

Minimal Translations from Synchronous Communication to Synchronizing Locks

Manfred Schmidt-Schauß

David Sabel

Goethe-University Frankfurt

LMU Munich

EXPRESS/SOS 2021 August 23, 2021

• We are interested in the **correctness of translations** between programming languages

- In particular we consider **concurrent** programming languages
- Questions:
	- **expressivity**: can language B express language A?
	- correctness of implementations:

is the implementation of concurrency primitives of A in language B correct?

Previous Work

Previous work (EXPRESS/SOS 2020):

 \bullet Correct translations from the synchronous π -calculus into Concurrent Haskell

synchronous communication via message passing named channels, messages, mobility, replication

shared memory concurrency with synchronising variables (MVars) concurrent λ -calculus with recursive let. data & case-expressions, monadic I/O

- Correctness w.r.t. observational semantics
- Both models are quite specific, in particular MVars

In this Work

- Analyse translations from synchronous communication to (synchronous) shared memory
- In a minimal setting: source and target are really simple languages

• Main question:

What is the minimal number of locks that is required for a correct translation?

Source Calculus: SYNCSIMPLE

Operational semantics: $|\mathcal{U}_1|$ | $|\mathcal{U}_2|$ | $\mathcal{P} \xrightarrow{SYS} \mathcal{U}_1$ | \mathcal{U}_2 | \mathcal{P}

Source Calculus: SYNCSIMPLE

Source Calculus: SYNCSIMPLE

 P is successful if $P = \sqrt{P'}$

 ${\cal P}$ is may-convergent if there is some successful process ${\cal P}'$ with ${\cal P} \xrightarrow{SYS,*} {\cal P}'.$

 ${\cal P}$ is must-convergent if for all ${\cal P'}$ with ${\cal P} \xrightarrow{SYS, *} {\cal P'},$ the process ${\cal P'}$ is may-convergent.

Target Calculus: $LOGKSIMPLE_{k-IS}$

Subprocesses: Processes: $\mathcal{U} ::= \begin{array}{c|c|c|c|c} \mathcal{U} & \mathbf{0} & \math$ (success) (silence) (put on lock i) (take on lock i) (subprocess) (parallel composition) Storage: locks C_1, \ldots, C_k which are either \Box (empty) or \Box (full), IS is the initial storage Operational semantics: $(P_i \mathcal{U} \mid \mathcal{P}, \mathcal{C}[C_i = \Box]) \xrightarrow{LS} (\mathcal{U} \mid \mathcal{P}, \mathcal{C}[C_i \mapsto \blacksquare])$ (put fills an empty lock / blocks on a filled) $(T_i\mathcal{U} \mid \mathcal{P}, \mathcal{C}) \xrightarrow{LS} (\mathcal{U} \mid \mathcal{P}, \mathcal{C}[C_i \mapsto \Box])$ (take empties the lock, non-blocking)

Subprocesses: Processes: $\mathcal{U} ::= \begin{array}{c|c|c|c|c} \mathcal{U} & \mathbf{0} & \math$ (success) (silence) (put on lock $i)$ (take on lock $i)$ $\qquad \qquad$ (subprocess) (parallel composition) Storage: locks C_1, \ldots, C_k which are either \Box (empty) or \blacksquare (full), IS is the initial storage Operational semantics: $(P_i \mathcal{U} \mid \mathcal{P}, \mathcal{C}[C_i = \Box]) \stackrel{LS}{\longrightarrow} (\mathcal{U} \mid \mathcal{P}, \mathcal{C}[C_i \mapsto \blacksquare])$ $(T_i \mathcal{U} \mid \mathcal{P}, \mathcal{C}) \stackrel{LS}{\longrightarrow} (\mathcal{U} \mid \mathcal{P}, \mathcal{C}[C_i \mapsto \Box])$ (put fills an empty lock $\mathrm{/}$ blocks on a filled) $\mathrm{~~}$ (take empties the lock, non-blocking) Example: $(P_2P_1\check{\smile} | T_10 | T_20, \quad (\blacksquare, \blacksquare))$ $\stackrel{LS}{\longrightarrow}$ $(P_2P_1 \checkmark \mid T_1 0 \mid 0, \quad (\blacksquare, \square))$ $\stackrel{LS}{\longrightarrow}$ $(P_1 \vee \mid T_1 0 \mid 0, \qquad (\blacksquare, \blacksquare))$ $\stackrel{LS}{\longrightarrow}$ $(P_1 \vee \{ 0 \} \, 0, \qquad (\Box, \blacksquare))$ \xrightarrow{LS} (\checkmark | 0 | 0, (\blacksquare , \blacksquare)) \bullet success, may- and must-convergence: analogous, but starting with initial storage IS

Translations

Compositional translations τ

- map τ (!) and τ (?) to sequences consisting of P_i and T_i -operations
- **o** for all other constructs: translation is the identity $(\tau(0) = 0, \tau(\sqrt{2}) = \sqrt{2}, \tau(\mathcal{P}_1 | \mathcal{P}_2) = \tau(\mathcal{P}_1 | \tau(\mathcal{P}_2 | \dots))$

Translation τ is correct iff for all SYNCSIMPLE-processes \mathcal{P} :

\n- $$
\mathcal P
$$
 is may-convergent iff $\tau(\mathcal P)$ is may-convergent, and
\n- $\mathcal P$ is must-convergent iff $\tau(\mathcal P)$ is must-convergent.
\n

Theorem (correct translation with 3 locks)

For $k = 3$, the translation τ with

 $\tau(!) = P_1T_3P_2T_1$ and $\tau(?) = P_3T_2$

is correct for initial store $(\Box, \blacksquare, \blacksquare)$.

- \bullet $P_1 \dots T_1$ ensures that only one sender (atomically) communicates
- \bullet T₃ signals that sender is available
- \bullet P_2 waits that receiver is available
- \bullet P_3 waits that a sender is available
- \bullet T_2 signals that receiver is available

We also found other correct translations:

 $\tau(!) = P_2P_1T_3P_1T_1T_2$ and $\tau(?) = P_3T_1$ is correct for initial store $(\square, \square, \blacksquare)$.

Theorem (1 lock is insufficient)

There is no correct compositional translation SYNCSIMPLE \rightarrow LOCKSIMPLE₁ *IS*.

Main Theorem (2 locks are insufficient)

There is no correct compositional translation SYNCSIMPLE \rightarrow LOCKSIMPLE_{2, IS}.

Both theorems hold for any initial storage!

Variants

- No difference, if we change the blocking behavior
	- (i.e. fix for each i: P_i blocks or T_i blocks but not both)
- Reason: we can adapt the initial storage

Variants

- No difference, if we change the blocking behavior
	- (i.e. fix for each i: P_i blocks or T_i blocks but not both)
- Reason: we can adapt the initial storage

Open cases:

- Blocking put and blocking take: Are 3 locks required?
- Correct translations with 3 locks for each combination of blocking behavior and initial storage

Remember: Main Theorem says that there is no correct compositional translation for 2 locks. Main idea of the proof: classify the translations by their blocking type:

The blocking type of a correct translation τ is (W_1, W_2) where

- W_1 is the blocking type of $\tau(V)$
- \bullet W₂ is the blocking type of τ (? \checkmark)

The blocking type of a sequence/subprocess S is

- P_i if $\mathcal{S}=\mathcal{R}_1P_i\mathcal{R}_2$, where \mathcal{R}_1 does not contain P_i or T_i and a deadlock occurs after executing \mathcal{R}_1 on the initial storage IS
- P_iP_i iff $\mathcal{S}=\mathcal{R}_1P_i\mathcal{R}_2P_i\mathcal{R}_3$, where \mathcal{R}_2 does not contain P_i or T_i , and a deadlock occurs after executing $\mathcal{R}_1P_i\mathcal{R}_2$ on the initial storage IS

Proof shows impossibility for the blocking types (P_1P_1, P_1P_1) , (P_1P_1, P_2P_2) , (P_1P_1, P_1) , (P_1P_1, P_2) , (P_1, P_1) , and (P_1, P_2) (other cases are symmetric)

Claim

For a correct translation, the blocking type (P_1P_1, P_1) is impossible

Proof: While $\sqrt{2}$ | ? $\sqrt{2}$ is must-convergent, we show that τ ($\sqrt{2}$ | ? $\sqrt{2}$) can deadlock:

- since $W_1 = P_1 P_1$, $\tau(!)$ must be of the form $\mathcal{R}_1 P_1 \{P_2, T_2\}^* P_1 \mathcal{R}_2$
- since $W_2 = P_1$, $\tau(?)$ must be of the form $\{P_2, T_2\}^*P_1\mathcal{R}_3$ and $IS_1 = \blacksquare$
- on storage $(I S_1, I S_2) = (\blacksquare, I S_2)$ first execute $\mathcal{R}_1 P_1 \{P_2, T_2\}^* P_1 \mathcal{R}_2$ until it blocks with remainder $P_1\mathcal{R}_2$. Then still $C_1 = \blacksquare$ holds.
- Now execute $\{P_2, T_2\}^*P_1\mathcal{R}_3$: It either blocks at some P_2 or at P_1 with remainder $P_1\mathcal{R}_3$.
- In all cases we have a deadlock.

Note: The proofs for some cases are more complex and require further case distinctions.

Conclusion

- we proved that a correct compositional translation from SYNCSIMPLE into LOCKSIMPLE requires at least three locks (independently of the initial storage!)
- we showed that there is a correct translation with three locks

Future work

- correct translations with three locks for any initial storage values
- locks where take and put are blocking
- transfer of the result to full languages

Thank You!

Transferring Impossibility Results to Full Languages (Sketch)

If a correct compositional translation ψ exists, then also a correct translation τ exists: Apply ψ to SYNCSIMPLE and verify that the image ψ (SYNCSIMPLE) is in LOCKSIMPLE.