c$ holds.

Correctness Criterion: Same Prob-Sequences

```
Let \stackrel{X,T}{\longrightarrow} the closure of \stackrel{T}{\longrightarrow} by reduction or surface contexts.
If for all s \xrightarrow{X,T} t:
        for all evaluations s\wr_L s'\in \mathsf{Eval}(s) there exists an evaluation t\wr_L t'\in \mathsf{Eval}(t)then \stackrel{T}{\to} \subseteq \, \leq_c holds.
```


Correctness Criterion: Same Prob-Sequences

```
Let \stackrel{X,T}{\longrightarrow} the closure of \stackrel{T}{\longrightarrow} by reduction or surface contexts.
If for all s \xrightarrow{X,T} t:
        for all evaluations s\wr_L s'\in \mathsf{Eval}(s) there exists an evaluation t\wr_L t'\in \mathsf{Eval}(t)then \stackrel{T}{\to} \subseteq \, \leq_c holds.
```


Correctness Criterion: Same Prob-Sequences

```
Let \stackrel{X,T}{\longrightarrow} the closure of \stackrel{T}{\longrightarrow} by reduction or surface contexts.
If for all s \xrightarrow{X,T} t:
        for all evaluations s\wr_L s'\in \mathsf{Eval}(s) there exists an evaluation t\wr_L t'\in \mathsf{Eval}(t)then \stackrel{T}{\to} \subseteq \leq_c holds.
```


Correctness Criterion: Same Prob-Sequences

```
Let \stackrel{X,T}{\longrightarrow} the closure of \stackrel{T}{\longrightarrow} by reduction or surface contexts.
If for all s \xrightarrow{X,T} t:
        for all evaluations s\wr_L s'\in \mathsf{Eval}(s) there exists an evaluation t\wr_L t'\in \mathsf{Eval}(t)then \stackrel{T}{\to} \subseteq \, \leq_c holds.
```


Correctness Criterion: Same Prob-Sequences

Let
$$
\frac{X,T}{\longrightarrow}
$$
 the closure of $\frac{T}{\longrightarrow}$ by reduction or surface contexts.
If for all $s \xrightarrow{X,T} t$:
for all evaluations $s \lambda_L s' \in \text{Eval}(s)$ there exists an evaluation $t \lambda_L t' \in \text{Eval}(t)$
then $\frac{T}{\longrightarrow} \subseteq \leq_c$ holds.

Correctness Criterion: Same Prob-Sequences

```
Let \stackrel{X,T}{\longrightarrow} the closure of \stackrel{T}{\longrightarrow} by reduction or surface contexts.
If for all s \xrightarrow{X,T} t:
        for all evaluations s\wr_L s'\in \mathsf{Eval}(s) there exists an evaluation t\wr_L t'\in \mathsf{Eval}(t)then \stackrel{T}{\to} \subseteq \, \leq_c holds.
```


Correctness Criterion: Same Prob-Sequences

Let $\stackrel{X,T}{\longrightarrow}$ the closure of $\stackrel{T}{\longrightarrow}$ by reduction or surface contexts. If for all $s \xrightarrow{X,T} t$: for all evaluations $s\wr_L s'\in \mathsf{Eval}(s)$ there exists an evaluation $t\wr_L t'\in \mathsf{Eval}(t)$ then $\stackrel{T}{\to} \subseteq \, \leq_c$ holds.

Correctness Criterion: Same Prob-Sequences

Let $\stackrel{X,T}{\longrightarrow}$ the closure of $\stackrel{T}{\longrightarrow}$ by reduction or surface contexts. If for all $s \xrightarrow{X,T} t$: for all evaluations $s\wr_L s'\in \mathsf{Eval}(s)$ there exists an evaluation $t\wr_L t'\in \mathsf{Eval}(t)$ then $\stackrel{T}{\to} \subseteq \, \leq_c$ holds.

Diagram Method: Automation

- our LRSX-tool [S. 2018] can do all these steps (using external termination provers AProVE and TTT2 and certifier CeTA)
- we obtained correctness for $(lapp)$, $(llet)$, (cp) , (ucp) , (gc) using this technique

Example: Correctness of Copy (cp), One Direction

Base case: If $s \xrightarrow{\mathbb{S}, cp} t$ and s is a WHNF, then t is a WHNF.

Forking diagrams:

Term rewrite system for forking diagrams:

 $\text{Scp}(\text{SR}(x)) \to x \quad \text{Scp}(\text{SR}(x)) \to \text{SR}(\text{Scp}(x)) \quad \text{Scp}(\text{SR}(x)) \to \text{SR}(x) \quad \text{Scp}(\text{SR}(x)) \to \text{SR}(\text{Scp}(\text{Scp}(x)))$

Since the the base case and diagrams preserve the prob-reductions, and the TRS is terminating, $\stackrel{cp}{\longrightarrow} \subseteq \, \leq_c$ follows.

- only $\xrightarrow{wsr, probl}$ or $\xrightarrow{wsr, probr}$ reductions are used, starting with $(1, s)$
- take any finite cut of the whole evaluation tree starting with $(1, s)$ and applying prob-reductions, where for branches, both branches or no branch are included in the cut
- a frontier evaluation result contains exactly all (q, s_i) at leaves of the cut.
- the sum over all q in the multiset is 1

- only $\xrightarrow{wsr, probl}$ or $\xrightarrow{wsr, probr}$ reductions are used, starting with $(1, s)$
- take any finite cut of the whole evaluation tree starting with $(1, s)$ and applying prob-reductions, where for branches, both branches or no branch are included in the cut
- a frontier evaluation result contains exactly all (q, s_i) at leaves of the cut.
- the sum over all q in the multiset is 1

- only $\xrightarrow{wsr, probl}$ or $\xrightarrow{wsr, probr}$ reductions are used, starting with $(1, s)$
- take any finite cut of the whole evaluation tree starting with $(1, s)$ and applying prob-reductions, where for branches, both branches or no branch are included in the cut
- a frontier evaluation result contains exactly all (q, s_i) at leaves of the cut.
- the sum over all q in the multiset is 1

- only $\xrightarrow{wsr, probl}$ or $\xrightarrow{wsr, probr}$ reductions are used, starting with $(1, s)$
- take any finite cut of the whole evaluation tree starting with $(1, s)$ and applying prob-reductions, where for branches, both branches or no branch are included in the cut
- a frontier evaluation result contains exactly all (q, s_i) at leaves of the cut.
- the sum over all q in the multiset is 1

- only $\xrightarrow{wsr, probl}$ or $\xrightarrow{wsr, probr}$ reductions are used, starting with $(1, s)$
- take any finite cut of the whole evaluation tree starting with $(1, s)$ and applying prob-reductions, where for branches, both branches or no branch are included in the cut
- a frontier evaluation result contains exactly all (q, s_i) at leaves of the cut.
- the sum over all q in the multiset is 1

Correctness Criterion: Same distribution after prob-reduction

If for all $s \stackrel{\mathbb{R}, T}{\longrightarrow} t$, criterion EqCr1, EqCr2, or EqCr3 holds for frontier-evaluation results A of s and B of t, then $\stackrel{T}{\to} \subseteq \leq_c$. EqCr1 For every $(q, s) \in A$ there is some $(q', s) \in B$ with $q \leq q'.$ EqCr2 For every $(q, s) \in A: q_{s,A} \leq q_{s,B}$ where $q_{s,X} = \sum p$ $(n,s) \in X$ EqCr3 For every $(q,s) \in A$, with $s \neq \Omega$: $q_{s,A} \leq q_{s,B}$ where $q_{s,X}$ = \sum p $(p,s) \in X$

Examples:

 $(r \oplus r) \leq r$: EqCr1 holds for $A = \{(0.5, R[r]), (0.5, R[r])\}$ and $B = \{(1, R[r])\}$ • $r \leq_c (r \oplus r)$: EqCr2 holds for $A = \{(1, R[r])\}$ and $B = \{(0.5, R[r]), (0.5, R[r])\}$ $(\Omega \oplus r) \leq_c r$: EqCr3 holds for $A = \{(0.5, R[\Omega]), (0.5. R[r])\}$ and $B = \{(1, R[r])\}$

Correctness of prob-transformations

is shown by the criterion on comparing distributions

Extensions by Data Constructors, Case, and Seq: L case,seq need,⊕

Calculus $L_{need}^{case,seq}$ $\frac{case, seg}{need, \oplus}$ extends $L_{need, \oplus}$ by data constructors, case and seq:

$$
s, t, r \in Exp ::= \dots \mid \text{seq } s \ t \mid c_{T,i} \ s_1 \dots s_{ar(c_{T,i})} \mid \text{case}_T \ s \text{ of } alts_T
$$
\n
$$
alts_T ::= \{alt_{T,1}; \dots; alt_{T,n_T}\}
$$
\n
$$
alt_{T,i} ::= c_{T,i} \ x_1 \dots x_{ar(c_{T,i})} \implies s
$$

Example (with lists and booleans):

Let
$$
map = \lambda f.\lambda xs.\text{case}_{List} xs \text{ of } \{c_{\text{Nil}} \rightarrow c_{\text{Nil}}; c_{\text{Cons}} x \, xs \rightarrow c_{\text{Cons}} (f x) (map f xs)\},
$$
 $not = \lambda x.\text{case}_{Bool} x \text{ of } \{c_{\text{False}} \rightarrow c_{\text{True}}; c_{\text{True}} \rightarrow c_{\text{False}}\}$ in $map \, not \, (c_{\text{cons}} \, c_{\text{True}} (c_{\text{Cons}} \, c_{\text{False}} \, c_{\text{Nil}}))$

In the paper:

- extension of the operational semantics
- sketch that the context lemma etc. still hold for the extended calculus
- correctness of program transformations via diagrams (automated computation)
- non-extensionality of $L_{need}^{case,seq}$ need,⊕

Conclusions

- We introduced a probabilistic call-by-need lambda calculus
- We analysed contextual equivalence and provided several techniques to show equivalences
- We added extensions to realistic models of probabilistic programming languages
- Our previously developed methods are adaptable to the probabilistic setting

Further Work

- add (polymorphic) typing to the calculus
- compare the contextual semantics with mathematical probabilistic models
- add other probabilistic constructs

Thank You!

Backup-Slide: Counterexample to Extensionality

We provide an example (similar to [Schmidt-Schauß,S.,Machkasova 2011]):

• there are closed abstractions s_1, s_2 such that:

s₁ $r \sim c$ s₂ r for all values or diverging expressions r, but s₁ ϕ_c s₂

- Thus $L_{need}^{case,seq}$ $\frac{case, seq}{need, \oplus}$ is not extensional even for a weak form of extensionality
- Hence usual definitions of applicative bisimilarity are unsound for $L_{need}^{case,seq}$ need,⊕

$$
s_1 := \lambda x.p_1 \oplus p_2
$$

\n
$$
p_1 := (False, seqp \ x \ False)
$$

\n
$$
p_2 := seqp \ x \ (False, True)
$$

\n
$$
seqp := \lambda x.\lambda y. case_{Pair} \ x \ of \ \{ (z_1, z_2) \rightarrow y \}
$$

\n
$$
s_2 := \lambda x.(p_1 \oplus p_3) \oplus (p_2 \oplus p_4)
$$

\n
$$
p_3 := (False, seqp \ x \ True)
$$

\n
$$
p_4 := seqp \ x \ (False, False)
$$

For C = let $y = (\lceil \cdot \rceil y)$ in if $(snd y)$ then True else Ω

• $C[s_1]$ diverges $(\text{EXCV}(C[s_1]) = 0)$

 \bullet C[s₂] can evaluate to *True* with a positive probability (ExCv(C[s₂]) > 0)

Expected convergence of s with bound $k =$ number prob-reductions

$$
\text{EXCV}(s,k) = \sum_{\substack{(1,s) \; \lambda_L \ (q,t) \; \in \; \text{Eval}(1,s),}} q
$$
\n
$$
\text{L}(s,k) = \sum_{\substack{L \mid L \leq k}} q
$$

 \rightarrow allows inductive proofs and constructions on the number k, and in the limit, differences in k do not matter:

Lemma

Let s, t be expressions and such that $\forall k \geq 0 : \exists d \geq 0 : \text{ExcV}(s, k) \leq \text{ExcV}(t, k + d)$. Then $\text{ExCV}(s) \leq \text{ExCV}(t)$.

May-convergence:

- Definition: s may-converges if it can be reduced to a WHNF
- Properties: s may-converges iff $\text{Exc}_V(s) > 0$

Must-Convergence:

- \bullet Definition: s must-converges if s has no infinite reduction and all reductions end with a WHNF.
- Properties:
	- s must-converges \implies ExCv(s) = 1

• $\text{EXCV}(s) = 1 \implies s$ must-converges: EXCV(let $x = (\lambda y.(x id) \oplus K)$ in $(x id)) = 1$, but the expression has an infinite evaluation

Should-Convergence:

- \bullet Definition: s should-converges if s is not reducible to a must-divergent expression (equivalently: for all $s' : s \xrightarrow{sr, *} s' \implies s'$ is may-convergent.)
- Properties: $\text{ExCV}(s) = 1 \implies s$ should-converges
	- s should-converges \Rightarrow ExCv(s) = 1: expression s should-converge, but $\text{ExcV}(s) = 5/12$ $s \coloneqq$ let $\textit{cprob} =$ λi , if $i = 0$ then K else $\lambda x, y. (cprob (i-1) x y) \oplus y$, $gen = \lambda i.cprob \, i \, K \, (gen \, (i+1))$ in gen 2 • s should-converges $\implies EC(s) > 0$

