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Motivation UNIVERSITAT

@ reasoning on program transformations w.r.t. operational
semantics

@ for program calculi with higher-order constructs and recursive
bindings, e.g. letrec-expressions:

letrec 1 =81;...;%p = 8, in t

@ extended call-by-need lambda calculi with letrec that model
core languages of lazy functional programming languages
like Haskell
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Motivation UNIVERSITAT

A program transformation is a binary relation on program fragments

T

Some applications:
e Compilers: Optimizations (inlining, partial evaluation,...)
@ Code Refactoring: Transformations to improve readability and
maintainability

@ Theorem Provers: Transforming programs in proofs
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Correctness UNIVERSITAT

FRANKFURT AM MA

Program transformation T is correct iff T C ~, J

o Contextual equivalence: ¢ ~. €' iffe <.¢ and e >. ¢
o Contextual preorder: e <. ¢’ iff VC: Cle]] = C[¢'|{
@ | means successful evaluation:

ST, % .
el ;== e —— ¢ and €’ is a successful result

o where 2% is the small-step operational semantics (standard reduction)

STk L . L. sr
e and —— is the reflexive-transitive closure of —
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Convergence Preservation UNIVERSITAT

FRANKFURT AM MAIN

Convergence preservation: e <| €' iff e] = ¢/|
We only consider transformations 7" such that 7' C <| = T'C <,

°
°
@ No restriction, since the contextual closure of T fulfills this property.
@ A context lemma allows for smaller closures (reduction contexts)

°

T C >, can be proved by showing 7! C <,

program
transformation

—)el

Required task:

—

1
1
1
1
standard 1 standard
reduction : ! i
: _— ! reduction
steps . steps
1
1
¥
" "
e !
successful successful
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@ Base case: For all successful e

program
transformation

e — ¢

successful
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@ Inductive construction

¥
i
e W — o
B 1
1
1
1
I
: by the
' induction
: hypothesis
1
1
1
1
I
¥ 3
e €4

successful succ.

6/43



Idea of the Diagram Method

@ Base case: For all successful e

program

transformation
e — ¢/
1
v standard
: reduction
1 steps
¥
e

successful

successful

@ General case: For all programs e

program
transformation

e — ¢/
1
¥

standard standard
reduction : reduction
1 steps
~
el mmm e i a sy I

program
transformation steps

GOETHE g

UNIVERSITAT

FRANKFURT AM MAIN

@ Inductive construction
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Focused Languages and Previous Results UNIVERSITAT

The diagram technique was, for instance, used for

@ call-by-need lambda calculi with letrec, data constructors, case, and
seq [SSSS08, JFP] and non-determinism [SSS08, MSCS]

@ process calculi with call-by-value [NSSSS07, MFPS] or call-by-need
evaluation [SSS11, PPDP] and [SSS12, LICS]

@ reasoning on whether program transformations are improvements
w.r.t. the run-time [SSS15, PPDP] and [SSS17, SCP]
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Focused Languages and Previous Results UNIVERSITAT

The diagram technique was, for instance, used for

@ call-by-need lambda calculi with letrec, data constructors, case, and
seq [SSSS08, JFP] and non-determinism [SSS08, MSCS]

@ process calculi with call-by-value [NSSSS07, MFPS] or call-by-need
evaluation [SSS11, PPDP] and [SSS12, LICS]

@ reasoning on whether program transformations are improvements
w.r.t. the run-time [SSS15, PPDP] and [SSS17, SCP]

Conclusions from these works
@ The diagram method works well
@ The method requires to compute overlaps (error-prone, tedious,...)
@ Automation of the method would be valuable
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Automation of the Diagram-Method UNIVERSITAT
compute translate
calculus overlaps diagrams

description

overlaps

¥

diagrams
P:cogra m join prove termination
transformations overlaps (AProVE/CeTA)

Diagram Automated
calculator induction

Input

Structure of the LRSX-Tool
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Representation of the Input
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Requirements on the Meta-Syntax UNIVERSITAT

The syntax of extended call-by-need lambda-calculi typically includes:
@ lambda-calculus: variables x, abstractions Az.e, applications (e ¢€)
@ data-constructors True,False,Nil, Cons ey eo,...

o data-selectors / case-expressions

o let- and recursive let expressions: letrec 1 =e,...,T, =€, ine
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Requirements on the Meta-Syntax UNIVERSITAT

The syntax of extended call-by-need lambda-calculi typically includes:
@ lambda-calculus: variables x, abstractions Az.e, applications (e ¢€)
@ data-constructors True,False,Nil, Cons ey eo,...
o data-selectors / case-expressions

o let- and recursive let expressions: letrec 1 =e,...,T, =€, ine

Language LRS parametric over F

Expressions s € Expr ::= var x | letrecenvins | (fr1...74f))
where r; is 04, 5;,0r X; specified by f € F

H.O.-Expressions 0 € HExpr™::= x3....x,.8

Environments env € Env =0 | z = s; env
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Requirements on the Meta-Syntax UNIVERSITAT

Operational semantics of typical call-by-need calculi (excerpt)
Reduction contexts:
Ai=[]] (Ae)
R:= A|letrec Envin A | letrec {z;=A;[z;11]} ], 2n=Ay, Env, in A[z;]
Standard-reduction rules and some program transformations:
(SR, Ibeta) R[(Az.e1) ea] — R[letrec x = ey in e1]
SR llet) letrec Envj in letrec Fnuvs in e — letrec Envy, Envg in e

(
(T,epx) T[letrec z =y, Env in Clx]] — T[letrec z =y, Env in C[y]]
(T.ge,1) T[letrec Env, Env' in e] — T[letrec Env’ in €],

if LetVars(Env) N FV (e, Env') =0
(T.gc,2) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0
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Syntax of the Meta-Language LRSX UNIVERSITAT
Variables x € Var := X (variable meta-variable)

| x (concrete variable)
Expressions s € Expr := S (expression meta-variable)

| Dls] (context meta-variable)

| letrecenvins (letrec-expression)

| var x (variable)

|

(fri...7ar(s))  (function application)

where r; is 0;, s;, or x; specified by f

o € HExpr':= z....x,.8 (higher-order expression)
Environments env € Env ::= () (empty environment)
| E;env (environment meta-variable)
| Chlz,s]; env (chain meta-variable)
| x=s;enwv (binding)
Chz, s] represents chains z=C[var x;];x1=Ca[var xal;...;x,=Cy[s]

where C; are contexts of class cl(Ch)
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Binding and Scoping Constraints UNIVERSTTAT

Operational semantics of typical call-by-need calculi (excerpt)

(T,epx) T[letrec z =y, Env in Clz]] = T[letrec x =y, Env in C|[y]]

(T.gc,1) T[letrec Env, Env' in €] — T[letrec Env’ in €],
if LetVars(Env) N FV (e, Env') =0

(T.gc.2) T|letrec Env ine] — Tle]  if LetVars(Env) N FV(e) =0

Restrictions on scoping and emptiness, e.g.:
@ (gc): Env must not be empty; side condition on variables

@ (cpx): x,y are not captured by C' in C[z], C[y]
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Constraints

UNI\'F‘RSIT‘AT
A constraint tuple A = (A1, Ay, A3) consists of
@ non-empty context constraints Aq: set of context variables
@ non-empty environment constraints As: set of environment variables

@ non-capture constraints (NCCs) Aj: set of pairs (s, d)
(s an expression, d a context)

Ground substitution p satisfies (A1, Ay, Ag) iff
e p(D) #[] forall D € Ay
e p(E)# 0 forall E€ Ay
@ hole of p(d) does not capture variables of p(s), for all (s,d) € A
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Constraints

UNI\'F“RSIT‘AT
A constraint tuple A = (A1, Ay, A3) consists of
@ non-empty context constraints Aq: set of context variables
@ non-empty environment constraints As: set of environment variables

@ non-capture constraints (NCCs) Aj: set of pairs (s, d)
(s an expression, d a context)

Ground substitution p satisfies (A1, Ay, Ag) iff
e p(D) #[] forall D € Ay
e p(E)# 0 forall E€ Ay
@ hole of p(d) does not capture variables of p(s), for all (s,d) € A

Example:

s = letrec Eq in letrec Fy in S
A = (0,{E1, Ex},{(letrec E3 in S,letrec Fj in [])}))
semantics(s, A) = nested letrec-expressions with unused outer environment

14/43
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Representation of Rules ONIVERSITAT

Standard reductions and transformations are represented as
0 —=AT
where £, r are LRSX-expressions and A is a constraint-tuple
Example:
(T,gc,2) T[letrec Env ine] — Tle] if LetVars(Env) N FV(e) =0
is represented as

Dlletrec E in S| = (£} {(S,1etrec E in [])}) DIS]

15/43
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Computing Overlaps UNIVERSITAT
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e 0
compute translate
calculus overlaps diagrams
description

overlaps

¥

diagrams

program = e
formations jJjoin prove termination
trans overlaps (AProVE/CeTA)

| Diagram Automated
nput . .
calculator L induction
- @@

Structure of the LRSX-Tool
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program
transformation

o(ly)=c(lp) — o(rp)

1
standard *
reduction
unifier o for {4 =g w.rt. As, AR

@ As usual, we assume that the meta-variables in {4 —a, 74 are

pairwise disjoint from meta-variables in /g —A, rp are pairwise
disjoint (use fresh copies of the rules)

@ Unification also has to treat / respect the constraints A := Ay UAp
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Letrec Unification Problem UNIVERSITAT

A letrec unification problem is a tuple P = (P, A) with

o I': unification equations s = s’ of LRSX-expressions
o A =(Aj,Aq, A3) is a constraint tuple.

Occurrence restrictions:
@ Each S-variable occurs at most twice in I’
@ Each E-, Ch-, D-variable occurs at most once in T’

@ Ch-variables are only allowed in one letrec-environment in I’
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Solutions and Unifiers UNIVERSITAT

Unifier and Solution of P = (', A)

A substitution p is a unifier of P iff
@ p(8) ~ier p(s) forall s=s" €T
@ p can be instantiated to satisfy A

A unifier p is a solution of P if p is a ground substitution.

~et = syntactic equality upto permuting bindings in environments
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Theorem (NP-Hardness)

The decision problem whether a solution for a letrec unification
problem exists is NP-hard.

Proof by a reduction from MONOTONE ONE-IN-THREE-3-SAT.

Sketch: For each clause C; = {S; 1, S; 2, Si 3}, add the unification
equation

letrec Y;1 = 5;1; Yio=195;2; Yi3=29;3 inc
= letrec y; 1 = false; y; 2 = false; y; 3 = true in ¢
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Theorem (NP-Hardness)

The decision problem whether a solution for a letrec unification
problem exists is NP-hard.

Proof by a reduction from MONOTONE ONE-IN-THREE-3-SAT.

Sketch: For each clause C; = {S; 1, S; 2, Si 3}, add the unification
equation

letrec Y;1 = 5;1; Yio=195;2; Yi3=29;3 inc
= letrec y; 1 = false; y; 2 = false; y; 3 = true in ¢

Remark: Equations have no meta-variables on the right hand side
»» Matching is already NP-hard.
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Unification Algorithm UnifLRS [SSS16, PPDP] “,L;J??f%?m

Intermediate data structure of the algorithm: (Sol,T", A) where

@ Sol is a computed substitution

o I is a set of equations
o A= (A1,A2,A3 Ay)
e (A1, Ay, A3) are constraints as in a letrec unification problem
e A, are environment equations E1;...; E, = Ch[z,s]
Input:

For P = (T, A, Ay, Ag), UnifLRS starts with (Id, T, (Ay, Ag, As, 0))

Output (on each branch):
Fail or final state (Sol, 0, A)

21/43
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Selection Of Rules (1) UNIVERSITAT

(Sol, TU{x = x},A)
(Sol,T', A)

(Sol, TU{S = s}, A) if S is not a proper
(Sol o {S + s}, F[S/S]> A[S/S]) sub-expression of s

(Sol,T\J{letrec env; in $; = letrec envs in so}, A)
(Sol,TU{envy = enva, s; = sa}, A)

22/43



GOETHE 53

Selection Of Rules (2) UNIVERSITAT

Unifying bindings and chains:

(Sol,TU{x = t; envy = Chly, s|; enva}, A)

(Soloo,T'U{z =t =y = DIs], envy = enva}, Ac)
o ={Chly,s| =y = D[s]} “equal”

| (Sol o o,TW{z =t =y = D]var Y], env; = ChalY, s]; enva}, Ac)
o ={Chily,s] = y = D]var Y]; ChalY, s|} “prefix”

| (Sol o0, TWU{x =t =Y) = D[var Ys], env; = Chqly, var Yi]; Cha[Y2, s]; enva}, Ao)
o ={Chly, s| = Chily, (var Y1)|; Y1 = D[var Ya|; Cho[Y2, s|} “infix”

’ (Sol oo, TU{x =t =Y, = D[s], envy = Chaly,var Y1]; enve, Ac})
o = {Chily, s] — Chsly,var Y1];Y7 = D[s]} “suffix”
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Selection of Failure Rules UNIVERSITAT
Standard cases:

(SOl, FU{(Xl = Xg)}, A)
Fail

(Sol,TU{(S = s)},A)
Fail

if S is a proper subterm of s

Checking non-capture contraints:

(Sol,T', (A1, Ao, A3 U {(s,d)}, A4))

- if Varp(s) N CVp(d) #0
Fail

Varyr and C'V s consist of concrete and meta-variables.
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Properties of UnifLRS UNIVERSITAT

Proposition (Soundness)
For input P and successful output (Sol, (), A):
@ All ground instances of Sol that do not violate A are solutions of P.

@ There exists at least one ground instance of Sol which solves P.

Proposition (Completeness)

For any solution p of a letrec unification problem P there exists a final
state (Sol, (), A) of UnifLRS s.t. p is an instance of Sol.

Theorem

UnifLRS is sound and complete and terminates in nondeterministic
polynomial time and solutions are of polynomial size.

The letrec unification problem is NP-complete.
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Computing Diagrams UNIVERSITAT

program
transformation

standard
reduction

—_—
{=====
*

t1,to are meta-expressions restricted by constraints V
computing joins — requires abstract rewriting by rules £ — 7

meta-variables in £, r are instantiable and meta-variables in ¢; are fixed

rewriting: match ¢ against ¢; and show that the given constraints V
imply the needed constraints A

(t,V) = (o(r),VUo(A)) ifl—oar,t=0c(),and V = o(A)
o is a matcher for the letrec matching problem ({¢ <t} A, V)
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Matching Algorithm MatchLRS ONpvERTTR

@ For most cases: similar rules as the unification algorithm
@ New rules for matching chain-variables, for example matching
equations like:
o Chlz,e];env Q Ch'[2',e']; env’
o Chlx,e];env Q Ch/'[2',€']; env’
@ New rules for checking that needed constraints As are implied
by given constraints V3.
Also infers constraints from the let variable condition:

Example: letrec X7 = S51; X9 = 59 in ... implies validity of
the non-capture constraint (var X1, AX>.[])

Theorem [Sab17, Unif]
MatchLRS is sound and complete. The letrec matching problem is
NP-complete.
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Example: (gc)-Transformation ONIVERSTTAT

(T.gc) :=(T,gc,1) U (T,gc,2)

Unification computes 192 overlaps and joining results in 324
diagrams which can be represented by the diagrams

T,gc T,gc
SR,lbeta\L ‘VSR,Zbeta SR,cp\L \‘VSR,cp
- —_—— — > . - —_— — — > .
T,gc T,gc
T,gc T,gc
L s
| -
SR,lll\L y SRl SR,ZZZ\L  Tge
—_ — — > . ’

and the answer diagram

T,gc
Ans Ans
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Problematic Example: Overlap (SR,llet) and (T,llet)  oxiversimar

(T,llet) T[letrec E in letrec E' in S] — T[letrec E; E’ in 9]
where an NCC must hold s.t. LetVars(E') NVars(E) =0

letrec Fj in
letrec Fy in
letrec F3 in S
SR, llet

letrec Ey; Es in
letrec F3 in S

Given constraints:
- LetVars(Ey) N Vars(Ey) =0
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Problematic Example: Overlap (SR,llet) and (T,llet)  oxiversimar

(T,llet) T[letrec E in letrec E' in S] — T[letrec E; E’ in 9]
where an NCC must hold s.t. LetVars(E') NVars(E) =0

letrec Fj in
P T,llet letrec F4 in
letrec Ej in letrec Fy; F3 in S
: i
letrec F3 in S 23

SR, llet

letrec Ey; Es in
letrec F3 in S

Given constraints:
- LetVars(Ey) N Vars(Ey) =0
- LetVars(Es) N Vars(Ey) = ()
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. GOETHE Q
Problematic Example: Overlap (SR,llet) and (T,llet)  oxiversimar
(T,llet) T[letrec E in letrec E' in S] — T[letrec E; E’ in 9]

where an NCC must hold s.t. LetVars(E') NVars(E) =0

letrec Fj 1n' T llet
letrec Fy in
letrec F3 in S

letrec Ej in
letrec Fy; E3 in S

SR, llet ' SR, llet

let Eq; By i
evrec Bu R AR . > letrec Ey; Ey; E3 in S
letrec F3 in S T llet

Given constraints:
- LetVars(Ey) N Vars(Ey) =0
- LetVars(Es) N Vars(Ey) = ()
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. GOETHE Q
Problematic Example: Overlap (SR,llet) and (T,llet)  oxiversimar
(T,llet) T[letrec E in letrec E' in S] — T[letrec E; E’ in 9]

where an NCC must hold s.t. LetVars(E') NVars(E) =0

letrec Fj in
letrec Fy in
letrec F3 in S

SR, llet XR,IIet

|
|
~

let Eq; By i
evrec Bu R AR . > letrec Ey; Ey; E3 in S
letrec F3 in S T llet

T,llet letrec Fj in
letrec Fy; E3 in S

Given constraints: Needed constraints:
- LetVars(Ey) N Vars(Ey) = 0 - LetVars(Eq; E3) N Vars(Ey) =0
- LetVars(Es) N Vars(Ey) = ()
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. GOETHE Q
Problematic Example: Overlap (SR,llet) and (T,llet)  oxiversimar
(T,llet) T[letrec E in letrec E' in S] — T[letrec E; E’ in 9]

where an NCC must hold s.t. LetVars(E') NVars(E) =0

letrec Fj in
letrec Fy in
letrec F3 in S

T,llet letrec Fj in
letrec Fy; E3 in S

SR, llet XR,IIet
let Eq; Es i ”
errec Bu Al - - > letrec Ey; Ey; E3 in S
letrec F3 in S TAe
Given constraints: Needed constraints:

- LetVars(Ey) N Vars(Ey) = 0 - LetVars(Eq; E3) N Vars(Ey) =0
- LetVars(Es) N Vars(Ey) = () - LetVars(Es) N Vars(Ey; E9) = ()

3@
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An Instance CNIERSITAT
Instance: Fy — x=2, Fo— y=1, E3— 2=2, §+—3

letrec =z in T llet
letrec y=1 in
letrec z=2 in 3

letrec r=z in
letrec y=1;2=2 in 3

|
|
l
|
SR llet XR,uet

|
|
|
\:/
let =z;y=11
srseTmay . e M > letren 3
letrec z=2 in 3 {

illegal capture of z

Given constraints: Needed constraints:
- LetVars(y=1) N Vars(z=z) =0 - LetVars(y=1;2=2) N Vars(z=z) = 0
- LetVars(z=2) N Vars(y=1) =0 - LetVars(z=2) N Vars(z=z;y=1) = 0
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An Instance UNIVERSITAT

Instance: Fy — x=2, Fo— y=1, E3— 2=2, §+—3

letrec =z in T llet
letrec y=1 in :
letrec z=2 in 3

letrec r=z in
letrec y=1;2=2 in 3

la
letrec x9=z in
letrec yp=1;29=2 in 3

SR, llet ‘
1SR, llet
letrec xo0==z;y2=1;29=2 in 3
—e—1 4 e —1 4 ~a
letrec arfz,yf.l in letrec r1=2; yl.fl in ____, jetrec s1=zy1=1: =2 in 3
letrec z=2in3 « letrec 21=2in3 T |let
solution: use fresh a-renamings
Given constraints: Needed constraints:
- LetVars(y=1) N Vars(z=z) =0 - LetVars(y1=1; z1=2) N Vars(z1=2) = 0
- LetVars(z=2) N Vars(y=1) =0 - LetVars(zo=2) N Vars(zo=2z;y2=1) = 0
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Extending the Method by a-Renaming (ngﬂim

@ a-renaming on the meta-level

e Instances must fulfill the distinct variable convention (DVC):

Distinct variable convention DVC
A ground LRSX-expression fulfills the DVC iff
o the bound variables are disjoint from the free variables

e variables on binders are pairwise disjoint

@ How to rename meta-variables X, S, E, D?

= Requires meta-notations for symbolic a-renamings
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Syntax of the Extended Meta-Language LRSX« (J?IE\T&EHAT

Variables
x € Var == (rcy,...,rep)-X (variable meta-variable)
| (rei,...,ren)x (concrete variable)
Expressions
s € Expr ::= <Ozg,i, rCl,. .. ,Tcn>-S (expression meta-variable)
| <OzD’Z', TCly ..., TCp)-D[s] (context meta-variable)
Environments
env € Env = (ap,rc1,...,7¢,)-E; env  (environment meta-variable)

a component ag,; a-renames instances of U

Atomic renaming components

rc € ARC ::= oy, (fresh renaming of variable z)
| LV(aE,i) (restriction of ap; on LetVars(E))
| CV(O&D,Z') (restriction of ap; on CapVars(D))
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Examples ONIVERSITAT

AX.var X is renamed into A{ax 1)-X.var (ax)-X

AX.S is renamed into AN{ax 1) - X.(as1,ax,1)-S

@ MX.AX.var X is renamed into
Max 1) - X Aax2)-X.var (ax 2, ax 1)-X and simplified to
Max ) X Xax2)-X.var (ax2)-X

@ letrec F in S is renamed into
letrec (p1)-E in (ag, LV (ag1))-S

34/43



GOETHE gz

Symbolic a-Renaming UNIVERSITAT

Tasks for symbolic a-renaming [Sab17, PPDP]:
@ A sound algorithm to a-rename s € LRSX into AR(s) € LRSX«

@ A sound matching algorithm to solve (s, V) < (s’, A) where
s € LRSX, s’ € LRSXa

A sound test for extended a-equivalence for constrained
LRSX«-expressions

Simplification of a-renamings

Refreshing a-renamings after rewriting.
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Automated Induction

description

overlaps
¥

rogram —*
Prog ) join
transformations
overlaps

Diagram

Input

Structure of the LRSX-Tool

compute
>
calculus overlaps

calculator

GOETHE g

UNIVERSITAT

FRANKFURT AM MAIN

diagrams

translate
diagrams

I

prove termination
(AProVE/CeTA)

Automated
induction
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Automated Induction: Ideas [RSSS12, IJCAR]  txneesir

@ Ignore the concrete expressions, only keep: kind of rule (SR or
transformation) and rule-names, and answers as abstract constant

T,gc
—_— .

| T,gc
SR,lbeta¢ y SR, lbeta Ans g Ans

- — — > .
T,gc
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Automated Induction: Ideas [RSSS12, IJCAR]  txneesir

@ Ignore the concrete expressions, only keep: kind of rule (SR or
transformation) and rule-names, and answers as abstract constant

T,gc
—_.
SR,Ibeta | SR, lbeta T.gc
’ Yo Ans —=— Ans
- — > .
T,gc

@ Diagrams represent string rewrite rules on strings consisting of
elements (SR, name), (T,name), and Answer

(T, gc), (SR, lbeta) — (SR, lbeta), (T, gc) (T, gc), Answer — Answer
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Automated Induction: Ideas [RSSS12, IJCAR]  txneesir

@ Ignore the concrete expressions, only keep: kind of rule (SR or
transformation) and rule-names, and answers as abstract constant

T,gc
- —_—.
SR,Ibeta | SR, lbeta T.gc
’ Yo Ans —=— Ans
- — > .
T,gc

@ Diagrams represent string rewrite rules on strings consisting of
elements (SR, name), (T,name), and Answer

(T, gc), (SR, lbeta) — (SR, lbeta), (T, gc) (T, gc), Answer — Answer

@ Termination of the string rewrite system implies successful induction
(T, gc), (SR, a1),...,(SR, an), Answer = (SR, a}), ..., (SR, al,), Answer

@ We use term rewrite systems and innermost-termination and apply
AProVE and certifier CeTA
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Exam p|e UNIVERSITAT
T,gc T,g9c
SR,lbeta\L V‘SR,Zbem SR,CN V‘SR,cp

e s e s
T,gc T,gc
T,gc T,gc T,gc

: : s Ans Ans

SR, ! SR, SR, -

%777>_Y ¢//T,gc

T,gc

Obtained TRS:

Tgc(SRlbeta(x)) -> SRlbeta(Tgc(x))
Tgc(SRep(x)) -> SRep(Tge(x))
Tgc(SR111(x)) -> SR111(Tgc(x))
Tgc(SR111(x)) -> Tgc(x)
Tgc(Answer) -> Answer

Innermost termination is shown by AProVE and certified by CeTA
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Transitive Closures are Required UNIVERSITAT
Example:
T, gc,2
A[(AX.S) 5] « Al(letrec F in (AX.5)) 5]
SR, lbeta

Alletrec X =5 in S|
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GOETHE g

Transitive Closures are Required UNIVERSITAT
Example:
T, gc,2
A[(AX.S) 5] « Al(letrec F in (AX.5)) 5]
SR, lbeta letrec E in A[(AX.S) 9]

Alletrec X =5 in S|
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Transitive Closures are Required

Example:

T, gc,2

A[(AX.S) ] <

SR, lbeta

Alletrec X =5’ in 5] ¢

GOETHE @

UNIVERSITAT
FRANKFURT AM MAIN

Al(letrec F in (AX.5)) 5]

letrec E in A[(AX.S) 9

' SR, Ibeta
letrec F in
Alletrec X = 5" in 5]
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Encoding of Transitive Closures UNIVERSITAT

T,gc
= .

\
Y

The diagram

SR+
SR,lbeta
| SR,lbeta
]

< — — .

T,gc
is encoded by:

Tgc(SRlbeta(x)) -> gen(k,x)
gen(s(k) ,x) -> SR111(gen(k,x))
gen(s(k),x) -> SR111(SRlbeta(Tgc(x)))

@ free variable k on the right hand side
to guess the number of steps

@ AProVE & CeTA can handle such TRSs
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Experiments UNIVERSITAT
@ LRSX Tool available from http://goethe.link/LRSXTO0L61
@ computes diagrams and performs the automated induction
# overlaps  # joins  computation time

Calculus Lyeeq (11 SR rules, 16 transformations, 2 answers)

— 2242 5425 48 secs.

< 3001 7273 116 secs.
Calculus L:j:j (17 SR rules, 18 transformations, 2 answers)

— 4898 14729 149 secs.

— 6437 18089 255 secs.
Calculus LR (76 SR rules, 43 transformations, 17 answers)

— 87041 391264 ~ 19 hours

— 107333 429104 ~ 16 hours
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Conclusion UNIVERSITAT

Automation of the diagram method
Quite expressive meta-language LRSX
Algorithms for unification, matching, a-renaming

Encoding technique to apply termination provers for TRSs

Experiments show that the automation works well for
call-by-need calculi
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Further work UNIVERSITAT

Other applications
@ Further calculi, for instance, process calculi with structural
congruence
@ Correctness of translations between calculi
@ Proving improvements
Other meta-languages

@ Nominal techniques to ease reasoning on a-renamings:
in progress, e.g.
o Nominal unification for a meta-language with letrec
[SSKLV16, LOPSTR]
e Nominal unification for a meta-language with context variables
[SSS18, FSCD, to appear]
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