
Correctness of Program Transformations:
Automating Diagram-Based Proofs

David Sabel†

Goethe-University Frankfurt am Main, Germany

†Research supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1.

Motivation

reasoning on program transformations w.r.t. operational
semantics

for program calculi with higher-order constructs and recursive
bindings, e.g. letrec-expressions:

letrec x1 = s1; . . . ;xn = sn in t

extended call-by-need lambda calculi with letrec that model
core languages of lazy functional programming languages
like Haskell

2/43

Motivation

A program transformation is a binary relation on program fragments

for (X:=1, X < n, X++) {

Z := Z + X;

}

X:=1

while X < n {

Z := Z + X;

X++;

}

T

Some applications:

Compilers: Optimizations (inlining, partial evaluation,. . .)

Code Refactoring: Transformations to improve readability and
maintainability

Theorem Provers: Transforming programs in proofs

3/43

Motivation

A program transformation is a binary relation on program fragments

for (X:=1, X < n, X++) {

Z := Z + X;

}

X:=1

while X < n {

Z := Z + X;

X++;

}

T

Some applications:

Compilers: Optimizations (inlining, partial evaluation,. . .)

Code Refactoring: Transformations to improve readability and
maintainability

Theorem Provers: Transforming programs in proofs

3/43

Correctness

Program transformation T is correct iff T ⊆ ∼c

Contextual equivalence: e ∼c e′ iff e ≤c e′ and e ≥c e′

Contextual preorder: e ≤c e′ iff ∀C: C[e]↓ =⇒ C[e′]↓
↓ means successful evaluation:

e↓ := e
sr,∗−−→ e′ and e′ is a successful result

where
sr−→ is the small-step operational semantics (standard reduction)

and
sr,∗−−→ is the reflexive-transitive closure of

sr−→

4/43

Convergence Preservation

Convergence preservation: e ≤↓ e′ iff e↓ =⇒ e′↓
We only consider transformations T such that T ⊆ ≤↓ =⇒ T ⊆ ≤c
No restriction, since the contextual closure of T fulfills this property.

A context lemma allows for smaller closures (reduction contexts)

T ⊆ ≥c can be proved by showing T−1 ⊆ ≤c

Required task:

=⇒

e e′

·e′′ e′′′
successfulsuccessful

program
transformation

standard
reduction
steps

standard
reduction
steps

5/43

Idea of the Diagram Method

Base case: For all successful e

e
successful

e′

program
transformation

e′′

successful

standard
reduction
steps

General case: For all programs e

e e′

e′′

program
transformation

standard
reduction

e′′′

standard
reduction
steps

program
transformation steps

Inductive construction

e e′

e′′′

e4

succ.

e5

successful

. . .

e′′

successful

6/43

Idea of the Diagram Method

Base case: For all successful e

e
successful

e′

program
transformation

e′′

successful

standard
reduction
steps

General case: For all programs e

e e′

e′′

program
transformation

standard
reduction

e′′′

standard
reduction
steps

program
transformation steps

Inductive construction

e e′

e′′′

e4

succ.

e5

successful

. . .

e′′

successful

6/43

Idea of the Diagram Method

Base case: For all successful e

e
successful

e′

program
transformation

e′′

successful

standard
reduction
steps

General case: For all programs e

e e′

e′′

program
transformation

standard
reduction

e′′′

standard
reduction
steps

program
transformation steps

Inductive construction

e e′

e′′′

e4

succ.

e5

successful

. . .

e′′

successful

6/43

Idea of the Diagram Method

Base case: For all successful e

e
successful

e′

program
transformation

e′′

successful

standard
reduction
steps

General case: For all programs e

e e′

e′′

program
transformation

standard
reduction

e′′′

standard
reduction
steps

program
transformation steps

Inductive construction

e e′

e′′′

e4

succ.

e5

successful

. . .

e′′

successful

6/43

Idea of the Diagram Method

Base case: For all successful e

e
successful

e′

program
transformation

e′′

successful

standard
reduction
steps

General case: For all programs e

e e′

e′′

program
transformation

standard
reduction

e′′′

standard
reduction
steps

program
transformation steps

Inductive construction

e e′

e′′′

e4

succ.

e5

successful

. . .

e′′

successful

6/43

Idea of the Diagram Method

Base case: For all successful e

e
successful

e′

program
transformation

e′′

successful

standard
reduction
steps

General case: For all programs e

e e′

e′′

program
transformation

standard
reduction

e′′′

standard
reduction
steps

program
transformation steps

Inductive construction

e e′

e′′′

e4

succ.

e5

successful

. . .

e′′

successful

6/43

Idea of the Diagram Method

Base case: For all successful e

e
successful

e′

program
transformation

e′′

successful

standard
reduction
steps

General case: For all programs e

e e′

e′′

program
transformation

standard
reduction

e′′′

standard
reduction
steps

program
transformation steps

Inductive construction

e e′

e′′′

e4

succ.

by the
induction
hypothesis

e5

successful

. . .

e′′

successful

6/43

Idea of the Diagram Method

Base case: For all successful e

e
successful

e′

program
transformation

e′′

successful

standard
reduction
steps

General case: For all programs e

e e′

e′′

program
transformation

standard
reduction

e′′′

standard
reduction
steps

program
transformation steps

Inductive construction

e e′

e′′′

e4

succ.

e5

successful

. . .

e′′

successful

6/43

Focused Languages and Previous Results

The diagram technique was, for instance, used for

call-by-need lambda calculi with letrec, data constructors, case, and
seq [SSSS08, JFP] and non-determinism [SSS08, MSCS]

process calculi with call-by-value [NSSSS07, MFPS] or call-by-need
evaluation [SSS11, PPDP] and [SSS12, LICS]

reasoning on whether program transformations are improvements
w.r.t. the run-time [SSS15, PPDP] and [SSS17, SCP]

Conclusions from these works

The diagram method works well

The method requires to compute overlaps (error-prone, tedious,...)

Automation of the method would be valuable

7/43

Focused Languages and Previous Results

The diagram technique was, for instance, used for

call-by-need lambda calculi with letrec, data constructors, case, and
seq [SSSS08, JFP] and non-determinism [SSS08, MSCS]

process calculi with call-by-value [NSSSS07, MFPS] or call-by-need
evaluation [SSS11, PPDP] and [SSS12, LICS]

reasoning on whether program transformations are improvements
w.r.t. the run-time [SSS15, PPDP] and [SSS17, SCP]

Conclusions from these works

The diagram method works well

The method requires to compute overlaps (error-prone, tedious,...)

Automation of the method would be valuable

7/43

Automation of the Diagram-Method

calculus
description

program
transformations

Input

compute
overlaps

overlaps

join
overlaps

Diagram
calculator

diagrams

translate
diagrams

(I)TRS

prove termination
(AProVE/CeTA)

Automated
induction

Structure of the LRSX-Tool

8/43

Representation of the Input

calculus
description

program
transformations

Input

compute
overlaps

overlaps

join
overlaps

Diagram
calculator

diagrams

translate
diagrams

(I)TRS

prove termination
(AProVE/CeTA)

Automated
induction

Structure of the LRSX-Tool

9/43

Requirements on the Meta-Syntax

The syntax of extended call-by-need lambda-calculi typically includes:

lambda-calculus: variables x, abstractions λx.e, applications (e e′)

data-constructors True, False, Nil, Cons e1 e2,. . .

data-selectors / case-expressions

let- and recursive let expressions: letrec x1 = e1, . . . , xn = en in e

Language LRS parametric over F
Expressions s ∈ Expr ::= var x | letrec env in s | (f r1 . . . rar(f))

where ri is oi, si, or xi specified by f ∈ F

H.O.-Expressions o ∈ HExprn::= x1. . . . xn.s

Environments env ∈ Env ::= ∅ | x = s; env

10/43

Requirements on the Meta-Syntax

The syntax of extended call-by-need lambda-calculi typically includes:

lambda-calculus: variables x, abstractions λx.e, applications (e e′)

data-constructors True, False, Nil, Cons e1 e2,. . .

data-selectors / case-expressions

let- and recursive let expressions: letrec x1 = e1, . . . , xn = en in e

Language LRS parametric over F
Expressions s ∈ Expr ::= var x | letrec env in s | (f r1 . . . rar(f))

where ri is oi, si, or xi specified by f ∈ F

H.O.-Expressions o ∈ HExprn::= x1. . . . xn.s

Environments env ∈ Env ::= ∅ | x = s; env

10/43

Requirements on the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
A ::= [·] | (A e)

R ::= A | letrecEnv inA | letrec {xi=Ai[xi+1]}n−1
i=1 , xn=An,Env , inA[x1]

Standard-reduction rules and some program transformations:

(SR,lbeta)R[(λx.e1) e2]→ R[letrec x = e2 in e1]

(SR,llet) letrec Env1 in letrec Env2 in e→ letrec Env1,Env2 in e
. . .

(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]

(T,gc,1) T [letrec Env ,Env ′ in e]→ T [letrec Env ′ in e],
if LetV ars(Env) ∩ FV (e,Env ′) = ∅

(T,gc,2) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

Meta-syntax must be capable to represent:

contexts of different classes

environments Env i and environment chains {xi=Ai[xi+1]}n−1
i=1

11/43

Requirements on the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
A ::= [·] | (A e)

R ::= A | letrecEnv inA | letrec {xi=Ai[xi+1]}n−1
i=1 , xn=An,Env , inA[x1]

Standard-reduction rules and some program transformations:

(SR,lbeta)R[(λx.e1) e2]→ R[letrec x = e2 in e1]

(SR,llet) letrec Env1 in letrec Env2 in e→ letrec Env1,Env2 in e
. . .

(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]

(T,gc,1) T [letrec Env ,Env ′ in e]→ T [letrec Env ′ in e],
if LetV ars(Env) ∩ FV (e,Env ′) = ∅

(T,gc,2) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

Meta-syntax must be capable to represent:

contexts of different classes

environments Env i and environment chains {xi=Ai[xi+1]}n−1
i=1

11/43

Requirements on the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
A ::= [·] | (A e)

R ::= A | letrecEnv inA | letrec {xi=Ai[xi+1]}n−1
i=1 , xn=An,Env , inA[x1]

Standard-reduction rules and some program transformations:

(SR,lbeta)R[(λx.e1) e2]→ R[letrec x = e2 in e1]

(SR,llet) letrec Env1 in letrec Env2 in e→ letrec Env1,Env2 in e
. . .

(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]

(T,gc,1) T [letrec Env ,Env ′ in e]→ T [letrec Env ′ in e],
if LetV ars(Env) ∩ FV (e,Env ′) = ∅

(T,gc,2) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

Meta-syntax must be capable to represent:

contexts of different classes

environments Env i and environment chains {xi=Ai[xi+1]}n−1
i=1

11/43

Requirements on the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
A ::= [·] | (A e)

R ::= A | letrecEnv inA | letrec {xi=Ai[xi+1]}n−1
i=1 , xn=An,Env , inA[x1]

Standard-reduction rules and some program transformations:

(SR,lbeta)R[(λx.e1) e2]→ R[letrec x = e2 in e1]

(SR,llet) letrec Env1 in letrec Env2 in e→ letrec Env1,Env2 in e
. . .

(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]

(T,gc,1) T [letrec Env ,Env ′ in e]→ T [letrec Env ′ in e],
if LetV ars(Env) ∩ FV (e,Env ′) = ∅

(T,gc,2) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

Meta-syntax must be capable to represent:

contexts of different classes

environments Env i and environment chains {xi=Ai[xi+1]}n−1
i=1

11/43

Requirements on the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
A ::= [·] | (A e)

R ::= A | letrecEnv inA | letrec {xi=Ai[xi+1]}n−1
i=1 , xn=An,Env , inA[x1]

Standard-reduction rules and some program transformations:

(SR,lbeta)R[(λx.e1) e2]→ R[letrec x = e2 in e1]

(SR,llet) letrec Env1 in letrec Env2 in e→ letrec Env1,Env2 in e
. . .

(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]

(T,gc,1) T [letrec Env ,Env ′ in e]→ T [letrec Env ′ in e],
if LetV ars(Env) ∩ FV (e,Env ′) = ∅

(T,gc,2) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

Meta-syntax must be capable to represent:

contexts of different classes

environments Env i and environment chains {xi=Ai[xi+1]}n−1
i=1

11/43

Syntax of the Meta-Language LRSX

Variables x ∈ Var ::= X (variable meta-variable)

| x (concrete variable)

Expressions s ∈ Expr ::= S (expression meta-variable)

| D[s] (context meta-variable)

| letrec env in s (letrec-expression)

| var x (variable)

| (f r1 . . . rar(f)) (function application)

where ri is oi, si, or xi specified by f

o ∈ HExprn::= x1. . . . xn.s (higher-order expression)

Environments env ∈ Env ::= ∅ (empty environment)

| E; env (environment meta-variable)

| Ch[x, s]; env (chain meta-variable)

| x = s; env (binding)

Ch[x, s] represents chains x=C1[var x1]; x1=C2[var x2]; . . . ; xn=Cn[s]

where Ci are contexts of class cl(Ch)

12/43

Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)
. . .

(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]

(T,gc,1) T [letrec Env ,Env ′ in e]→ T [letrec Env ′ in e],
if LetV ars(Env) ∩ FV (e,Env ′) = ∅

(T,gc,2) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

Restrictions on scoping and emptiness, e.g.:

(gc): Env must not be empty; side condition on variables

(cpx): x, y are not captured by C in C[x], C[y]

13/43

Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)
. . .

(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]

(T,gc,1) T [letrec Env ,Env ′ in e]→ T [letrec Env ′ in e],
if LetV ars(Env) ∩ FV (e,Env ′) = ∅

(T,gc,2) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

Restrictions on scoping and emptiness, e.g.:

(gc): Env must not be empty; side condition on variables

(cpx): x, y are not captured by C in C[x], C[y]

13/43

Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)
. . .

(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]

(T,gc,1) T [letrec Env ,Env ′ in e]→ T [letrec Env ′ in e],
if LetV ars(Env) ∩ FV (e,Env ′) = ∅

(T,gc,2) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

Restrictions on scoping and emptiness, e.g.:

(gc): Env must not be empty; side condition on variables

(cpx): x, y are not captured by C in C[x], C[y]

13/43

Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)
. . .

(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]

(T,gc,1) T [letrec Env ,Env ′ in e]→ T [letrec Env ′ in e],
if LetV ars(Env) ∩ FV (e,Env ′) = ∅

(T,gc,2) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

Restrictions on scoping and emptiness, e.g.:

(gc): Env must not be empty; side condition on variables

(cpx): x, y are not captured by C in C[x], C[y]

13/43

Constraints

A constraint tuple ∆ = (∆1,∆2,∆3) consists of

non-empty context constraints ∆1: set of context variables

non-empty environment constraints ∆2: set of environment variables

non-capture constraints (NCCs) ∆3: set of pairs (s, d)
(s an expression, d a context)

Ground substitution ρ satisfies (∆1,∆2,∆3) iff

ρ(D) 6= [·] for all D ∈ ∆1

ρ(E) 6= ∅ for all E ∈ ∆2

hole of ρ(d) does not capture variables of ρ(s), for all (s, d) ∈ ∆3

Example:

s = letrec E1 in letrec E2 in S
∆ = (∅, {E1, E2}, {(letrec E2 in S, letrec E1 in [·])}))
semantics(s,∆) = nested letrec-expressions with unused outer environment

14/43

Constraints

A constraint tuple ∆ = (∆1,∆2,∆3) consists of

non-empty context constraints ∆1: set of context variables

non-empty environment constraints ∆2: set of environment variables

non-capture constraints (NCCs) ∆3: set of pairs (s, d)
(s an expression, d a context)

Ground substitution ρ satisfies (∆1,∆2,∆3) iff

ρ(D) 6= [·] for all D ∈ ∆1

ρ(E) 6= ∅ for all E ∈ ∆2

hole of ρ(d) does not capture variables of ρ(s), for all (s, d) ∈ ∆3

Example:

s = letrec E1 in letrec E2 in S
∆ = (∅, {E1, E2}, {(letrec E2 in S, letrec E1 in [·])}))
semantics(s,∆) = nested letrec-expressions with unused outer environment

14/43

Representation of Rules

Standard reductions and transformations are represented as

`→∆ r

where `, r are LRSX-expressions and ∆ is a constraint-tuple

Example:

(T,gc,2) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

is represented as

D[letrec E in S]→(∅,{E},{(S,letrec E in [·])}) D[S]

15/43

Computing Overlaps

calculus
description

program
transformations

Input

compute
overlaps

overlaps

join
overlaps

Diagram
calculator

diagrams

translate
diagrams

(I)TRS

prove termination
(AProVE/CeTA)

Automated
induction

Structure of the LRSX-Tool

16/43

Computing Overlaps by Unification

σ(`B)σ(`A)= σ(rB)

unifier σ for `A
.
= `B w.r.t. ∆A,∆B

·σ(rA)

program
transformation

standard
reduction *

*

As usual, we assume that the meta-variables in `A →∆A
rA are

pairwise disjoint from meta-variables in `B →∆B
rB are pairwise

disjoint (use fresh copies of the rules)

Unification also has to treat / respect the constraints ∆ := ∆A ∪∆B

17/43

Letrec Unification Problem

A letrec unification problem is a tuple P = (Γ,∆) with

Γ: unification equations s
.
= s′ of LRSX-expressions

∆ = (∆1,∆2,∆3) is a constraint tuple.

Occurrence restrictions:

Each S-variable occurs at most twice in Γ

Each E-, Ch-, D-variable occurs at most once in Γ

Ch-variables are only allowed in one letrec-environment in Γ

18/43

Solutions and Unifiers

Unifier and Solution of P = (Γ,∆)

A substitution ρ is a unifier of P iff

ρ(s) ∼let ρ(s′) for all s
.
= s′ ∈ Γ

ρ can be instantiated to satisfy ∆

A unifier ρ is a solution of P if ρ is a ground substitution.

∼let = syntactic equality upto permuting bindings in environments

19/43

NP-Hardness

Theorem (NP-Hardness)

The decision problem whether a solution for a letrec unification
problem exists is NP-hard.

Proof by a reduction from Monotone one-in-three-3-SAT.

Sketch: For each clause Ci = {Si,1, Si,2, Si,3}, add the unification
equation

letrec Yi,1 = Si,1; Yi,2 = Si,2; Yi,3 = Si,3 in c
.
= letrec yi,1 = false; yi,2 = false; yi,3 = true in c

Remark: Equations have no meta-variables on the right hand side

ü Matching is already NP-hard.

20/43

NP-Hardness

Theorem (NP-Hardness)

The decision problem whether a solution for a letrec unification
problem exists is NP-hard.

Proof by a reduction from Monotone one-in-three-3-SAT.

Sketch: For each clause Ci = {Si,1, Si,2, Si,3}, add the unification
equation

letrec Yi,1 = Si,1; Yi,2 = Si,2; Yi,3 = Si,3 in c
.
= letrec yi,1 = false; yi,2 = false; yi,3 = true in c

Remark: Equations have no meta-variables on the right hand side

ü Matching is already NP-hard.

20/43

Unification Algorithm UnifLRS [SSS16, PPDP]

Intermediate data structure of the algorithm: (Sol ,Γ,∆) where

Sol is a computed substitution

Γ is a set of equations

∆ = (∆1,∆2,∆3,∆4)

(∆1,∆2,∆3) are constraints as in a letrec unification problem

∆4 are environment equations E1; . . . ;En = Ch[x, s]

Input:
For P = (Γ,∆1,∆2,∆3), UnifLRS starts with (Id,Γ, (∆1,∆2,∆3, ∅))

Output (on each branch):
Fail or final state (Sol , ∅,∆)

21/43

Selection of Rules (1)

(Sol ,Γ ·∪{x .
= x},∆)

(Sol ,Γ,∆)

(Sol ,Γ ·∪{S .
= s},∆)

(Sol ◦ {S 7→ s},Γ[s/S],∆[s/S])

if S is not a proper
sub-expression of s

(Sol ,Γ ·∪{letrec env1 in s1
.
= letrec env2 in s2},∆)

(Sol ,Γ ·∪{env1
.
= env2, s1

.
= s2},∆)

22/43

Selection of Rules (2)

Unifying bindings and chains:

(Sol ,Γ ·∪{x = t; env1
.
= Ch[y, s]; env2},∆)

(Sol ◦ σ,Γ ·∪{x = t
.
= y = D[s], env1

.
= env2},∆σ)

σ = {Ch[y, s] 7→ y = D[s]} “equal”

| (Sol ◦ σ,Γ ·∪{x = t
.
= y = D[var Y], env1

.
= Ch2[Y, s]; env2},∆σ)

σ = {Ch1[y, s] 7→ y = D[var Y];Ch2[Y, s]} “prefix”

| (Sol ◦ σ,Γ ·∪{x = t
.
= Y1 = D[var Y2], env1

.
= Ch1[y, var Y1];Ch2[Y2, s]; env2},∆σ)

σ = {Ch[y, s] 7→ Ch1[y, (var Y1)];Y1 = D[var Y2];Ch2[Y2, s]} “infix”

| (Sol ◦ σ,Γ ·∪{x = t
.
= Y1 = D[s], env1

.
= Ch2[y, var Y1]; env2,∆σ})

σ = {Ch1[y, s] 7→ Ch2[y, var Y1];Y1 = D[s]} “suffix”

23/43

Selection of Failure Rules

Standard cases:

(Sol ,Γ ·∪{(x1
.
= x2)},∆)

Fail

(Sol ,Γ ·∪{(S .
= s)},∆)

Fail
if S is a proper subterm of s

Checking non-capture contraints:

(Sol ,Γ, (∆1,∆2,∆3 ∪ {(s, d)},∆4))

Fail
if VarM (s) ∩ CVM (d) 6= ∅

VarM and CVM consist of concrete and meta-variables.

24/43

Properties of UnifLRS

Proposition (Soundness)

For input P and successful output (Sol , ∅,∆):

All ground instances of Sol that do not violate ∆ are solutions of P .

There exists at least one ground instance of Sol which solves P .

Proposition (Completeness)

For any solution ρ of a letrec unification problem P there exists a final
state (Sol , ∅,∆) of UnifLRS s.t. ρ is an instance of Sol .

Theorem

UnifLRS is sound and complete and terminates in nondeterministic
polynomial time and solutions are of polynomial size.
The letrec unification problem is NP-complete.

25/43

Computing Joins

calculus
description

program
transformations

Input

compute
overlaps

overlaps

join
overlaps

Diagram
calculator

diagrams

translate
diagrams

(I)TRS

prove termination
(AProVE/CeTA)

Automated
induction

Structure of the LRSX-Tool

26/43

Computing Diagrams

. t1

.t2

program
transformation

standard
reduction *

*

t1, t2 are meta-expressions restricted by constraints ∇
computing joins

∗−→ requires abstract rewriting by rules `→∆ r

meta-variables in `, r are instantiable and meta-variables in ti are fixed

rewriting: match ` against ti and show that the given constraints ∇
imply the needed constraints ∆

(t,∇)→ (σ(r),∇∪ σ(∆)) if `→∆ r, t = σ(l), and ∇ =⇒ σ(∆)

σ is a matcher for the letrec matching problem ({` E t},∆,∇)

27/43

Matching Algorithm MatchLRS

For most cases: similar rules as the unification algorithm

New rules for matching chain-variables, for example matching
equations like:

Ch[x, e]; env E Ch ′[x′, e′]; env ′

Ch[x, e]; env E Ch ′[x′, e′]; env ′

New rules for checking that needed constraints ∆3 are implied
by given constraints ∇3.
Also infers constraints from the let variable condition:

Example: letrec X1 = S1;X2 = S2 in . . . implies validity of
the non-capture constraint (var X1, λX2.[])

Theorem [Sab17, Unif]

MatchLRS is sound and complete. The letrec matching problem is
NP-complete.

28/43

Example: (gc)-Transformation

(T,gc) := (T,gc,1) ∪ (T,gc,2)

Unification computes 192 overlaps and joining results in 324
diagrams which can be represented by the diagrams

· T,gc //
SR,lbeta ��

·
SR,lbeta��

·
T,gc

// ·

· T,gc //
SR,cp ��

·
SR,cp��

·
T,gc

// ·

· T,gc //
SR,lll ��

·
SR,lll��

·
T,gc

// ·

· T,gc //
SR,lll ��

·

· T,gc

77

and the answer diagram

Ans
T,gc // Ans

29/43

Problematic Example: Overlap (SR,llet) and (T,llet)

(T,llet) T [letrec E in letrec E′ in S]→ T [letrec E;E′ in S]
where an NCC must hold s.t. LetV ars(E′) ∩ V ars(E) = ∅

letrec E1 in

letrec E2 in

letrec E3 in S

letrec E1 in

letrec E2;E3 in S

letrec E1;E2 in

letrec E3 in S

letrec E1;E2;E3 in S

SR,llet

T,llet

SR,llet

T,llet

×
×

Given constraints:

Needed constraints:

- LetVars(E2) ∩Vars(E1) = ∅

- LetVars(E2;E3) ∩ V ars(E1) = ∅
- LetVars(E3) ∩Vars(E2) = ∅ - LetVars(E3) ∩Vars(E1;E2) = ∅

=⇒6

30/43

Problematic Example: Overlap (SR,llet) and (T,llet)

(T,llet) T [letrec E in letrec E′ in S]→ T [letrec E;E′ in S]
where an NCC must hold s.t. LetV ars(E′) ∩ V ars(E) = ∅

letrec E1 in

letrec E2 in

letrec E3 in S

letrec E1 in

letrec E2;E3 in S

letrec E1;E2 in

letrec E3 in S

letrec E1;E2;E3 in S

SR,llet

T,llet

SR,llet

T,llet

×
×

Given constraints:

Needed constraints:

- LetVars(E2) ∩Vars(E1) = ∅

- LetVars(E2;E3) ∩ V ars(E1) = ∅

- LetVars(E3) ∩Vars(E2) = ∅

- LetVars(E3) ∩Vars(E1;E2) = ∅

=⇒6

30/43

Problematic Example: Overlap (SR,llet) and (T,llet)

(T,llet) T [letrec E in letrec E′ in S]→ T [letrec E;E′ in S]
where an NCC must hold s.t. LetV ars(E′) ∩ V ars(E) = ∅

letrec E1 in

letrec E2 in

letrec E3 in S

letrec E1 in

letrec E2;E3 in S

letrec E1;E2 in

letrec E3 in S
letrec E1;E2;E3 in S

SR,llet

T,llet

SR,llet

T,llet

×
×

Given constraints:

Needed constraints:

- LetVars(E2) ∩Vars(E1) = ∅

- LetVars(E2;E3) ∩ V ars(E1) = ∅

- LetVars(E3) ∩Vars(E2) = ∅

- LetVars(E3) ∩Vars(E1;E2) = ∅

=⇒6

30/43

Problematic Example: Overlap (SR,llet) and (T,llet)

(T,llet) T [letrec E in letrec E′ in S]→ T [letrec E;E′ in S]
where an NCC must hold s.t. LetV ars(E′) ∩ V ars(E) = ∅

letrec E1 in

letrec E2 in

letrec E3 in S

letrec E1 in

letrec E2;E3 in S

letrec E1;E2 in

letrec E3 in S
letrec E1;E2;E3 in S

SR,llet

T,llet

SR,llet

T,llet

×

×

Given constraints: Needed constraints:
- LetVars(E2) ∩Vars(E1) = ∅ - LetVars(E2;E3) ∩ V ars(E1) = ∅
- LetVars(E3) ∩Vars(E2) = ∅

- LetVars(E3) ∩Vars(E1;E2) = ∅

=⇒6

30/43

Problematic Example: Overlap (SR,llet) and (T,llet)

(T,llet) T [letrec E in letrec E′ in S]→ T [letrec E;E′ in S]
where an NCC must hold s.t. LetV ars(E′) ∩ V ars(E) = ∅

letrec E1 in

letrec E2 in

letrec E3 in S

letrec E1 in

letrec E2;E3 in S

letrec E1;E2 in

letrec E3 in S
letrec E1;E2;E3 in S

SR,llet

T,llet

SR,llet

T,llet

×
×

Given constraints: Needed constraints:
- LetVars(E2) ∩Vars(E1) = ∅ - LetVars(E2;E3) ∩ V ars(E1) = ∅
- LetVars(E3) ∩Vars(E2) = ∅ - LetVars(E3) ∩Vars(E1;E2) = ∅

=⇒6
30/43

An Instance

Instance: E1 7→ x=z, E2 7→ y=1, E3 7→ z=2, S 7→ 3

illegal capture of z

solution: use fresh α-renamings

letrec x=z in

letrec y=1 in

letrec z=2 in 3

letrec x=z in

letrec y=1; z=2 in 3

letrec x=z; y=1 in

letrec z=2 in 3
letrec x=z; y=1; z=2 in 3

letrec x1=z; y1=1 in

letrec z1=2 in 3α

T,llet

letrec x2=z in

letrec y2=1; z2=2 in 3

letrec x2=z; y2=1; z2=2 in 3
∼α

α

SR,llet

SR,llet

T,llet

SR,llet

T,llet

×
×

Given constraints: Needed constraints:
- LetVars(y=1) ∩Vars(x=z) = ∅ - LetVars(y=1; z=2) ∩ V ars(x=z) = ∅
- LetVars(z=2) ∩Vars(y=1) = ∅ - LetVars(z=2) ∩Vars(x=z; y=1) = ∅

31/43

An Instance

Instance: E1 7→ x=z, E2 7→ y=1, E3 7→ z=2, S 7→ 3

illegal capture of z

solution: use fresh α-renamings

letrec x=z in

letrec y=1 in

letrec z=2 in 3

letrec x=z in

letrec y=1; z=2 in 3

letrec x=z; y=1 in

letrec z=2 in 3
letrec x1=z; y1=1; z1=2 in 3

letrec x1=z; y1=1 in

letrec z1=2 in 3α T,llet

letrec x2=z in

letrec y2=1; z2=2 in 3

letrec x2=z; y2=1; z2=2 in 3
∼α

α

SR,llet
SR,llet

T,llet

SR,llet

T,llet

×
×

Given constraints: Needed constraints:
- LetVars(y=1) ∩Vars(x=z) = ∅ - LetVars(y1=1; z1=2) ∩ V ars(x1=z) = ∅
- LetVars(z=2) ∩Vars(y=1) = ∅ - LetVars(z2=2) ∩Vars(x2=z; y2=1) = ∅

31/43

Extending the Method by α-Renaming

α-renaming on the meta-level

Instances must fulfill the distinct variable convention (DVC):

Distinct variable convention DVC

A ground LRSX-expression fulfills the DVC iff

the bound variables are disjoint from the free variables

variables on binders are pairwise disjoint

How to rename meta-variables X,S,E,D?

⇒ Requires meta-notations for symbolic α-renamings

32/43

Syntax of the Extended Meta-Language LRSXα

Variables

x ∈ Var ::= 〈rc1, . . . , rcn〉·X (variable meta-variable)

| 〈rc1, . . . , rcn〉·x (concrete variable)

Expressions

s ∈ Expr ::= 〈αS,i, rc1, . . . , rcn〉·S (expression meta-variable)

| 〈αD,i, rc1, . . . , rcn〉·D[s] (context meta-variable)

| . . .
Environments

env ∈ Env ::= 〈αE,i, rc1, . . . , rcn〉·E; env (environment meta-variable)

| . . .

a component αU,i α-renames instances of U

Atomic renaming components

rc ∈ ARC ::= αx,i (fresh renaming of variable x)

| LV (αE,i) (restriction of αE,i on LetVars(E))

| CV (αD,i) (restriction of αD,i on CapVars(D))

33/43

Examples

λX.var X is renamed into λ〈αX,1〉·X.var 〈αX,1〉·X

λX.S is renamed into λ〈αX,1〉·X.〈αS,1, αX,1〉·S

λX.λX.var X is renamed into
λ〈αX,1〉·X.λ〈αX,2〉·X.var 〈αX,2, αX,1〉·X and simplified to
λ〈αX,1〉·X.λ〈αX,2〉·X.var 〈αX,2〉·X

letrec E in S is renamed into
letrec 〈αE,1〉·E in 〈αS , LV (αE,1)〉·S

34/43

Symbolic α-Renaming

Tasks for symbolic α-renaming [Sab17, PPDP]:

A sound algorithm to α-rename s ∈ LRSX into AR(s) ∈ LRSXα

A sound matching algorithm to solve (s,∇) E (s′,∆) where
s ∈ LRSX, s′ ∈ LRSXα

A sound test for extended α-equivalence for constrained
LRSXα-expressions

Simplification of α-renamings

Refreshing α-renamings after rewriting.

35/43

Automated Induction

calculus
description

program
transformations

Input

compute
overlaps

overlaps

join
overlaps

Diagram
calculator

diagrams

translate
diagrams

(I)TRS

prove termination
(AProVE/CeTA)

Automated
induction

Structure of the LRSX-Tool

36/43

Automated Induction: Ideas [RSSS12, IJCAR]

Ignore the concrete expressions, only keep: kind of rule (SR or
transformation) and rule-names, and answers as abstract constant

· T,gc //
SR,lbeta ��

·
SR,lbeta��

·
T,gc
// ·

Ans
T,gc // Ans

Diagrams represent string rewrite rules on strings consisting of
elements (SR, name), (T, name), and Answer

(T, gc), (SR, lbeta)→ (SR, lbeta), (T, gc) (T, gc), Answer → Answer

Termination of the string rewrite system implies successful induction

(T, gc), (SR, a1), . . . , (SR, an), Answer
∗−→ (SR, a′1), . . . , (SR, a′m), Answer

We use term rewrite systems and innermost-termination and apply
AProVE and certifier CeTA

37/43

Automated Induction: Ideas [RSSS12, IJCAR]

Ignore the concrete expressions, only keep: kind of rule (SR or
transformation) and rule-names, and answers as abstract constant

· T,gc //
SR,lbeta ��

·
SR,lbeta��

·
T,gc
// ·

Ans
T,gc // Ans

Diagrams represent string rewrite rules on strings consisting of
elements (SR, name), (T, name), and Answer

(T, gc), (SR, lbeta)→ (SR, lbeta), (T, gc) (T, gc), Answer → Answer

Termination of the string rewrite system implies successful induction

(T, gc), (SR, a1), . . . , (SR, an), Answer
∗−→ (SR, a′1), . . . , (SR, a′m), Answer

We use term rewrite systems and innermost-termination and apply
AProVE and certifier CeTA

37/43

Automated Induction: Ideas [RSSS12, IJCAR]

Ignore the concrete expressions, only keep: kind of rule (SR or
transformation) and rule-names, and answers as abstract constant

· T,gc //
SR,lbeta ��

·
SR,lbeta��

·
T,gc
// ·

Ans
T,gc // Ans

Diagrams represent string rewrite rules on strings consisting of
elements (SR, name), (T, name), and Answer

(T, gc), (SR, lbeta)→ (SR, lbeta), (T, gc) (T, gc), Answer → Answer

Termination of the string rewrite system implies successful induction

(T, gc), (SR, a1), . . . , (SR, an), Answer
∗−→ (SR, a′1), . . . , (SR, a′m), Answer

We use term rewrite systems and innermost-termination and apply
AProVE and certifier CeTA

37/43

Example

· T,gc //
SR,lbeta ��

·
SR,lbeta��

·
T,gc

// ·

· T,gc //
SR,cp ��

·
SR,cp��

·
T,gc

// ·

· T,gc //
SR,lll ��

·
SR,lll��

·
T,gc

// ·

· T,gc //
SR,lll ��

·

· T,gc

77 Ans
T,gc // Ans

Obtained TRS:

Tgc(SRlbeta(x)) -> SRlbeta(Tgc(x))

Tgc(SRcp(x)) -> SRcp(Tgc(x))

Tgc(SRlll(x)) -> SRlll(Tgc(x))

Tgc(SRlll(x)) -> Tgc(x)

Tgc(Answer) -> Answer

Innermost termination is shown by AProVE and certified by CeTA

38/43

Transitive Closures are Required

Example:

A[(λX.S) S′] A[(letrec E in (λX.S)) S′]

A[letrec X = S′ in S]

letrec E in A[(λX.S) S′]

letrec E in

A[letrec X = S′ in S]

T, gc, 2

SR, lbeta

SR, lll,+

SR, lbeta

T, gc, 2

39/43

Transitive Closures are Required

Example:

A[(λX.S) S′] A[(letrec E in (λX.S)) S′]

A[letrec X = S′ in S]

letrec E in A[(λX.S) S′]

letrec E in

A[letrec X = S′ in S]

T, gc, 2

SR, lbeta

SR, lll,+

SR, lbeta

T, gc, 2

39/43

Transitive Closures are Required

Example:

A[(λX.S) S′] A[(letrec E in (λX.S)) S′]

A[letrec X = S′ in S]

letrec E in A[(λX.S) S′]

letrec E in

A[letrec X = S′ in S]

T, gc, 2

SR, lbeta

SR, lll,+

SR, lbeta

T, gc, 2

39/43

Encoding of Transitive Closures

The diagram ·

SR,lbeta

��

·T,gcoo

SR,lll,+
��
·
SR,lbeta
��

· ·
T,gc
oo

is encoded by:

Tgc(SRlbeta(x)) -> gen(k,x)

gen(s(k),x) -> SRlll(gen(k,x))

gen(s(k),x) -> SRlll(SRlbeta(Tgc(x)))

free variable k on the right hand side
to guess the number of steps

AProVE & CeTA can handle such TRSs

40/43

Experiments

LRSX Tool available from http://goethe.link/LRSXTOOL61

computes diagrams and performs the automated induction

5425

joins

2242

joins# overlaps

48 secs.

computation time

→
7273

joins

3001

joins# overlaps

116 secs.

computation time

←

14729

joins

4898

joins# overlaps

149 secs.

computation time

→
18089

joins

6437

joins# overlaps

255 secs.

computation time

←

391264

joins

87041

joins# overlaps

∼ 19 hours

computation time

→
429104

joins

107333

joins# overlaps

∼ 16 hours

computation time

←

Calculus Lneed (11 SR rules, 16 transformations, 2 answers)

Calculus L+seq
need (17 SR rules, 18 transformations, 2 answers)

Calculus LR (76 SR rules, 43 transformations, 17 answers)

41/43

Conclusion

Automation of the diagram method

Quite expressive meta-language LRSX

Algorithms for unification, matching, α-renaming

Encoding technique to apply termination provers for TRSs

Experiments show that the automation works well for
call-by-need calculi

42/43

Further work

Other applications

Further calculi, for instance, process calculi with structural
congruence

Correctness of translations between calculi

Proving improvements

Other meta-languages

Nominal techniques to ease reasoning on α-renamings:
in progress, e.g.

Nominal unification for a meta-language with letrec
[SSKLV16, LOPSTR]

Nominal unification for a meta-language with context variables
[SSS18, FSCD, to appear]

. . .

43/43

Thank you!

	Appendix

