
Minimal Translations
from Synchronous Communication

to Synchronizing Locks

Manfred Schmidt-Schauß

Goethe-University Frankfurt

David Sabel

LMU Munich

EXPRESS/SOS 2021
August 23, 2021

General Motivation

We are interested in the correctness of translations between programming languages

A B
τ

In particular we consider concurrent programming languages

Questions:

expressivity: can language B express language A?

correctness of implementations:
is the implementation of concurrency primitives of A in language B correct?

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 2/13 Introduction Source and Target Translations Results Conclusion

Previous Work

Previous work (EXPRESS/SOS 2020):

Correct translations from the synchronous π-calculus into Concurrent Haskell

π CH
τ

synchronous communication
via message passing

named channels, messages,
mobility, replication

shared memory concurrency with
synchronising variables (MVars)

concurrent λ-calculus with recursive let,
data & case-expressions, monadic I/O

Correctness w.r.t. observational semantics

Both models are quite specific, in particular MVars
D. Sabel | Minimal Translations | EXPRESS/SOS 2021 3/13 Introduction Source and Target Translations Results Conclusion

In this Work

Analyse translations from synchronous communication to (synchronous) shared memory
In a minimal setting: source and target are really simple languages

SYNCSIMPLE LOCKSIMPLE
τ

synchronous communication
one global channel

no names, no messages, no replication,
all reductions are finite

synchronous locks
(similar to binary semaphores)

no λ-calculus, no recursion, no data,
all reductions are finite

Main question:

What is the minimal number of locks that is required for a correct translation?
D. Sabel | Minimal Translations | EXPRESS/SOS 2021 4/13 Introduction Source and Target Translations Results Conclusion

Source Calculus: SYNCSIMPLE

Subprocesses: Processes:
U ::= X | 0 | !U | ?U

(success) (silence) (send) (receive)

P ::= U | U ||P
(subprocess) (parallel composition)

Operational semantics: !U1 || ?U2 ||P
SYS−−−→ U1 ||U2 ||P

Example: ?!0 || !!X || ?0

!0 || !X || ?0

0 || !X ||0

!0 ||X ||0

?!0 || !X ||0 !0 ||X ||0

SYS

SYS

SYS

SYS
SYS

P is successful if P = X ||P ′

P is may-convergent if there is some successful process P ′ with P SYS ,∗−−−−→ P ′.
P is must-convergent if for all P ′ with P SYS ,∗−−−−→ P ′, the process P ′ is may-convergent.

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 5/13 Introduction Source and Target Translations Results Conclusion

Source Calculus: SYNCSIMPLE

Subprocesses: Processes:
U ::= X | 0 | !U | ?U

(success) (silence) (send) (receive)

P ::= U | U ||P
(subprocess) (parallel composition)

Operational semantics: !U1 || ?U2 ||P
SYS−−−→ U1 ||U2 ||P

Example: ?!0 || !!X || ?0

!0 || !X || ?0

0 || !X ||0

!0 ||X ||0

?!0 || !X ||0 !0 ||X ||0

SYS

SYS

SYS

SYS
SYS

P is successful if P = X ||P ′

P is may-convergent if there is some successful process P ′ with P SYS ,∗−−−−→ P ′.
P is must-convergent if for all P ′ with P SYS ,∗−−−−→ P ′, the process P ′ is may-convergent.

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 5/13 Introduction Source and Target Translations Results Conclusion

Source Calculus: SYNCSIMPLE

Subprocesses: Processes:
U ::= X | 0 | !U | ?U

(success) (silence) (send) (receive)

P ::= U | U ||P
(subprocess) (parallel composition)

Operational semantics: !U1 || ?U2 ||P
SYS−−−→ U1 ||U2 ||P

Example: ?!0 || !!X || ?0

!0 || !X || ?0

0 || !X ||0

!0 ||X ||0

?!0 || !X ||0 !0 ||X ||0

SYS

SYS

SYS

SYS
SYS

P is successful if P = X ||P ′

P is may-convergent if there is some successful process P ′ with P SYS ,∗−−−−→ P ′.
P is must-convergent if for all P ′ with P SYS ,∗−−−−→ P ′, the process P ′ is may-convergent.

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 5/13 Introduction Source and Target Translations Results Conclusion

Target Calculus: LOCKSIMPLEk,IS

Subprocesses: Processes:
U ::= X | 0 | PiU | TiU

(success) (silence) (put on lock i) (take on lock i)

P ::= U | U ||P
(subprocess) (parallel composition)

Storage: locks C1, . . . , Ck which are either 2 (empty) or � (full), IS is the initial storage

Operational semantics:

(PiU ||P, C[Ci = 2])
LS−−→ (U ||P, C[Ci 7→ �])

(put fills an empty lock / blocks on a filled)
(TiU ||P, C)

LS−−→ (U ||P, C[Ci 7→ 2])
(take empties the lock, non-blocking)

Example: (P2P1X ||T10 ||T20, (�,�))
LS−−→ (P2P1X ||T10 ||0, (�,2))
LS−−→ (P1X ||T10 ||0, (�,�))
LS−−→ (P1X ||0 ||0, (2,�))
LS−−→ (X ||0 ||0, (�,�))

success, may- and must-convergence: analogous, but starting with initial storage IS

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 6/13 Introduction Source and Target Translations Results Conclusion

Target Calculus: LOCKSIMPLEk,IS

Subprocesses: Processes:
U ::= X | 0 | PiU | TiU

(success) (silence) (put on lock i) (take on lock i)

P ::= U | U ||P
(subprocess) (parallel composition)

Storage: locks C1, . . . , Ck which are either 2 (empty) or � (full), IS is the initial storage

Operational semantics:

(PiU ||P, C[Ci = 2])
LS−−→ (U ||P, C[Ci 7→ �])

(put fills an empty lock / blocks on a filled)
(TiU ||P, C)

LS−−→ (U ||P, C[Ci 7→ 2])
(take empties the lock, non-blocking)

Example: (P2P1X ||T10 ||T20, (�,�))
LS−−→ (P2P1X ||T10 ||0, (�,2))
LS−−→ (P1X ||T10 ||0, (�,�))
LS−−→ (P1X ||0 ||0, (2,�))
LS−−→ (X ||0 ||0, (�,�))

success, may- and must-convergence: analogous, but starting with initial storage IS

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 6/13 Introduction Source and Target Translations Results Conclusion

Translations

SYNC-
SIMPLE

LOCK-
SIMPLE

τ

Compositional translations τ

map τ(!) and τ(?) to sequences consisting of Pi- and Ti-operations

for all other constructs: translation is the identity
(τ(0) = 0, τ(X) = X, τ(P1 ||P2) = τ(P1) || τ(P2) . . .)

Translation τ is correct iff for all SYNCSIMPLE-processes P:

P is may-convergent iff τ(P) is may-convergent,
and

P is must-convergent iff τ(P) is must-convergent

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 7/13 Introduction Source and Target Translations Results Conclusion

Results: 3 Locks Suffice

Theorem (correct translation with 3 locks)

For k = 3, the translation τ with

τ(!) = P1T3P2T1 and τ(?) = P3T2

is correct for initial store (2,�,�).

P1 . . . T1 ensures that only one sender
(atomically) communicates
T3 signals that sender is available
P2 waits that receiver is available

P3 waits that a sender is available
T2 signals that receiver is available

We also found other correct translations:

τ(!) = P2P1T3P1T1T2 and τ(?) = P3T1 is correct for initial store (2,2,�).

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 8/13 Introduction Source and Target Translations Results Conclusion

Results: Minimality

Theorem (1 lock is insufficient)

There is no correct compositional translation SYNCSIMPLE → LOCKSIMPLE1,IS .

Main Theorem (2 locks are insufficient)

There is no correct compositional translation SYNCSIMPLE → LOCKSIMPLE2,IS .

Both theorems hold for any initial storage!

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 9/13 Introduction Source and Target Translations Results Conclusion

Results: Variations and Open Questions

Variants

No difference, if we change the blocking behavior
(i.e. fix for each i: Pi blocks or Ti blocks but not both)

Reason: we can adapt the initial storage

Open cases:

Blocking put and blocking take: Are 3 locks required?

Correct translations with 3 locks for each combination of blocking behavior and
initial storage

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 10/13 Introduction Source and Target Translations Results Conclusion

Results: Variations and Open Questions

Variants

No difference, if we change the blocking behavior
(i.e. fix for each i: Pi blocks or Ti blocks but not both)

Reason: we can adapt the initial storage

Open cases:

Blocking put and blocking take: Are 3 locks required?

Correct translations with 3 locks for each combination of blocking behavior and
initial storage

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 10/13 Introduction Source and Target Translations Results Conclusion

Proof Structure of the Main Theorem

Remember: Main Theorem says that there is no correct compositional translation for 2 locks.

Main idea of the proof: classify the translations by their blocking type:

The blocking type of a correct translation τ is (W1,W2) where

W1 is the blocking type of τ(!X)

W2 is the blocking type of τ(?X)

The blocking type of a sequence/subprocess S is

Pi if S = R1PiR2, where R1 does not contain Pi or Ti and a deadlock occurs after
executing R1 on the initial storage IS

PiPi iff S = R1PiR2PiR3, where R2 does not contain Pi or Ti, and a deadlock occurs
after executing R1PiR2 on the initial storage IS

Proof shows impossibility for the blocking types (P1P1, P1P1), (P1P1, P2P2), (P1P1, P1),
(P1P1, P2), (P1, P1), and (P1, P2) (other cases are symmetric)

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 11/13 Introduction Source and Target Translations Results Conclusion

Exemplary Proof

Claim

For a correct translation, the blocking type (P1P1, P1) is impossible

Proof: While !X || ?X is must-convergent, we show that τ(!X || ?X) can deadlock:

since W1 = P1P1, τ(!) must be of the form R1P1{P2, T2}∗P1R2

since W2 = P1, τ(?) must be of the form {P2, T2}∗P1R3 and IS1 = �

on storage (IS1, IS2) = (�, IS2) first execute R1P1{P2, T2}∗P1R2 until it blocks with
remainder P1R2. Then still C1 = � holds.

Now execute {P2, T2}∗P1R3: It either blocks at some P2 or at P1 with remainder P1R3.

In all cases we have a deadlock.

Note: The proofs for some cases are more complex and require further case distinctions.

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 12/13 Introduction Source and Target Translations Results Conclusion

Conclusion & Future Work

Conclusion

we proved that a correct compositional translation from SYNCSIMPLE into
LOCKSIMPLE requires at least three locks (independently of the initial storage!)

we showed that there is a correct translation with three locks

Future work

correct translations with three locks for any initial storage values

locks where take and put are blocking

transfer of the result to full languages

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 13/13 Introduction Source and Target Translations Results Conclusion

Thank You!

Transferring Impossibility Results to Full Languages (Sketch)

SYNCFULL LOCKFULL

SYNCSIMPLE LOCKSIMPLE
τ

ψ

If a correct compositional translation ψ exists, then also a correct translation τ exists:
Apply ψ to SYNCSIMPLE and verify that the image ψ(SYNCSIMPLE) is in LOCKSIMPLE.

D. Sabel | Minimal Translations | EXPRESS/SOS 2021 2/2

	Introduction
	Source and Target
	Translations
	Results
	Conclusion
	Appendix

