GOETHE @4

UNIVERSITAT

FRANKFURT AM MAIN

Correctness of an
STM Haskell Implementation

Manfred Schmidt-SchauB, David Sabel

Goethe-University, Frankfurt, Germany

ICFP '13, Boston, USA

Introduction

Software Transactional Memory (STM)
@ treats shared memory operations as transactions

@ provides lock-free and very convenient
concurrent programming

@ requires an implementation that
correctly executes the transactions

2/13

Introduction (2) T

STM Haskell
@ STM library for Haskell
@ introduced by Harris et.al, PPoPP’'05

@ uses Haskell's strong type system to distinguish between

@ software transactions,
e functional code, and
@ |O-computations

3/13

The STM Haskell API

Transactional Variables:

TVar a

Primitives to form STM-transactions STM a:

newTVar :: a -> STM (TVar a)

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

return ::a -> STM a

(>>=) :: STM a => (a -> STM b) -> STM b
retry :: STM O

orElse :: STM a -> STM a -> STM a

Executing an STM-transaction:
atomically :: STM a -> I0 a
Semantics: the transaction-execution is
@ atomic: all or nothing, effects are indivisible, and
@ isolated: concurrent evaluation is not observable

4/13

Correctness of an STM-Implementation

Issues:
@ Is an STM implementation correct?

@ What does correctness mean?

Several correctness notions have been suggested
e.g. Guerraoui & Kapalka, PPoPP’08

@ linearizability, serializability, recoverability, opacity, ...

@ Most of these notions are properties on the trace of
read-/write accesses on the transactional variables.

Our approach is different: “semantic approach”

5/13

Our Approach g

Two program calculi for STM Haskell:

translation)

> CSHF

Concurrent
Implementation

Specification

Correctness: The implementation fulfills the specification
»» ¢ is semantics reflecting

6/13

Specification: Process Calculus SHF o

Adapted from the CHF-calculus (S.& Schmidt-SchauB: PPDP'11, LICS'12)

Processes: TVar x with content e
=
P; € Proc::= Py | Py |vz.P | (wzx)<e|x=e]|zte
Concurrent future x with identifier v evaluates e
Expressions:
e; € Expu=x | Aze| (€1 e2) | (cer...eane))
| seq eq €3 | letrec &1 =e€1,...,2, =€, ine
| caser e of altr ... altyp)
where altr; = (cr; T1 .. Tar(

extended A-calculus

ery) €i)
| returnige | 1 »=1g €9 | futuree

| atomicallye | returngmy e | €1 =gy €2

| retry | orElsee; eg

| newTVar e | readTVare | writeTVar e

10 and STM

Monomorphic type system

7/13

Specification: Process Calculus SHF' (2)

Operational Semantics:

“ " . SHF
o Call-by-need “small-step” reduction —, several rules, e.g.
(fork) (wly) <M][future €] SHE, vz, v .({uy) < Mlreturnyg 2] | (u'1z) <€)

o Big-step rule for transactional evaluation:

D1 [(wly) <M[atomically e SHEAx, D [{wy) <=Mlatomically (returngmy €')]]

D[{wy) < M[atomically e SHE, D'[(uty) <= M[returnzg €]]

SHFA . .
where —— are small-step rules for transactional evaluation

o Enforces sequential evaluation of transactions
»» atomicity and isolation obviously hold

@ Rule application is undecidable!

8/13

Implementation: Calculus CSHF o

Extensions w.r.t. SHF:
@ local and global TVars:

o utls S = Stack of thread-local TVars

o xtgeug = global TVar, where
— u is a locking label (unlocked / locked by thread w)
— g is a list of thread identifiers (the notify list)

. T,L;K
@ threads may have a transaction log: (wly) <——-¢

T, L, K are (stacked) lists storing information about
created, read, and written TVars

Stacks are necessary for rollback during nested orElse-evaluation

9/13

Implementation: Calculus CSHF (2) o

Operational semantics:

. CSHF
@ true small-step reduction ———

@ concurrent evaluation of STM transactions

@ all rule applications are decidable

Transaction execution (informally):
o all read/writes are logged and performed on local TVars

@ during the first readTVar-operation of thread u on TVar x:
u is added to the notify list of TVar z
@ commit phase
@ lock global TVars
@ send a retry to all threads in the notify lists
of to-be-written TVars (= conflicting threads)
© write content of local TVars into global TVars
@ remove the locks

10/13

Contextual Semantics for SHF and CSHF J-

For calc € {SHF, CSHF'}

Contextual Equivalence ~ ;.

Py ~ .y Py iff for all contexts D :
D[Pl]\l/calc = D[PQ] \Lcalc A D[Pl]ucalc —]D[PQ] ‘U’calc

where

@ Process P is successful iff P = D[(zw) 22 1 eturn e]

o May-Convergence:
Pl iff3AP : P Lo pr A Plis successful

@ Should-Convergence:

Pl ffVP - PSSt pro s pry

11/13

Correctness —Q

translation

CSHF

~ CSHF

Main Theorem
Convergence Equivalence: For any SHF -process P:

Plspr <= Y(P)lcsar and Plsur <= ¢(P){csur

Adequacy: For all P;, P, € SHF'"

Y(P1) ~csur Y(P) = P1~sur P»

»» (CSHF is a correct evaluator for SHF

»» Correct program transformations in CSHF

are also correct for SHF
12/13

Conclusion and Further Work

Conclusion
@ Semantic correctness of an STM-Haskell implementation
@ using contextual equivalence
with may- and should-convergence
Further work
@ Transfer the result to GHC’s STM implementation

@ Develop smarter strategies for the transaction manager and
prove their correctness

@ Language extensions: polymorphic types, exceptions,. ..

13/13

Backup Slides

Comparison GHC STM and CSHF coce @

Conflict detection:

GHC STM: thread compares transaction log with content of TVars
restarts itself if a conflict occurred
(temporarily and before commit)

CSHF: the committing thread restarts conflicting threads

Pointer equality test:
GHC STM: required
CSHF not required

Conflict requires:
GHC STM: different content

CSHF : changed content (not necessarily different)

2/3

Sketch of the Proof ced

o Plsur = ¥(P)lcsur:

: SHF, : CSHF,
map reductions P ——2 P’ to reductions 9)(P) ——

Y(P")
e Y(P)lcsur = Plsur:
CSHF

e reorder the sequence ¢)(P) ——— P/, s.t.
reductions are grouped per transaction

@ remove non-committed transactions

SHF
@ now the sequence can be mapped to a sequence P ——— P”

o Pllspr < Y(P){csur:
@ similar, by showing equivalence of may-divergence:
P tsur < ¢(P) Tcsur

o P1==(P})=3Q: P 5 QA~(Q)

3/3

	Anhang

