GOETHE @a

UNIVERSITAT

FRANKFURT AM MAIN

Sharing-Aware Improvements in a
Call-by-Need Functional Core Language

Manfred Schmidt-SchauBB and David Sabel

Goethe University Frankfurt am Main, Germany

IFL 2015, Koblenz, Germany

Motivation

Reasoning on program transformations, like
map f (map g zs) — map (A\z.f (g z)) zs

@ Are transformations optimizations / improvements?

@ w.r.t. the resource consumption (time / space)
@ we consider the time consumption,
i.e. the number computation steps

@ In a core language of Haskell:

@ extended polymorphically typed lambda calculus
e with call-by-need evaluation

2/18

Some Previous and Related Work o

@ [Moran & Sands, POPL'99]:
Improvement theory in a call-by-need lambda calculus

@ Counting based on an abstract machine semantics
e Untyped calculus with restricted syntax (arguments are variables)
o Tick-algebra for modular reasoning on improvements

@ [Schmidt-SchauB &. S., PPDP'15]:
Improvement in the call-by-need lambda calculus LR

@ Counting essential reduction steps of a small-step semantics
@ Untyped core language with arbitrary arguments, seqg-operator
@ Common subexpression elimination is an improvement

3/18

Our Contribution

Improvements in a polymorphically-typed calculus (called LRP)

@ Modular reasoning using sharing-decorations
(extend Moran & Sands' tick algebra)

Particular focus: Improvements for list expressions and functions

Proof techniques: Induction schemes and simulation

4/18

The Calculus LRP: Syntax e
Types:

T € Typ n=al|(n—m) | K7 Ta)
p € PTyp s=1 | Aa.p
Expressions:
u € PEzprp = Aaj..... Aag.Ax.s
s,t € Bxprp =u
| zup
| (s 7)
| (s 1)
| (seqst)
| (letrec o1 :: p1 = S1,..., &y it P = Sy in t)
’ (CKz TS81 ... Sar(cKl))
] (caseK>sof(paq(1—>tQ @thJDK|'>qDKD)
paty; = (CK,;i T T1 3 T Bar(ege,) © Tar(es))

5/18

GOETHE, 53

The Calculus LRP: Operational Semantics e

Normal Order Reduction %

@ Small-step reduction relation

@ Call-by-need strategy using reduction contexts R

@ Several reduction rules, e.g.

(Ibeta)
(cp-in)

(seq-c)

(case-c)

(llet-in)

((Az.s) t) — letrec x =t in s

letrec z1 = (A\y.t),{z; = zi—1}]", Env in Clz,,]
— letrec 1 = (A\y.t),{z; = zi—1}"y, Env in C[(A\y.t)]

(sequ t) — tif visa value

caseg (cty ... ty)...((cy1 ... yn) = S)...
— letrec {y; =t;}]', in s

letrec Env; in (letrec Envg in r)
— letrec Fnvy, Envge in r

6/18

Contextual Equivalence commne f

Convergence
A weak head normal form (WHNF) is
@ a value: \z.s, Aa.u, or cq.
@ letrec Env in v, where v is a value
@ letrec z1 = c?, {z: = zi—1}5, Env in z,

Convergence:

° S\LtifFS%t/\tisaWHNF

o sliffdt:s |t

Contextual Equivalence
For s,t :: p, s ~ t iff for all contexts C[- :: p|: C[s] <= C[t]{

4

: : : P
Program transformation P is correct iff (s — ¢ = s~ t)

7/18

Improvement S

Counting Essential Reductions

number of (Ibeta),(case),(seq)-reductions ,
., LRPx_, iftlt
rin(t) :=¢ " =05

o, otherwise

Improvement Relation
For s,t :: p, s improves t (written s < t) iff
@ s~.t, and

e for all C[- :: p| s.t. C[s], CJt] are closed: r1n(C([s]) < rin(C]t]).

We write s ® t <= s <t At =< s (improvement equivalence)

)) . . P
Program transformation P is an improvement iff s -t — t < s
8/18

Work Decorations: rln-Decorations oeru £

o for reasoning we want to express equations like

“s and t are improvement equivalent upto adding 3 steps of work to t”

9/18

Work Decorations: rln-Decorations soere £

o for reasoning we want to express equations like

“s and t are improvement equivalent upto adding 3 steps of work to t”

e adding work: rin-decorations s where n is nonnegative integer

thus we can write s ~ (3

9/18

Work Decorations: rln-Decorations o

UNIVERSITAT

o for reasoning we want to express equations like

“s and t are improvement equivalent upto adding 3 steps of work to t”

e adding work: rin-decorations s where n is nonnegative integer

thus we can write s ~ (3

@ semantics of rIn-decorations: they can be encoded

S[O} = S
sl = (id™ s) where id® = (id ...id), id = \z.x
5,—/
n times

9/18

Work Decorations: rIn-Decorations o

o for reasoning we want to express equations like
“s and t are improvement equivalent upto adding 3 steps of work to t”
e adding work: rin-decorations s where n is nonnegative integer

thus we can write s ~ (3

@ semantics of rIn-decorations: they can be encoded

S[O} = S
sl = (id™ s) where id® = (id ...id), id = \z.x
5,—/
n times

@ allows to locally evaluate and remove environments, e.g.

letrec x = (A\y.y) True,
y = (seq True (seq False Nil)) ~ (Truel!) Ni1l?)
in (z,y)

9/18

Work Decorations: Shared Work-Decorations soere £

@ work can also be shared:

letrec x = (Ay.y) True,
y = (seq = (seq False Nil)) ~ (Truel®?! ni1l2e—1])
in (z,y)
o shared work-decorations: s~
= shared work of n steps between all [*~"_|abelled subexpressions

10/18

Work Decorations: Shared Work-Decorations o

@ work can also be shared:

letrec x = (Ay.y) True,
y = (seq = (seq False Nil)) ~ (Truel®?! ni1l2e—1])
in (z,y)
o shared work-decorations: s~
= shared work of n steps between all [*~"_|abelled subexpressions

@ semantics: not all cases can be encoded, e.g. (True[aHl],Nil[“Hl]) ~7

10/18

Work Decorations: Shared Work-Decorations o

@ work can also be shared:
letrec x = (Ay.y) True,
y = (seq = (seq False Nil)) ~ (Truel®?! ni1l2e—1])
in (z,y)
e shared work-decorations: sl“—"
= shared work of n steps between all [a=7]_|abelled subexpressions
@ semantics: not all cases can be encoded, e.g. (Truel® 1 Ni1le—1)) ~7

@ we use additional reduction rules, and counting:

R[sle] LRP, R]s] rin(R[s!*7%]) = rin(R[s])
Rlslomml] 2R, pr[g/lan—1] rln(R[s*"]) = 1 4 rln(R'[s1o7" 1)

ar—n ar—n—1]

R',s" are R, s where all [*?™_decorations are replaced by !

10/18

GOETHE, 53

Work Decorations: Shared Work-Decorations S

work can also be shared:
letrec x = (Ay.y) True,
y = (seq = (seq False Nil)) =~ (Truel*! ni1l2e—1)
in (z,y)
shared work-decorations: s["]
= shared work of n steps between all [*~"_|abelled subexpressions
semantics: not all cases can be encoded, e.g. (Truel®1 Ni1lo—1) &7

we use additional reduction rules, and counting:

R[sle] LRP, R]s] rin(R[s!*7%]) = rin(R[s])
Rlslomml] 2R, pr[g/lan—1] rln(R[s*"]) = 1 4 rln(R'[s1o7" 1)

ar—n ar—n—1]

R',s" are R, s where all [*?™_decorations are replaced by !

we use shared work-decorations only in
surface contexts (= hole not below a \)

10/18

Proof Tools oeru £

Context Lemma for Improvement

If for all reduction contexts R, s.t. R][s|, R[t] are closed:
rin(R[s]) < rln(R[t]). Then s < ¢

11/18

Proof Tools

Context Lemma for Improvement

If for all reduction contexts R, s.t. R[s], R[t] are closed:
rin(R[s]) < rln(R[t]). Then s < ¢

Theorem [Schmidt-SchauB, S., Schiitz, 2008]

Q Ifs

@ If s 2% ¢ then
o if a € {case, seq,lbeta}: s = t
o if a € {llet,lapp,lcase,lseq,cp}: s =t
o if a € {gc, cpx, cpax, xch, cpex, abs, lwas, ucp}: s =t

LRP,lbetaVcaseVseq t then tm
1 S %

{gc, cpz, cpax, xch, cpcx, abs, lwas, ucp} are small optimizations e.g.

(gc) 1letrec {m; = s;}i—1, Env int — letrec Env int, if for all i : z; & FV (¢, Env)

(gc) 1letrec 1 = S1,...,on =Sp int — ¢, if forall i:a; & FV(t)

(ucpl) letrec Env,z =t in S[z] — letrec Env in S[t]
where z € FV (S, Env,t,r) and S is a surface context

11/18

Computation Rules

Proposition

Let S be a surface context, then for all expressions s
@ For rIn-decorations:

(S[kl])[kz] ~ glkitkz]

s~ s

S[slF] =~ S[s]l¥, if S is strict (S[L] ~ L)

S[slFl] < S[s](¥l

@ For sharing-decorations:

(S[an—wl])[w—)n] ~ S[a'—>n]

o S[slnl] ~ S[s]le=nl if S is strict (S[L] ~. L)

o S[S[a»—m]] =< S[S][an—m]

o S[si™™ L slem ™ & Ssy, .., s,]) if some hole is strict.
o S[sl=m sl < Slsy, . 5]

12/18

Induction Schemes ced

Theorem (An Induction Scheme)

Let S, .59 be surface contexts and

Si[x] ~¢ Salz] for a fresh variable x
S1[L] = Sy L]
S1Ni1] ~ r[" and Sy[Nil] ~ rI™] with m < m’

@ For fresh variables x and zs:
o (Si[z:xs)) =~ (z: Sifxs])™
o (Sofx:as]) = (x: Sg[xs])[m/]
with m < m/.

Then for all expressions s:

letrec x = s in Si[z] < letrec z = s in Sa[z].

13/18

GOETHE, 53

Exam P le URDERSER
Let L := 1letrec (++) = A\xs,ys.(caser;s xs of
(Nil — ys)
((z:28) = z: ((++) zs ys)))
in [
Proposition
Ll(zs ++ (ys++25))] 2 L[((zs ++ys) ++ 25)] J

Use 81 = L[([]++ (ys-++2s))] and Sy = L(([] ++ys) ++ 2s)],
and apply the induction scheme:

e Si[x] ~ Sa[z] (by standard inductive reasoning on ~..)

0 Si[L] ~c L ~¢ Sall]

o Si[Nil] & (ys++2zs)P and So[Nil] ~ (ys ++ 2zs)l

o Si[z:xs|~ (x:Si[xs])P and Syl : xs] &~ (z : Safxs])[6).

14/18

List-Simulation oeru £

Simulation C;, C {(s,t) | s,t are closed, s,t :: List(7), s ~ t}
defined coinductively:

Q Ifs~. L ~.t thens Cj ¢.

15/18

List-Simulation oeru £

Simulation C;, C {(s,t) | s,t are closed, s,t :: List(7), s ~ t}
defined coinductively:

Q Ifs~. L ~.t thens Cj ¢.
Q If s~ Nill", ¢t ~ Ni1[™] and m < m/, then s C,, t.

15/18

List-Simulation CERSTTAY

Simulation C;, C {(s,t) | s,t are closed, s,t :: List(7), s ~ t}
defined coinductively:
Q Ifs~. L ~.t thens Cj ¢.
Q If s~ Nill", ¢t ~ Ni1[™] and m < m/, then s C,, t.
Q Ifs= (s[lml’aHmQ] : s[2m3])[m4} and (t[lm,l’a'_)mé] :t[zmi/‘])[mﬂ =< t, where

m; < m

s1 =ty where sq,t; are decoration-free, and
sy Lp 12

@ 59,1y may contain further sharing decorations.

Then s Ty t.

15/18

List-Simulation CERSTTAY

Simulation C;, C {(s,t) | s,t are closed, s,t :: List(7), s ~ t}
defined coinductively:
Q Ifs~. L ~.t thens Cj ¢.
Q If s~ Nill", ¢t ~ Ni1[™] and m < m/, then s C,, t.
Q Ifs= (s[lml’aHmQ] : s[2m3])[m4} and (t[lm,l’a'_)mé] :t[zmi/‘])[mﬂ =< t, where

m; < m

s1 =ty where sq,t; are decoration-free, and
sy Lp 12

@ 59,1y may contain further sharing decorations.

Then s Ty t.

Theorem
If s & t, then also s <t. J

15/18

An Example

L := letrec froml = Az.(z : (froml (z+1)))
from2 = Az.(letrec y = (z+1) in y : (from2 y))
in [1]
Let n; denote the i number and + be strict addition s.t. rln(n;+n;) = 4

Proposition
For all numbers n;,n;y1: L{froml n;y1] < L[from2 n;] J

16/18

An Example

L := letrec froml = Az.(z : (froml (z+1)))
from2 = Az.(letrec y = (z+1) in y : (from2 y))
in [1]
Let n; denote the i number and + be strict addition s.t. rln(n;+n;) = 4

Proposition
For all numbers n;,n;y1: L{froml n;y1] < L[from2 n;] J

We show L[froml n;+1] Cp L[from2 ny]

16/18

An Example o f

L := letrec froml = Az.(z : (froml (z+1)))
from2 = Az.(letrec y = (z+1) in y : (from2 y))
in [1]
Let n; denote the i number and + be strict addition s.t. rln(n;+n;) = 4
Proposition
For all numbers n;,n;y1: L{froml n;y1] < L[from2 n;] J

We show L[froml n;+1] Cp L[from2 ny]
] L[froml ’I”Li_;,_l] ~ (ni+1[“H0] : L[froml ni+2[4"%’0]])[1]

o L[from2 n;] =~ (ni1*7%: Lifrom2 n; 4N

16/18

An Example o f

L := letrec froml = Az.(z : (froml (z+1)))
from2 = Az.(letrec y = (z+1) in y : (from2 y))
in [1]
Let n; denote the i number and + be strict addition s.t. rln(n;+n;) = 4
Proposition
For all numbers n;,n;y1: L{froml n;y1] < L[from2 n;] J

We show L[froml n;+1] Cp L[from2 ny]
] L[froml ’I”Li_;,_l] ~ (TL/H_][w_}O] : L[froml ni+2[4"%’0]])[1]

o L[from2 n;] =~ (n;1%7%: Lifrom2 n; 4N

16/18

An Example o f

L := letrec froml = Az.(z : (froml (z+1)))
from2 = Az.(letrec y = (z+1) in y : (from2 y))
in [1]
Let n; denote the i number and + be strict addition s.t. rln(n;+n;) = 4
Proposition
For all numbers n;,n;y1: L{froml n;y1] < L[from2 n;] J

We show L[froml n;+1] Cp L[from2 ny]
] L[froml ’I”Li_;,_l] ~ (ni+1[“HO] : L[froml ni+2[4"%’0]])[1]

o L[from2 n;] =~ (ni1 @Y Lifrom2 n; 4N

16/18

An Example o f

L := letrec froml = Az.(z : (froml (z+1)))
from2 = Az.(letrec y = (z+1) in y : (from2 y))
in [1]
Let n; denote the i number and + be strict addition s.t. rln(n;+n;) = 4
Proposition
For all numbers n;,n;y1: L{froml n;y1] < L[from2 n;] J

We show L[froml n;+1] Cp L[from2 ny]
] L[froml ’I”Li_;,_l] ~ (ni+1[“H0] : L[froml ni+2[4"%’0]])[]]

o L[from2 n;] =~ (ni1*7%: Lifrom2 n; 4]

16/18

An Example

L := letrec froml = Az.(z : (froml (z+1)))
from2 = Az.(letrec y = (z+1) in y : (from2 y))
in [1]
Let n; denote the i number and + be strict addition s.t. rln(n;+n;) = 4

Proposition
For all numbers n;,n;y1: L{froml n;y1] < L[from2 n;] J

We show L[froml n;+1] Cp L[from2 ny]
° L[froml ’I”Li_;,_l] ~ (ni+1[“H0] :]L[froml TZ,Z'+2[4’“'_>O]])[1]
o L[from2 n;] =~ (ni1*7%: Lifrom2 n; 4]

It remains to show L[froml n; %% C; L[from2 n, @]

16/18

An Exam P le SR

L := letrec froml = Az.(z : (froml (z+1)))
from2 = Az.(letrec y = (z+1) in y : (from2 y))
in [1]
Let n; denote the i number and + be strict addition s.t. rln(n;+n;) = 4
Proposition
For all numbers n;,n;y1: L{froml n;y1] < L[from2 n;] J

We show L[froml n;+1] Cp L[from2 ny]
o L[froml niy1] ~ (nig1!*% : Lifrom1 n; ol4e0]H
o L[from2 n;] =~ (ni1*7%: Lifrom2 n; 4N
It remains to show L[from1 n; o!%*~%] C, L[from2 n;, 4]

In general for j > 2:

o Lifroml nyy ;e 4020 a (nyy oG] Ligromd ngyyq bet0-10)00

] L[from2 m+j_1[“'_’4*(j_1)]} ~ (niﬂv[“’_ﬂl*j] :L[from2 niﬂ‘[“*}‘l*ﬂ])m

Thus the claim holds.
16/18

More Examples

In the paper are more examples:

e map (Az.f (¢ z)) vs =< map f (map g zs)
@ repeatl r <X repeat2 r where

repeatl r = letrec xs=x:xs in s
repeat2 x = x : repeat2 xs

@ iteratel g x < iterate2 g x where

iteratel g x = x : iteratel g (g)
iterate2 g x = map g (iteratel g x)

o fibsA 12 A fibsB 1 but fibsA 1 2 < fibsC 1 where

fibsAzy =z :fibsA y (z +y)
fibsBn = (fibn): (fibsB (n+ 1))
fibsCn = ((fib n) : (fibsC (n + 1)))M

£ib 0 =1
fib 1 =1
fibn =1fib (n— 1)+ fib(n —2)

17/18

Conclusion and Future Work

Conclusion

@ Proof techniques for proving improvements in the call-by-need
setting
@ Novel notation to explicitly compute with shared work

@ We illustrated our techniques on interesting examples

18/18

Conclusion and Future Work

Conclusion
@ Proof techniques for proving improvements in the call-by-need
setting
@ Novel notation to explicitly compute with shared work

@ We illustrated our techniques on interesting examples

Further Work
@ Consider further examples and variants of the proof tools
@ Automation of optimization and showing improvement

@ Space-improvements

18/18

