
 

1

Correctness of an
STM Haskell Implementation

Manfred Schmidt-Schauß, David Sabel

Goethe-University, Frankfurt, Germany

ICFP ’13, Boston, USA



Introduction

Software Transactional Memory (STM)

treats shared memory operations as transactions

provides lock-free and very convenient
concurrent programming

requires an implementation that
correctly executes the transactions

2/13



Introduction (2)

STM Haskell

STM library for Haskell

introduced by Harris et.al, PPoPP’05

uses Haskell’s strong type system to distinguish between

software transactions,
functional code, and
IO-computations

3/13



The STM Haskell API

Transactional Variables:

TVar a

Primitives to form STM-transactions STM a:

newTVar :: a -> STM (TVar a)

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

return :: a -> STM a

(>>=) :: STM a -> (a -> STM b) -> STM b

retry :: STM ()

orElse :: STM a -> STM a -> STM a

Executing an STM-transaction:

atomically :: STM a -> IO a

Semantics: the transaction-execution is
atomic: all or nothing, effects are indivisible, and
isolated: concurrent evaluation is not observable

4/13



Correctness of an STM-Implementation

Issues:

Is an STM implementation correct?

What does correctness mean?

Several correctness notions have been suggested
e.g. Guerraoui & Kapalka, PPoPP’08

linearizability, serializability, recoverability, opacity, . . .

Most of these notions are properties on the trace of
read-/write accesses on the transactional variables.

Our approach is different: “semantic approach”

5/13



Our Approach

Two program calculi for STM Haskell:

SHF

Specification

CSHF

Concurrent
Implementation

translation ψ

Correctness: The implementation fulfills the specification

ü ψ is semantics reflecting

6/13



Specification: Process Calculus SHF

Adapted from the CHF-calculus (S.& Schmidt-Schauß: PPDP’11, LICS’12)

Processes:

P i ∈ Proc ::= P 1 ||P 2 | νx.P | 〈uox〉⇐ e︸ ︷︷ ︸
Concurrent future x with identifier u evaluates e

| x = e |
TVar x with content e︷︸︸︷

x t e

Expressions:
ei ∈ Exp ::= x | λx.e | (e1 e2) | (c e1 . . . ear(c))
| seq e1 e2 | letrec x1 = e1, . . . , xn = en in e
| caseT e of altT,1 . . . altT,|T |

where altT,i = (cT,i x1 . . . xar(cT,i) → ei)

 extended λ-calculus

| returnIO e | e1 >>=IO e2 | future e
| atomically e | returnSTM e | e1 >>=STM e2
| retry | orElse e1 e2
| newTVar e | readTVar e | writeTVar e

 IO and STM

Monomorphic type system

7/13



Specification: Process Calculus SHF (2)

Operational Semantics:

Call-by-need “small-step” reduction
SHF−−−→, several rules, e.g.

(fork) 〈uoy〉⇐M[future e]
SHF−−−→ νz, u′.(〈uoy〉⇐M[returnIO z] || 〈u′oz〉⇐ e)

Big-step rule for transactional evaluation:

D1[〈uoy〉⇐M[atomically e]]
SHFA,∗−−−−−→ D′1[〈uoy〉⇐M[atomically (returnSTM e

′)]]

D[〈uoy〉⇐M[atomically e]]
SHF−−−→ D′[〈uoy〉⇐M[returnIO e

′]]

where
SHFA−−−→ are small-step rules for transactional evaluation

Enforces sequential evaluation of transactions

ü atomicity and isolation obviously hold

Rule application is undecidable!

8/13



Implementation: Calculus CSHF

Extensions w.r.t. SHF :

local and global TVars:

u tlsS = Stack of thread-local TVars
x tg e u g = global TVar, where
– u is a locking label (unlocked / locked by thread u)
– g is a list of thread identifiers (the notify list)

threads may have a transaction log: 〈uoy〉 T,L;K⇐==== e
T, L,K are (stacked) lists storing information about
created, read, and written TVars

. . .

Stacks are necessary for rollback during nested orElse-evaluation

9/13



Implementation: Calculus CSHF (2)

Operational semantics:

true small-step reduction
CSHF−−−−→

concurrent evaluation of STM transactions

all rule applications are decidable

Transaction execution (informally):

all read/writes are logged and performed on local TVars

during the first readTVar-operation of thread u on TVar x:
u is added to the notify list of TVar x

commit phase
1 lock global TVars
2 send a retry to all threads in the notify lists

of to-be-written TVars (= conflicting threads)
3 write content of local TVars into global TVars
4 remove the locks

10/13



Contextual Semantics for SHF and CSHF

For calc ∈ {SHF ,CSHF}

Contextual Equivalence ∼calc

P1 ∼calc P2 iff for all contexts D :

D[P1]↓calc ⇐⇒ D[P2]↓calc ∧ D[P1]⇓calc ⇐⇒ D[P2]⇓calc

where

Process P is successful iff P ≡ D[〈xou〉 main⇐== return e]

May-Convergence:

P ↓calc iff ∃P ′ : P calc,∗−−−→ P ′ ∧ P ′ is successful

Should-Convergence:

P ⇓calc iff ∀P ′ : P calc,∗−−−→ P ′ =⇒ P ′ ↓calc

11/13



Correctness

SHF

∼SHF

CSHF

∼CSHF

translation ψ

Main Theorem

Convergence Equivalence: For any SHF -process P :

P ↓SHF ⇐⇒ ψ(P )↓CSHF and P ⇓SHF ⇐⇒ ψ(P )⇓CSHF

Adequacy: For all P1, P2 ∈ SHF :

ψ(P1) ∼CSHF ψ(P2) =⇒ P1 ∼SHF P2

ü CSHF is a correct evaluator for SHF

ü Correct program transformations in CSHF
are also correct for SHF

12/13



Conclusion and Further Work

Conclusion

Semantic correctness of an STM-Haskell implementation

using contextual equivalence
with may- and should-convergence

Further work

Transfer the result to GHC’s STM implementation

Develop smarter strategies for the transaction manager and
prove their correctness

Language extensions: polymorphic types, exceptions,. . .

13/13



Backup Slides



Comparison GHC STM and CSHF

Conflict detection:

GHC STM: thread compares transaction log with content of TVars
restarts itself if a conflict occurred
(temporarily and before commit)

CSHF: the committing thread restarts conflicting threads

Pointer equality test:

GHC STM: required

CSHF : not required

Conflict requires:

GHC STM: different content

CSHF : changed content (not necessarily different)

2/3



Sketch of the Proof

P ↓SHF =⇒ ψ(P )↓CSHF :

map reductions P
SHF ,∗−−−−→ P ′ to reductions ψ(P )

CSHF ,∗−−−−−→ ψ(P ′)

ψ(P )↓CSHF =⇒ P ↓SHF :

reorder the sequence ψ(P )
CSHF ,∗−−−−−→ P ′, s.t.

reductions are grouped per transaction

remove non-committed transactions

now the sequence can be mapped to a sequence P
SHF ,∗−−−−→ P ′′

P ⇓SHF ⇐⇒ ψ(P )⇓CSHF :

similar, by showing equivalence of may-divergence:
P ↑SHF ⇐⇒ ψ(P ) ↑CSHF

P ↑= ¬(P ⇓) = ∃Q : P
∗−→ Q ∧ ¬(Q↓)

3/3


	Anhang



