
Theoretical Computer Science
Institute of Informatics

Contextual Equivalence in a
Probabilistic Call-by-Need Lambda-Calculus

David Sabel Manfred Schmidt-Schauß Luca Maio

PPDP 2022
22nd September 2022, Tiblisi, Georgia

Motivation and Goals

Probabilistic
Programming

+ +
Functional

Programming
Call-by-Need
Evaluation

programs express
probabilistic models

evaluation results in
(multi-)distributions

apply correct program
transformations

declarative, high-level and
generic programming

clean (mathematical)
definition

equational reasoning

declarative: only needed
bindings are evaluated

efficient implementation of
lazy evaluation

in the probabilistic setting:
different from call-by-name
and call-by-value

A lot of related work on probabilistic lambda calculi with
call-by-name or call-by-value evaluation
(see Ugo Dal Lago: On Probabilistic Lambda-Calculi, 2020)

→ Investigate the semantics of a probabilistic call-by-need functional language

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 2/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Probabilistic Calculi and Call-by-Name, Call-by-Value, Call-By-Need

possible evaluation results

call-by-name call-by-need call-by-value

(λy.1) � 1 1 diverges

(λx.x + x) (1 ⊕ 2) 2,3,4 2 and 4 2 and 4

where probabilistic choice (1 ⊕ 2) means:
randomly choose between 1 and 2

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 3/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

The Calculus Lneed ,⊕

Expressions and environments:
s, t, r ∈ Exp ∶∶= x ∣ λx.s ∣ (s t) ∣ (s⊕ t) ∣ let env in s env ∶∶= x = s ∣ x = s, env
Reduction contexts:
A ∈ A ∶∶= [⋅] ∣ (A s)
R ∈ R ∶∶= A ∣ let env in A ∣ let env , x1 = A1[x2], . . . , xn = An[y], y = A in A[x1]

Small-step operational semantics: standard reduction relation
srÐ→ defined by

(sr ,lbeta) R[((λx.s) t)] → R[let x = t in s]
(sr ,cp-in) let x1 = x2, . . . , xn−1 = xn, xn = λy.s, env in A[x1]

→ let x1 = x2, . . . , xn−1 = xn, xn = λy.s, env in A[λy.s]
(sr ,probl) R[s⊕ t] → R[s] } prob-reductions
(sr ,probr) R[s⊕ t] → R[t]
. . .

Evaluation results: weak head normal forms (WHNFs) λx.s, let env in λx.s

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 4/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Tracking Probabilities

Weighted expression (p, s) with rational number p ∈ (0,1] and expression s

Weighted standard reduction step
wsrÐÐ→

(p, s) wsr ,aÐÐÐ→
⎧⎪⎪⎨⎪⎪⎩

(p, t) iff s
sr ,aÐÐ→ t and a /∈ {probl ,probr}

(p
2 , t) iff s

sr ,aÐÐ→ t and a ∈ {probl ,probr}

wsr ,∗ÐÐÐ→ denotes the reflexive-transitive closure of
wsrÐÐ→

Evaluation

An evaluation of (p, s) is a sequence (p, s) wsr ,∗ÐÐÐ→ (q, t) where t is a WHNF.
Eval(p, s) = set of all evaluations starting with (p, s)

Notation: (p, s) ↝ L (q, t) ∈ Eval(p, s) where L = sequence of labels of prob-reductions

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 5/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Expected Convergence

Expected convergence

ExCv(s) = ∑
(1, s)

↝

L (q, t) ∈ Eval(1, s)

q.

“= probability that evaluation of s ends with a WHNF”
Examples

ExCv(Ω) = 0
ExCv(Ω⊕K) = 0.5
ExCv(let x = (x⊕K) in x) = 0.5
ExCv(let x = (λy.(x I) ⊕K) in (x I)) = 1

2 +
1
4 +

1
8 + . . . = 1

where
Ω ∶= (λx.x x) (λx.x x) K ∶= λx.λy.x I ∶= λx.x

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 6/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Contextual Equivalence

Contexts: C ∶∶= [⋅] ∣ λx.C ∣ (C t) ∣ (t C) ∣ (C ⊕ t) ∣ (t⊕C) ∣ let env in C ∣ let env , y = C in t

Contextual Preorder and Equivalence

contextual preorder s ≤c t iff ∀C: ExCv(C[s]) ≤ ExCv(C[t])
“in any context: t converges at least as often as s”

contextual equivalence s ∼c t iff s ≤c t ∧ t ≤c s

Refuting equivalences requires one context acting as counter-example

Example:
K ⊕ I /∼c K since for for C = [⋅] (λz.z) Ω:

ExCv(C[K]) = 1, but
ExCv(C[K ⊕ I]) = 0.5

Proving equivalences is harder due to the quantification over all contexts.

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 7/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Program Transformations

A program transformation T (=binary relation on expressions) is correct iff
TÐ→ ⊆ ∼c

Some Correct Program Transformations

(lbeta) ((λx.s) t) → let x = t in s
(lapp) ((let env in s) t) → let env in (s t)
(llet) let env1 . . . let env2 . . .→ let env1, env2 . . .
(cp) let x = λy.s, . . .C[x] . . .→ let x = λy.s, . . .C[λy.s] . . .
(ucp) let x = t . . . S[x] . . .→ let . . . S[t] . . . , if x occurs only in S[x]
(gc) let env in s→ s, if bindings of env are not used in env ′, s

(probid) s⊕ s→ s
(probcomm) s⊕ t→ t⊕ s

(probdistr) r ⊕ (s⊕ t) → (r ⊕ s) ⊕ (r ⊕ t)
(probreorder) (s1 ⊕ s2) ⊕ (t1 ⊕ t2) → (s1 ⊕ t1) ⊕ (s2 ⊕ t2)

Proving correctness requires proof tools and techniques:
we provide a context lemma, a diagram technique, a “same distribution”-criterion

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 8/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Context Lemma

Context Lemma

If ∀k ≥ 0, for all reduction contexts R, ∃d ≥ 0 ∶ ExCv(R[s], k) ≤ ExCv(R[t], k + d),
then s ≤c t.

“≤c holds if expected convergence (with bounded number of prob-reduction) is
never decreased in any reduction context (and for any bound) ”

where ExCv(r, k) = ∑
(1, r)

↝

L (q, r
′
) ∈ Eval(1, r), ∣L∣ ≤ k

q

(probability to converge using not more than k prob-reductions)

In the paper: a more general context lemma using multiple expressions and
multi-contexts.

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 9/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Diagrams and Same Prob-Sequences

Correctness Criterion: Same Prob-Sequences

Let
X,TÐÐ→ the closure of

TÐ→ by reduction or surface contexts.

If for all s
X,TÐÐ→ t:

for all evaluations s

↝

L s′ ∈ Eval(s) there exists an evaluation t
↝

L t′ ∈ Eval(t)
then

TÐ→ ⊆ ≤c holds.

Preservation of evaluations and prob-sequences can be shown by the diagram method:

s

sr ,∗

��

X,T // t

WHNF

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 10/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Diagrams and Same Prob-Sequences

Correctness Criterion: Same Prob-Sequences

Let
X,TÐÐ→ the closure of

TÐ→ by reduction or surface contexts.

If for all s
X,TÐÐ→ t:

for all evaluations s

↝

L s′ ∈ Eval(s) there exists an evaluation t
↝

L t′ ∈ Eval(t)
then

TÐ→ ⊆ ≤c holds.

Preservation of evaluations and prob-sequences can be shown by the diagram method:

s

sr ,∗

��

X,T // t

WHNF

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 10/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Diagrams and Same Prob-Sequences

Correctness Criterion: Same Prob-Sequences

Let
X,TÐÐ→ the closure of

TÐ→ by reduction or surface contexts.

If for all s
X,TÐÐ→ t:

for all evaluations s

↝

L s′ ∈ Eval(s) there exists an evaluation t
↝

L t′ ∈ Eval(t)
then

TÐ→ ⊆ ≤c holds.

Preservation of evaluations and prob-sequences can be shown by the diagram method:

s

sr ,k

��

X,T // t

sr ,k′

��
WHNF WHNF

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 10/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Diagrams and Same Prob-Sequences

Correctness Criterion: Same Prob-Sequences

Let
X,TÐÐ→ the closure of

TÐ→ by reduction or surface contexts.

If for all s
X,TÐÐ→ t:

for all evaluations s

↝

L s′ ∈ Eval(s) there exists an evaluation t

↝
L t′ ∈ Eval(t)

then
TÐ→ ⊆ ≤c holds.

Preservation of evaluations and prob-sequences can be shown by the diagram method:

s
WHNF

X,T // t

sr ,k′

��
WHNF

base case: s is a WHNF

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 10/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Diagrams and Same Prob-Sequences

Correctness Criterion: Same Prob-Sequences

Let
X,TÐÐ→ the closure of

TÐ→ by reduction or surface contexts.

If for all s
X,TÐÐ→ t:

for all evaluations s

↝

L s′ ∈ Eval(s) there exists an evaluation t
↝

L t′ ∈ Eval(t)
then

TÐ→ ⊆ ≤c holds.

Preservation of evaluations and prob-sequences can be shown by the diagram method:

s
sr ��

X,T // t

sr ,k′

��

s′

sr ,k−1

��
WHNF WHNF

step: evaluation has length > 0

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 10/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Diagrams and Same Prob-Sequences

Correctness Criterion: Same Prob-Sequences

Let
X,TÐÐ→ the closure of

TÐ→ by reduction or surface contexts.

If for all s
X,TÐÐ→ t:

for all evaluations s

↝

L s′ ∈ Eval(s) there exists an evaluation t
↝

L t′ ∈ Eval(t)
then

TÐ→ ⊆ ≤c holds.

Preservation of evaluations and prob-sequences can be shown by the diagram method:

s
sr ��

X,T // t
sr ,∗��

s′

sr ,k−1

��

X,T,∗
// t′

WHNF WHNF

apply a forking diagram to the first step

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 10/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Diagrams and Same Prob-Sequences

Correctness Criterion: Same Prob-Sequences

Let
X,TÐÐ→ the closure of

TÐ→ by reduction or surface contexts.

If for all s
X,TÐÐ→ t:

for all evaluations s

↝

L s′ ∈ Eval(s) there exists an evaluation t
↝

L t′ ∈ Eval(t)
then

TÐ→ ⊆ ≤c holds.

Preservation of evaluations and prob-sequences can be shown by the diagram method:

s
sr ��

X,T // t
sr ,∗��

s′

sr ,k−1

��

X,T,∗
// t′

sr,∗

��
WHNF WHNF

use induction

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 10/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Diagrams and Same Prob-Sequences

Correctness Criterion: Same Prob-Sequences

Let
X,TÐÐ→ the closure of

TÐ→ by reduction or surface contexts.

If for all s
X,TÐÐ→ t:

for all evaluations s

↝

L s′ ∈ Eval(s) there exists an evaluation t
↝

L t′ ∈ Eval(t)
then

TÐ→ ⊆ ≤c holds.

Preservation of evaluations and prob-sequences can be shown by the diagram method:

s
sr ��

X,T // t
sr ,∗��

s′

sr ,k−1

��

X,T,∗
// t′

sr,∗

��
WHNF WHNF

s
sr ,∗ ��

X,T // t
sr��

s′

sr ,∗

��

X,T,∗
// t′

sr,k−1

��
WHNF WHNF

reverse direction:
symmetric using commuting diagrams:

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 10/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Diagrams and Same Prob-Sequences

Correctness Criterion: Same Prob-Sequences

Let
X,TÐÐ→ the closure of

TÐ→ by reduction or surface contexts.

If for all s
X,TÐÐ→ t:

for all evaluations s

↝

L s′ ∈ Eval(s) there exists an evaluation t
↝

L t′ ∈ Eval(t)
then

TÐ→ ⊆ ≤c holds.

Preservation of evaluations and prob-sequences can be shown by the diagram method:

s
sr ��

X,T // t
sr ,∗��

s′

sr ,k−1

��

X,T,∗
// t′

sr,∗

��
WHNF WHNF

s
sr ,∗ ��

X,T // t
sr��

s′

sr ,∗

��

X,T,∗
// t′

sr,k−1

��
WHNF WHNF

same prob-sequences:
check the base case and the diagrams

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 10/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Diagram Method: Automation

diagram method requires . . . can be automated by . . .

computing overlaps between transfor-
mation steps and standard reductions

unification of lhs/rhs of transformations and re-
ductions [Schmidt-Schauß, S. 2015]

joining the overlaps symbolic reduction and α-renaming [S. 2017]

treating the base cases similar to diagram computation, unification of
lhs/rhs of transformations with WHNF

inductive proof using the diagrams encode diagrams as term rewrite sys-
tem and prove (innermost) termination
[Rau, S., Schmidt-Schauß 2012]

preservation of prob-reductions easy inspection of base cases and diagrams

our LRSX-tool [S. 2018] can do all these steps
(using external termination provers AProVE and TTT2 and certifier CeTA)

we obtained correctness for (lapp),(llet),(cp),(ucp),(gc) using this technique

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 11/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Example: Correctness of Copy (cp), One Direction

Base case: If s
S,cpÐÐ→ t and s is a WHNF, then t is a WHNF.

Forking diagrams:

⋅
sr ,cp

77
S,cp

'' ⋅
⋅

sr ,a
��

S,cp // ⋅
sr ,a
��⋅

S,cp
// ⋅

⋅
sr ,a
��

S,cp // ⋅
sr ,ayy⋅

a ∈ {probl ,probr}

⋅
sr ,cp

��

S,cp // ⋅
sr ,cp
��⋅

S,cp
// ⋅

S,cp
// ⋅

Term rewrite system for forking diagrams:

Scp(SR(x))→x Scp(SR(x))→SR(Scp(x)) Scp(SR(x))→SR(x) Scp(SR(x))→SR(Scp(Scp(x)))

Since the the base case and diagrams preserve the prob-reductions, and the TRS is

terminating,
cpÐ→ ⊆ ≤c follows.

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 12/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Comparing Distributions

A frontier evaluation result of s is a multiset
with entries (q, si) constructed as:

only
wsr,problÐÐÐÐÐ→ or

wsr,probrÐÐÐÐÐ→ reductions
are used, starting with (1, s)
take any finite cut of the whole
evaluation tree starting with (1, s) and
applying prob-reductions, where for
branches, both branches or no branch
are included in the cut

a frontier evaluation result contains
exactly all (q, si) at leaves of the cut.

the sum over all q in the multiset is 1

Example

(1, (s1 ⊕ (s2 ⊕ ((s3 ⊕ s4) ⊕ s5))))

(0.5, s1) (0.5, (s2 ⊕ ((s3 ⊕ s4) ⊕ s5)))

(0.25, s2) (0.25, (((s3 ⊕ s4) ⊕ s5)))

(0.125, (s3 ⊕ s4)) (0.125, s5)

(0.0625, s3) (0.0625, s4)

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 13/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Comparing Distributions

A frontier evaluation result of s is a multiset
with entries (q, si) constructed as:

only
wsr,problÐÐÐÐÐ→ or

wsr,probrÐÐÐÐÐ→ reductions
are used, starting with (1, s)
take any finite cut of the whole
evaluation tree starting with (1, s) and
applying prob-reductions, where for
branches, both branches or no branch
are included in the cut

a frontier evaluation result contains
exactly all (q, si) at leaves of the cut.

the sum over all q in the multiset is 1

Example

(1, (s1 ⊕ (s2 ⊕ ((s3 ⊕ s4) ⊕ s5))))

(0.5, s1) (0.5, (s2 ⊕ ((s3 ⊕ s4) ⊕ s5)))

(0.25, s2) (0.25, (((s3 ⊕ s4) ⊕ s5)))

(0.125, (s3 ⊕ s4)) (0.125, s5)

(0.0625, s3) (0.0625, s4)

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 13/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Comparing Distributions

A frontier evaluation result of s is a multiset
with entries (q, si) constructed as:

only
wsr,problÐÐÐÐÐ→ or

wsr,probrÐÐÐÐÐ→ reductions
are used, starting with (1, s)
take any finite cut of the whole
evaluation tree starting with (1, s) and
applying prob-reductions, where for
branches, both branches or no branch
are included in the cut

a frontier evaluation result contains
exactly all (q, si) at leaves of the cut.

the sum over all q in the multiset is 1

Example

(1, (s1 ⊕ (s2 ⊕ ((s3 ⊕ s4) ⊕ s5))))

(0.5, s1) (0.5, (s2 ⊕ ((s3 ⊕ s4) ⊕ s5)))

(0.25, s2) (0.25, (((s3 ⊕ s4) ⊕ s5)))

(0.125, (s3 ⊕ s4)) (0.125, s5)

(0.0625, s3) (0.0625, s4)

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 13/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Comparing Distributions

A frontier evaluation result of s is a multiset
with entries (q, si) constructed as:

only
wsr,problÐÐÐÐÐ→ or

wsr,probrÐÐÐÐÐ→ reductions
are used, starting with (1, s)
take any finite cut of the whole
evaluation tree starting with (1, s) and
applying prob-reductions, where for
branches, both branches or no branch
are included in the cut

a frontier evaluation result contains
exactly all (q, si) at leaves of the cut.

the sum over all q in the multiset is 1

Example

(1, (s1 ⊕ (s2 ⊕ ((s3 ⊕ s4) ⊕ s5))))

(0.5, s1) (0.5, (s2 ⊕ ((s3 ⊕ s4) ⊕ s5)))

(0.25, s2) (0.25, (((s3 ⊕ s4) ⊕ s5)))

(0.125, (s3 ⊕ s4)) (0.125, s5)

(0.0625, s3) (0.0625, s4)

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 13/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Comparing Distributions

A frontier evaluation result of s is a multiset
with entries (q, si) constructed as:

only
wsr,problÐÐÐÐÐ→ or

wsr,probrÐÐÐÐÐ→ reductions
are used, starting with (1, s)
take any finite cut of the whole
evaluation tree starting with (1, s) and
applying prob-reductions, where for
branches, both branches or no branch
are included in the cut

a frontier evaluation result contains
exactly all (q, si) at leaves of the cut.

the sum over all q in the multiset is 1

Example

(1, (s1 ⊕ (s2 ⊕ ((s3 ⊕ s4) ⊕ s5))))

(0.5, s1) (0.5, (s2 ⊕ ((s3 ⊕ s4) ⊕ s5)))

(0.25, s2) (0.25, (((s3 ⊕ s4) ⊕ s5)))

(0.125, (s3 ⊕ s4)) (0.125, s5)

(0.0625, s3) (0.0625, s4)

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 13/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Comparing Distributions

Correctness Criterion: Same distribution after prob-reduction

If for all s
R,TÐÐ→ t, criterion EqCr1, EqCr2, or EqCr3 holds for frontier-evaluation results

A of s and B of t, then
TÐ→ ⊆ ≤c.

EqCr1 For every (q, s) ∈ A there is some (q′, s) ∈ B with q ≤ q′.
EqCr2 For every (q, s) ∈ A: qs,A ≤ qs,B where qs,X = ∑

(p,s)∈X

p

EqCr3 For every (q, s) ∈ A, with s /= Ω: qs,A ≤ qs,B where qs,X = ∑
(p,s)∈X

p

Examples:
(r ⊕ r) ≤c r: EqCr1 holds for A = {(0.5,R[r]), (0.5,R[r])} and B = {(1,R[r])}
r ≤c (r ⊕ r): EqCr2 holds for A = {(1,R[r])} and B = {(0.5,R[r]), (0.5,R[r])}
(Ω⊕ r) ≤c r: EqCr3 holds for A = {(0.5,R[Ω]), (0.5.R[r])} and B = {(1,R[r])}

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 14/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Correctness by Comparing Distributions

Correctness of prob-transformations

(probid) s⊕ s→ s
(probcomm) s⊕ t→ t⊕ s
(probdistr) r ⊕ (s⊕ t) → (r ⊕ s) ⊕ (r ⊕ t)
(probreorder) (s1 ⊕ s2) ⊕ (t1 ⊕ t2) → (s1 ⊕ t1) ⊕ (s2 ⊕ t2)

is shown by the criterion on comparing distributions

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 15/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Extensions by Data Constructors, Case, and Seq: Lcase,seq
need ,⊕

Calculus Lcase,seq
need ,⊕ extends Lneed ,⊕ by data constructors, case and seq:

s, t, r ∈ Exp ∶∶= . . . ∣ seq s t ∣ cT,i s1 . . . sar(cT,i)
∣ caseT s of altsT

altsT ∶∶= {altT,1; . . . ;altT,nT
}

altT,i ∶∶= cT,i x1 . . . xar(cT,i)
-> s

Example (with lists and booleans):

let map = λf.λxs.caseList xsof{cNil -> cNil; cCons xxs -> cCons (f x) (mapf xs)},
not = λx.caseBool xof{cFalse -> cTrue; cTrue -> cFalse}

in mapnot (cCons cTrue (cCons cFalse cNil))
In the paper:

extension of the operational semantics

sketch that the context lemma etc. still hold for the extended calculus

correctness of program transformations via diagrams (automated computation)

non-extensionality of Lcase,seq
need ,⊕

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 16/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Conclusion & Further Work

Conclusions

We introduced a probabilistic call-by-need lambda calculus

We analysed contextual equivalence and provided several techniques to show
equivalences

We added extensions to realistic models of probabilistic programming languages

Our previously developed methods are adaptable to the probabilistic setting

Further Work

add (polymorphic) typing to the calculus

compare the contextual semantics with mathematical probabilistic models

add other probabilistic constructs

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 17/17 Intro Lneed,⊕ Transformations Techniques Extensions Conclusion

Thank You!

Backup-Slide: Counterexample to Extensionality

We provide an example (similar to [Schmidt-Schauß,S.,Machkasova 2011]):

there are closed abstractions s1, s2 such that:
s1 r ∼c s2 r for all values or diverging expressions r, but s1 /∼c s2
Thus Lcase,seq

need ,⊕ is not extensional even for a weak form of extensionality

Hence usual definitions of applicative bisimilarity are unsound for Lcase,seq
need ,⊕

s1 ∶= λx.p1 ⊕ p2 s2 ∶= λx.(p1 ⊕ p3) ⊕ (p2 ⊕ p4)
p1 ∶= (False, seqp x False) p3 ∶= (False, seqp x True)
p2 ∶= seqp x (False,True) p4 ∶= seqp x (False,False)
seqp ∶= λx.λy.casePair x of {(z1, z2) -> y}

For C = let y = ([⋅] y) in if (snd y) then True else Ω

C[s1] diverges (ExCv(C[s1]) = 0)
C[s2] can evaluate to True with a positive probability (ExCv(C[s2]) > 0)

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 1/5

Backup-Slide: Expected Convergence with Bound

Expected convergence of s with bound k = number prob-reductions

ExCv(s, k) = ∑
(1, s)

↝

L (q, t) ∈ Eval(1, s),

∣L∣ ≤ k

q

→ allows inductive proofs and constructions on the number k,
and in the limit, differences in k do not matter:

Lemma

Let s, t be expressions and such that ∀k ≥ 0 ∶ ∃d ≥ 0 ∶ ExCv(s, k) ≤ ExCv(t, k + d).
Then ExCv(s) ≤ ExCv(t).

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 2/5

Backup-Slide: Nondeterminism vs. Probability (1)

May-convergence:

Definition: s may-converges if it can be reduced to a WHNF

Properties: s may-converges iff ExCv(s) > 0
Must-Convergence:

Definition: s must-converges if s has no infinite reduction and all reductions end
with a WHNF.

Properties:
s must-converges Ô⇒ ExCv(s) = 1
ExCv(s) = 1 /Ô⇒ s must-converges:

ExCv(let x = (λy.(x id) ⊕K) in (x id)) = 1,
but the expression has an infinite evaluation

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 3/5

Backup-Slide: Nondeterminism vs. Probability (2)

Should-Convergence:

Definition: s should-converges if s is not reducible to a must-divergent expression

(equivalently: for all s′ ∶ s sr,∗ÐÐ→ s′ Ô⇒ s′ is may-convergent.)

Properties: ExCv(s) = 1 Ô⇒ s should-converges
s should-converges /Ô⇒ ExCv(s) = 1:
expression s should-converge, but ExCv(s) = 5/12
s ∶= let cprob =

λi.if i = 0 thenK
else λx, y.(cprob (i−1) x y) ⊕ y,

gen = λi.cprob i K (gen (i+1))
in gen 2

s should-converges Ô⇒ EC(s) > 0

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 4/5

𝑐𝑝𝑟𝑜𝑏 𝑖 𝑠1 𝑠2 : 𝑔𝑒𝑛 2 :
•1/2

{{
1/2
##

𝑠1 •1/2
||

1/2𝑖−2
!!

𝑠1 •1/2
}}

1/2
!!

𝑠1 𝑠2

•1/4
||

3/4
""

𝐾 •1/8
}} !!

𝐾 •1/2𝑘
}}

1−1/2𝑘
""

𝐾 . . .

D. Sabel ∣ Contextual Equivalence in a Probabilistic Call-by-Need λ-Calculus ∣ 5/5

	Intro
	Lneed,
	Transformations
	Techniques
	Extensions
	Conclusion
	Appendix

