

1

Sharing-Aware Improvements in a
Call-by-Need Functional Core Language

Manfred Schmidt-Schauß and David Sabel

Goethe University Frankfurt am Main, Germany

IFL 2015, Koblenz, Germany

Motivation

Reasoning on program transformations, like

map f (map g xs)→ map (λx.f (g x)) xs

Are transformations optimizations / improvements?

w.r.t. the resource consumption (time / space)
we consider the time consumption,
i.e. the number computation steps

In a core language of Haskell:

extended polymorphically typed lambda calculus
with call-by-need evaluation

2/18

Some Previous and Related Work

[Moran & Sands, POPL’99]:
Improvement theory in a call-by-need lambda calculus

Counting based on an abstract machine semantics
Untyped calculus with restricted syntax (arguments are variables)
Tick-algebra for modular reasoning on improvements

[Schmidt-Schauß &. S., PPDP’15]:
Improvement in the call-by-need lambda calculus LR

Counting essential reduction steps of a small-step semantics
Untyped core language with arbitrary arguments, seq-operator
Common subexpression elimination is an improvement

3/18

Our Contribution

Improvements in a polymorphically-typed calculus (called LRP)

Modular reasoning using sharing-decorations
(extend Moran & Sands’ tick algebra)

Particular focus: Improvements for list expressions and functions

Proof techniques: Induction schemes and simulation

4/18

The Calculus LRP: Syntax

Types:

τ ∈ Typ ::= a | (τ1 → τ2) | K τ1 . . . τar(K)

ρ ∈ PTyp ::= τ | λa.ρ

Expressions:

u ∈ PExprF ::= Λa1.Λak.λx.s

s, t ∈ ExprF ::= u
| x :: ρ
| (s τ)
| (s t)
| (seq s t)
| (letrec x1 :: ρ1 = s1, . . . , xn :: ρn = sn in t)
| (cK,i :: τ s1 . . . sar(cK,i))

| (caseK s of (patK,1 -> t1) . . . (patK,|DK | -> t|DK |))

patK,i ::= (cK,i :: τ x1 :: τ1 . . . xar(cK,i) :: τar(cK,i))

5/18

The Calculus LRP: Operational Semantics

Normal Order Reduction
LRP−−−→

Small-step reduction relation

Call-by-need strategy using reduction contexts R

Several reduction rules, e.g.

(lbeta) ((λx.s) t)→ letrec x = t in s

(cp-in) letrec x1 = (λy.t), {xi = xi−1}mi=2,Env in C[xm]
→ letrec x1 = (λy.t), {xi = xi−1}mi=2,Env in C[(λy.t)]

(seq-c) (seq v t)→ t if v is a value

(case-c) caseK (c t1 . . . tn) . . . ((c y1 . . . yn)→ s) . . .
→ letrec {yi = ti}ni=1 in s

(llet-in) letrec Env1 in (letrec Env2 in r)
→ letrec Env1,Env2 in r

. . .

6/18

Contextual Equivalence

Convergence

A weak head normal form (WHNF) is

a value: λx.s, Λa.u, or c−→s .

letrec Env in v, where v is a value

letrec x1 = c−→s , {xi = xi−1}mi=2,Env in xm

Convergence:

s ↓ t iff s
LRP,∗−−−−→ t ∧ t is a WHNF

s ↓ iff ∃t : s ↓ t.

Contextual Equivalence

For s, t :: ρ, s ∼c t iff for all contexts C[· :: ρ]: C[s]↓ ⇐⇒ C[t]↓

Program transformation P is correct iff (s
P−→ t =⇒ s ∼c t)

7/18

Improvement

Counting Essential Reductions

rln(t) :=

number of (lbeta),(case),(seq)-reductions

in t
LRP,∗−−−−→ t′,

if t ↓ t′

∞, otherwise

Improvement Relation

For s, t :: ρ, s improves t (written s � t) iff

s ∼c t, and

for all C[· :: ρ] s.t. C[s], C[t] are closed: rln(C[s]) ≤ rln(C[t]).

We write s ≈ t ⇐⇒ s � t ∧ t � s (improvement equivalence)

Program transformation P is an improvement iff s
P−→ t =⇒ t � s

8/18

Work Decorations: rln-Decorations

for reasoning we want to express equations like

“s and t are improvement equivalent upto adding 3 steps of work to t”

adding work: rln-decorations s[n] where n is nonnegative integer

thus we can write s ≈ t[3]

semantics of rln-decorations: they can be encoded

s[0] = s

s[n] = (idn s) where idn = (id . . . id)︸ ︷︷ ︸
n times

, id = λx.x

allows to locally evaluate and remove environments, e.g.

letrec x = (λy.y) True,
y = (seq True (seq False Nil))

in (x, y)
≈ (True[1], Nil[2])

9/18

Work Decorations: rln-Decorations

for reasoning we want to express equations like

“s and t are improvement equivalent upto adding 3 steps of work to t”

adding work: rln-decorations s[n] where n is nonnegative integer

thus we can write s ≈ t[3]

semantics of rln-decorations: they can be encoded

s[0] = s

s[n] = (idn s) where idn = (id . . . id)︸ ︷︷ ︸
n times

, id = λx.x

allows to locally evaluate and remove environments, e.g.

letrec x = (λy.y) True,
y = (seq True (seq False Nil))

in (x, y)
≈ (True[1], Nil[2])

9/18

Work Decorations: rln-Decorations

for reasoning we want to express equations like

“s and t are improvement equivalent upto adding 3 steps of work to t”

adding work: rln-decorations s[n] where n is nonnegative integer

thus we can write s ≈ t[3]

semantics of rln-decorations: they can be encoded

s[0] = s

s[n] = (idn s) where idn = (id . . . id)︸ ︷︷ ︸
n times

, id = λx.x

allows to locally evaluate and remove environments, e.g.

letrec x = (λy.y) True,
y = (seq True (seq False Nil))

in (x, y)
≈ (True[1], Nil[2])

9/18

Work Decorations: rln-Decorations

for reasoning we want to express equations like

“s and t are improvement equivalent upto adding 3 steps of work to t”

adding work: rln-decorations s[n] where n is nonnegative integer

thus we can write s ≈ t[3]

semantics of rln-decorations: they can be encoded

s[0] = s

s[n] = (idn s) where idn = (id . . . id)︸ ︷︷ ︸
n times

, id = λx.x

allows to locally evaluate and remove environments, e.g.

letrec x = (λy.y) True,
y = (seq True (seq False Nil))

in (x, y)
≈ (True[1], Nil[2])

9/18

Work Decorations: Shared Work-Decorations

work can also be shared:

letrec x = (λy.y) True,
y = (seq x (seq False Nil))

in (x, y)
≈ (True[a7→1], Nil[2,a7→1])

shared work-decorations: s[a7→n]

= shared work of n steps between all [a7→n]-labelled subexpressions

semantics: not all cases can be encoded, e.g. (True[a7→1], Nil[a7→1]) ≈?

we use additional reduction rules, and counting:

R[s[a7→0]]
LRP−−−→ R[s] rln(R[s[a7→0]]) = rln(R[s])

R[s[a7→n]]
LRP−−−→ R′[s′[a7→n−1]] rln(R[s[a7→n]]) = 1 + rln(R′[s′[a7→n−1]])

R′, s′ are R, s where all [a7→n]-decorations are replaced by [a7→n−1]

we use shared work-decorations only in
surface contexts (= hole not below a λ)

10/18

Work Decorations: Shared Work-Decorations

work can also be shared:

letrec x = (λy.y) True,
y = (seq x (seq False Nil))

in (x, y)
≈ (True[a7→1], Nil[2,a7→1])

shared work-decorations: s[a7→n]

= shared work of n steps between all [a7→n]-labelled subexpressions

semantics: not all cases can be encoded, e.g. (True[a7→1], Nil[a7→1]) ≈?

we use additional reduction rules, and counting:

R[s[a7→0]]
LRP−−−→ R[s] rln(R[s[a7→0]]) = rln(R[s])

R[s[a7→n]]
LRP−−−→ R′[s′[a7→n−1]] rln(R[s[a7→n]]) = 1 + rln(R′[s′[a7→n−1]])

R′, s′ are R, s where all [a7→n]-decorations are replaced by [a7→n−1]

we use shared work-decorations only in
surface contexts (= hole not below a λ)

10/18

Work Decorations: Shared Work-Decorations

work can also be shared:

letrec x = (λy.y) True,
y = (seq x (seq False Nil))

in (x, y)
≈ (True[a7→1], Nil[2,a7→1])

shared work-decorations: s[a7→n]

= shared work of n steps between all [a7→n]-labelled subexpressions

semantics: not all cases can be encoded, e.g. (True[a7→1], Nil[a7→1]) ≈?

we use additional reduction rules, and counting:

R[s[a7→0]]
LRP−−−→ R[s] rln(R[s[a7→0]]) = rln(R[s])

R[s[a7→n]]
LRP−−−→ R′[s′[a7→n−1]] rln(R[s[a7→n]]) = 1 + rln(R′[s′[a7→n−1]])

R′, s′ are R, s where all [a7→n]-decorations are replaced by [a7→n−1]

we use shared work-decorations only in
surface contexts (= hole not below a λ)

10/18

Work Decorations: Shared Work-Decorations

work can also be shared:

letrec x = (λy.y) True,
y = (seq x (seq False Nil))

in (x, y)
≈ (True[a7→1], Nil[2,a7→1])

shared work-decorations: s[a7→n]

= shared work of n steps between all [a7→n]-labelled subexpressions

semantics: not all cases can be encoded, e.g. (True[a7→1], Nil[a7→1]) ≈?

we use additional reduction rules, and counting:

R[s[a7→0]]
LRP−−−→ R[s] rln(R[s[a7→0]]) = rln(R[s])

R[s[a7→n]]
LRP−−−→ R′[s′[a7→n−1]] rln(R[s[a7→n]]) = 1 + rln(R′[s′[a7→n−1]])

R′, s′ are R, s where all [a7→n]-decorations are replaced by [a7→n−1]

we use shared work-decorations only in
surface contexts (= hole not below a λ)

10/18

Proof Tools

Context Lemma for Improvement

If for all reduction contexts R, s.t. R[s], R[t] are closed:
rln(R[s]) ≤ rln(R[t]). Then s � t

Theorem [Schmidt-Schauß, S., Schütz, 2008]

1 If s
LRP,lbeta∨case∨seq−−−−−−−−−−−−→ t, then s ≈ t[1]

2 If s
C,a−−→ t then

if a ∈ {case, seq, lbeta}: s � t
if a ∈ {llet, lapp, lcase, lseq, cp}: s ≈ t
if a ∈ {gc, cpx, cpax, xch, cpcx, abs, lwas, ucp}: s ≈ t.

{gc, cpx, cpax, xch, cpcx, abs, lwas, ucp} are small optimizations e.g.

(gc) letrec {xi = si}ni=1,Env in t→ letrec Env in t, if for all i : xi 6∈ FV (t,Env)

(gc) letrec x1 = s1, . . . , xn = sn in t→ t, if for all i : xi 6∈ FV (t)

(ucp1) letrec Env , x = t in S[x]→ letrec Env in S[t]
where x 6∈ FV (S,Env , t, r) and S is a surface context

. . .

11/18

Proof Tools

Context Lemma for Improvement

If for all reduction contexts R, s.t. R[s], R[t] are closed:
rln(R[s]) ≤ rln(R[t]). Then s � t

Theorem [Schmidt-Schauß, S., Schütz, 2008]

1 If s
LRP,lbeta∨case∨seq−−−−−−−−−−−−→ t, then s ≈ t[1]

2 If s
C,a−−→ t then

if a ∈ {case, seq, lbeta}: s � t
if a ∈ {llet, lapp, lcase, lseq, cp}: s ≈ t
if a ∈ {gc, cpx, cpax, xch, cpcx, abs, lwas, ucp}: s ≈ t.

{gc, cpx, cpax, xch, cpcx, abs, lwas, ucp} are small optimizations e.g.

(gc) letrec {xi = si}ni=1,Env in t→ letrec Env in t, if for all i : xi 6∈ FV (t,Env)

(gc) letrec x1 = s1, . . . , xn = sn in t→ t, if for all i : xi 6∈ FV (t)

(ucp1) letrec Env , x = t in S[x]→ letrec Env in S[t]
where x 6∈ FV (S,Env , t, r) and S is a surface context

. . . 11/18

Computation Rules

Proposition

Let S be a surface context, then for all expressions s

For rln-decorations:

(s[k1])[k2] ≈ s[k1+k2]

s[0] ≈ s
S[s[k]] ≈ S[s][k], if S is strict (S[⊥] ∼c ⊥)
S[s[k]] � S[s][k]

For sharing-decorations:

(s[a7→n])[a7→n] ≈ s[a7→n]

S[s[a7→n]] ≈ S[s][a7→n], if S is strict (S[⊥] ∼c ⊥)
S[s[a7→n]] � S[s][a7→n]

S[s
[a7→m]
1 , . . . , s

[a 7→m]
n] ≈ S[s1, . . . , sn][m] if some hole is strict.

S[s
[a7→m]
1 , . . . , s

[a 7→m]
n] � S[s1, . . . , sn][m]

12/18

Induction Schemes

Theorem (An Induction Scheme)

Let S1, S2 be surface contexts and

S1[x] ∼c S2[x] for a fresh variable x

S1[⊥] � S2[⊥]

S1[Nil] ≈ r[m] and S2[Nil] ≈ r[m′] with m ≤ m′

For fresh variables x and xs:

(S1[x : xs]) ≈ (x : S1[xs])
[m]

(S2[x : xs]) ≈ (x : S2[xs])
[m′]

with m ≤ m′.
Then for all expressions s:

letrec x = s in S1[x] � letrec x = s in S2[x].

13/18

Example

Let L := letrec (++) = λxs, ys.(caseList xs of
(Nil→ ys)
((z : zs)→ z : ((++) zs ys)))

in [·]

Proposition

L[(xs ++ (ys ++ zs))] � L[((xs ++ ys) ++ zs)]

Use S1 := L[([·] ++ (ys ++ zs))] and S2 = L[(([·] ++ ys) ++ zs)],
and apply the induction scheme:

S1[x] ∼c S2[x] (by standard inductive reasoning on ∼c.)

S1[⊥] ∼c ⊥ ∼c S2[⊥]

S1[Nil] ≈ (ys ++ zs)[3] and S2[Nil] ≈ (ys ++ zs)[3]

S1[x : xs] ≈ (x : S1[xs])
[3] and S2[x : xs] ≈ (x : S2[xs])

[6].

14/18

List-Simulation

Simulation vh ⊆ {(s, t) | s, t are closed, s, t :: List(τ), s ∼c t}
defined coinductively:

1 If s ∼c ⊥ ∼c t, then s vh t.

2 If s ≈ Nil[m], t ≈ Nil[m
′] and m ≤ m′, then s vh t.

3 If s � (s
[m1,a7→m2]
1 : s

[m3]
2)[m4] and (t

[m′1,a7→m′2]
1 : t

[m′3]
2)[m

′
4] � t, where

mi ≤ m′i
s1 � t1 where s1, t1 are decoration-free, and
s2 vh t2
s2, t2 may contain further sharing decorations.

Then s vh t.

Theorem

If s vh t, then also s � t.

15/18

List-Simulation

Simulation vh ⊆ {(s, t) | s, t are closed, s, t :: List(τ), s ∼c t}
defined coinductively:

1 If s ∼c ⊥ ∼c t, then s vh t.

2 If s ≈ Nil[m], t ≈ Nil[m
′] and m ≤ m′, then s vh t.

3 If s � (s
[m1,a7→m2]
1 : s

[m3]
2)[m4] and (t

[m′1,a7→m′2]
1 : t

[m′3]
2)[m

′
4] � t, where

mi ≤ m′i
s1 � t1 where s1, t1 are decoration-free, and
s2 vh t2
s2, t2 may contain further sharing decorations.

Then s vh t.

Theorem

If s vh t, then also s � t.

15/18

List-Simulation

Simulation vh ⊆ {(s, t) | s, t are closed, s, t :: List(τ), s ∼c t}
defined coinductively:

1 If s ∼c ⊥ ∼c t, then s vh t.

2 If s ≈ Nil[m], t ≈ Nil[m
′] and m ≤ m′, then s vh t.

3 If s � (s
[m1,a7→m2]
1 : s

[m3]
2)[m4] and (t

[m′1,a7→m′2]
1 : t

[m′3]
2)[m

′
4] � t, where

mi ≤ m′i
s1 � t1 where s1, t1 are decoration-free, and
s2 vh t2
s2, t2 may contain further sharing decorations.

Then s vh t.

Theorem

If s vh t, then also s � t.

15/18

List-Simulation

Simulation vh ⊆ {(s, t) | s, t are closed, s, t :: List(τ), s ∼c t}
defined coinductively:

1 If s ∼c ⊥ ∼c t, then s vh t.

2 If s ≈ Nil[m], t ≈ Nil[m
′] and m ≤ m′, then s vh t.

3 If s � (s
[m1,a7→m2]
1 : s

[m3]
2)[m4] and (t

[m′1,a7→m′2]
1 : t

[m′3]
2)[m

′
4] � t, where

mi ≤ m′i
s1 � t1 where s1, t1 are decoration-free, and
s2 vh t2
s2, t2 may contain further sharing decorations.

Then s vh t.

Theorem

If s vh t, then also s � t.

15/18

An Example

L := letrec from1 = λx.(x : (from1 (x+1)))
from2 = λx.(letrec y = (x+1) in y : (from2 y))

in [·]
Let ni denote the ith number and + be strict addition s.t. rln(ni+nj) = 4

Proposition

For all numbers ni, ni+1: L[from1 ni+1] � L[from2 ni]

We show L[from1 ni+1] vh L[from2 ni]

L[from1 ni+1] ≈ (ni+1
[a7→0] : L[from1 ni+2

[4,a7→0]])[1]

L[from2 ni] ≈ (ni+1
[a7→4] : L[from2 ni+1

[a7→4]])[1]

It remains to show L[from1 ni+2
[4,a7→0]] vh L[from2 ni+1

[a7→4]]

In general for j ≥ 2:

L[from1 ni+j
[4,a7→4∗(j−2)]] ≈ (ni+j

[a7→4∗(j−1)] : L[from1 ni+j+1
[4,a7→4∗(j−1)]])[1]

L[from2 ni+j−1
[a7→4∗(j−1)]] ≈ (ni+j

[a7→4∗j] : L[from2 ni+j
[a7→4∗j]])[1]

Thus the claim holds.

16/18

An Example

L := letrec from1 = λx.(x : (from1 (x+1)))
from2 = λx.(letrec y = (x+1) in y : (from2 y))

in [·]
Let ni denote the ith number and + be strict addition s.t. rln(ni+nj) = 4

Proposition

For all numbers ni, ni+1: L[from1 ni+1] � L[from2 ni]

We show L[from1 ni+1] vh L[from2 ni]

L[from1 ni+1] ≈ (ni+1
[a7→0] : L[from1 ni+2

[4,a7→0]])[1]

L[from2 ni] ≈ (ni+1
[a7→4] : L[from2 ni+1

[a7→4]])[1]

It remains to show L[from1 ni+2
[4,a7→0]] vh L[from2 ni+1

[a7→4]]

In general for j ≥ 2:

L[from1 ni+j
[4,a7→4∗(j−2)]] ≈ (ni+j

[a7→4∗(j−1)] : L[from1 ni+j+1
[4,a7→4∗(j−1)]])[1]

L[from2 ni+j−1
[a7→4∗(j−1)]] ≈ (ni+j

[a7→4∗j] : L[from2 ni+j
[a7→4∗j]])[1]

Thus the claim holds.

16/18

An Example

L := letrec from1 = λx.(x : (from1 (x+1)))
from2 = λx.(letrec y = (x+1) in y : (from2 y))

in [·]
Let ni denote the ith number and + be strict addition s.t. rln(ni+nj) = 4

Proposition

For all numbers ni, ni+1: L[from1 ni+1] � L[from2 ni]

We show L[from1 ni+1] vh L[from2 ni]

L[from1 ni+1] ≈ (ni+1
[a7→0] : L[from1 ni+2

[4,a7→0]])[1]

L[from2 ni] ≈ (ni+1
[a7→4] : L[from2 ni+1

[a7→4]])[1]

It remains to show L[from1 ni+2
[4,a7→0]] vh L[from2 ni+1

[a7→4]]

In general for j ≥ 2:

L[from1 ni+j
[4,a7→4∗(j−2)]] ≈ (ni+j

[a7→4∗(j−1)] : L[from1 ni+j+1
[4,a7→4∗(j−1)]])[1]

L[from2 ni+j−1
[a7→4∗(j−1)]] ≈ (ni+j

[a7→4∗j] : L[from2 ni+j
[a7→4∗j]])[1]

Thus the claim holds.

16/18

An Example

L := letrec from1 = λx.(x : (from1 (x+1)))
from2 = λx.(letrec y = (x+1) in y : (from2 y))

in [·]
Let ni denote the ith number and + be strict addition s.t. rln(ni+nj) = 4

Proposition

For all numbers ni, ni+1: L[from1 ni+1] � L[from2 ni]

We show L[from1 ni+1] vh L[from2 ni]

L[from1 ni+1] ≈ (ni+1
[a7→0] : L[from1 ni+2

[4,a7→0]])[1]

L[from2 ni] ≈ (ni+1
[a7→4] : L[from2 ni+1

[a7→4]])[1]

It remains to show L[from1 ni+2
[4,a7→0]] vh L[from2 ni+1

[a7→4]]

In general for j ≥ 2:

L[from1 ni+j
[4,a7→4∗(j−2)]] ≈ (ni+j

[a7→4∗(j−1)] : L[from1 ni+j+1
[4,a7→4∗(j−1)]])[1]

L[from2 ni+j−1
[a7→4∗(j−1)]] ≈ (ni+j

[a7→4∗j] : L[from2 ni+j
[a7→4∗j]])[1]

Thus the claim holds.

16/18

An Example

L := letrec from1 = λx.(x : (from1 (x+1)))
from2 = λx.(letrec y = (x+1) in y : (from2 y))

in [·]
Let ni denote the ith number and + be strict addition s.t. rln(ni+nj) = 4

Proposition

For all numbers ni, ni+1: L[from1 ni+1] � L[from2 ni]

We show L[from1 ni+1] vh L[from2 ni]

L[from1 ni+1] ≈ (ni+1
[a7→0] : L[from1 ni+2

[4,a7→0]])[1]

L[from2 ni] ≈ (ni+1
[a7→4] : L[from2 ni+1

[a7→4]])[1]

It remains to show L[from1 ni+2
[4,a7→0]] vh L[from2 ni+1

[a7→4]]

In general for j ≥ 2:

L[from1 ni+j
[4,a7→4∗(j−2)]] ≈ (ni+j

[a7→4∗(j−1)] : L[from1 ni+j+1
[4,a7→4∗(j−1)]])[1]

L[from2 ni+j−1
[a7→4∗(j−1)]] ≈ (ni+j

[a7→4∗j] : L[from2 ni+j
[a7→4∗j]])[1]

Thus the claim holds.

16/18

An Example

L := letrec from1 = λx.(x : (from1 (x+1)))
from2 = λx.(letrec y = (x+1) in y : (from2 y))

in [·]
Let ni denote the ith number and + be strict addition s.t. rln(ni+nj) = 4

Proposition

For all numbers ni, ni+1: L[from1 ni+1] � L[from2 ni]

We show L[from1 ni+1] vh L[from2 ni]

L[from1 ni+1] ≈ (ni+1
[a7→0] : L[from1 ni+2

[4,a7→0]])[1]

L[from2 ni] ≈ (ni+1
[a7→4] : L[from2 ni+1

[a7→4]])[1]

It remains to show L[from1 ni+2
[4,a7→0]] vh L[from2 ni+1

[a7→4]]

In general for j ≥ 2:

L[from1 ni+j
[4,a7→4∗(j−2)]] ≈ (ni+j

[a7→4∗(j−1)] : L[from1 ni+j+1
[4,a7→4∗(j−1)]])[1]

L[from2 ni+j−1
[a7→4∗(j−1)]] ≈ (ni+j

[a7→4∗j] : L[from2 ni+j
[a7→4∗j]])[1]

Thus the claim holds.

16/18

An Example

L := letrec from1 = λx.(x : (from1 (x+1)))
from2 = λx.(letrec y = (x+1) in y : (from2 y))

in [·]
Let ni denote the ith number and + be strict addition s.t. rln(ni+nj) = 4

Proposition

For all numbers ni, ni+1: L[from1 ni+1] � L[from2 ni]

We show L[from1 ni+1] vh L[from2 ni]

L[from1 ni+1] ≈ (ni+1
[a7→0] : L[from1 ni+2

[4,a7→0]])[1]

L[from2 ni] ≈ (ni+1
[a7→4] : L[from2 ni+1

[a7→4]])[1]

It remains to show L[from1 ni+2
[4,a7→0]] vh L[from2 ni+1

[a7→4]]

In general for j ≥ 2:

L[from1 ni+j
[4,a7→4∗(j−2)]] ≈ (ni+j

[a7→4∗(j−1)] : L[from1 ni+j+1
[4,a7→4∗(j−1)]])[1]

L[from2 ni+j−1
[a7→4∗(j−1)]] ≈ (ni+j

[a7→4∗j] : L[from2 ni+j
[a7→4∗j]])[1]

Thus the claim holds.

16/18

An Example

L := letrec from1 = λx.(x : (from1 (x+1)))
from2 = λx.(letrec y = (x+1) in y : (from2 y))

in [·]
Let ni denote the ith number and + be strict addition s.t. rln(ni+nj) = 4

Proposition

For all numbers ni, ni+1: L[from1 ni+1] � L[from2 ni]

We show L[from1 ni+1] vh L[from2 ni]

L[from1 ni+1] ≈ (ni+1
[a7→0] : L[from1 ni+2

[4,a7→0]])[1]

L[from2 ni] ≈ (ni+1
[a7→4] : L[from2 ni+1

[a7→4]])[1]

It remains to show L[from1 ni+2
[4,a7→0]] vh L[from2 ni+1

[a7→4]]

In general for j ≥ 2:

L[from1 ni+j
[4,a7→4∗(j−2)]] ≈ (ni+j

[a7→4∗(j−1)] : L[from1 ni+j+1
[4,a7→4∗(j−1)]])[1]

L[from2 ni+j−1
[a7→4∗(j−1)]] ≈ (ni+j

[a7→4∗j] : L[from2 ni+j
[a7→4∗j]])[1]

Thus the claim holds.

16/18

More Examples

In the paper are more examples:

map (λx.f (g x)) xs � map f (map g xs)

repeat1 r � repeat2 r where

repeat1 x = letrec xs = x : xs in xs
repeat2 x = x : repeat2 xs

iterate1 g x � iterate2 g x where

iterate1 g x = x : iterate1 g (g x)
iterate2 g x = map g (iterate1 g x)

fibsA 1 2 6� fibsB 1 but fibsA 1 2 � fibsC 1 where

fibsA x y = x : fibsA y (x+ y)
fibsB n = (fib n) : (fibsB (n+ 1))

fibsC n = ((fib n) : (fibsC (n+ 1)))[1]

fib 0 = 1
fib 1 = 1
fib n = fib (n− 1) + fib(n− 2)

17/18

Conclusion and Future Work

Conclusion

Proof techniques for proving improvements in the call-by-need
setting

Novel notation to explicitly compute with shared work

We illustrated our techniques on interesting examples

Further Work

Consider further examples and variants of the proof tools

Automation of optimization and showing improvement

Space-improvements

18/18

Conclusion and Future Work

Conclusion

Proof techniques for proving improvements in the call-by-need
setting

Novel notation to explicitly compute with shared work

We illustrated our techniques on interesting examples

Further Work

Consider further examples and variants of the proof tools

Automation of optimization and showing improvement

Space-improvements

18/18

