
 

1

A Haskell-Implementation of STM Haskell
with Early Conflict Detection

David Sabel

Goethe-University, Frankfurt, Germany

ATPS 2014, Kiel



Introduction

Software Transactional Memory (STM)

treats shared memory operations as transactions

provides lock-free and very convenient
concurrent programming

STM Haskell

STM library for Haskell

introduced by Harris et.al, PPoPP’05

Our contribution: an alternative implementation of STM Haskell

earlier conflict detection

based on a correct concurrent program calculus for
STM Haskell, Schmidt-Schauß & S., ICFP’13

2/16



The STM Haskell API

Transactional Variables:

TVar a

Primitives to form STM-transactions STM a:

newTVar :: a -> STM (TVar a)

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

return :: a -> STM a

(>>=) :: STM a -> (a -> STM b) -> STM b

retry :: STM ()

orElse :: STM a -> STM a -> STM a

Executing an STM-transaction:

atomically :: STM a -> IO a

Semantics: the transaction-execution is
atomic: all or nothing, effects are indivisible, and
isolated: concurrent evaluation is not observable

3/16



Implementations of STM-Haskell

GHC STM (Harris et.al., PPoPP’05): implementation in the
Glasgow Haskell Compiler: implemented in C, deeply embedded in
the runtime system

Huch & Kupke, IFL’05: Implementation in Haskell 98

Du Bois, SC’11: STM implementation in Haskell based on the
TL 2 algorithm by Dice et.al., DISC’06

SHFSTM: Implementation in GHC Haskell, early conflict
detection, based on a program calculus CSHF, correctness proved
in Schmidt-Schauß & S., ICFP’13,

4/16



Common Features of all Implementations

transactions perform reads and writes on local working copies

commit phase: local content is copied to global TVars

transactions use a transaction log for book-keeping of operations

conflict if the global content of already read TVar changes

5/16



Specifics of the Implementations

GHC STM; Huch & Kupke:

transaction log: for every TVar the old and the new value

transaction detects conflict by itself (inspecting its transaction log):
(old value 6= current value) =⇒ conflict

moment of conflict detection: commit phase (and temporary, GHC)

transaction 1

transaction 2

reads X is conflicting starts commit

writes X commits

SHFSTM:

transaction log: the new value for every TVar,
information which TVars were read, written, . . .

every TVar has a notification list of thread identifiers

committing thread notifies conflicting threads in the notification
lists of written TVars

moment of conflict detection: when conflict occurs, i.e. early

6/16



Specifics of the Implementations

GHC STM; Huch & Kupke:

transaction log: for every TVar the old and the new value

transaction detects conflict by itself (inspecting its transaction log):
(old value 6= current value) =⇒ conflict

moment of conflict detection: commit phase (and temporary, GHC)

transaction 1

transaction 2

reads X is conflicting starts commit

writes X commits

SHFSTM:

transaction log: the new value for every TVar,
information which TVars were read, written, . . .

every TVar has a notification list of thread identifiers

committing thread notifies conflicting threads in the notification
lists of written TVars

moment of conflict detection: when conflict occurs, i.e. early
6/16



Nontermination and Early Conflict Detection

trans1 tvar = atomically $

do c <- readTVar tvar

if c then

let loop = loop in loop

else return ()

trans2 tvar =

atomically (writeTVar tvar False)

Specification: atomic execution of trans1: all or nothing!
=⇒ execution of both transactions always terminates.

GHC STM: temporary check of transaction log detects conflict, but
program sometimes fails, due to loop detection.

Huch & Kupke’05; du Bois’11: nontermination, no temporary
conflict detection

SHFSTM: termination, commit phase of trans2 notifies trans1

7/16



Nontermination and Early Conflict Detection

trans1 tvar = atomically $

do c <- readTVar tvar

if c then

let loop = loop in loop

else return ()

trans2 tvar =

atomically (writeTVar tvar False)

Specification: atomic execution of trans1: all or nothing!
=⇒ execution of both transactions always terminates.

GHC STM: temporary check of transaction log detects conflict, but
program sometimes fails, due to loop detection.

Huch & Kupke’05; du Bois’11: nontermination, no temporary
conflict detection

SHFSTM: termination, commit phase of trans2 notifies trans1

7/16



Implementation of SHFSTM: TVars

newtype TVarA a = TVarA (MVar (ITVar a))

data ITVar a = TV

{ globalContent :: MVar a

, localContent :: MVar (Map ThreadId (IORef [a]))

, notifyList :: MVar (Set ThreadId)

, lock :: MVar ThreadId

, waitingQueue :: MVar [MVar ()] }

all parts are mutable and protected by MVars

local copies for all threads are stored in localContent

notifyList holds thread identifiers of conflicting transactions

lock is used during commit

waitingQueue is used to block other threads if TVar is locked

8/16



Implementation: Transaction Log

data Log = Log {

readTVars :: Read,
tripleStack :: [(Accessed,Written,Created)],
lockingSet :: Locked }

Read , Accessed , Written, Created , and Locked
are heterogenous sets of TVars

All operations on the sets do not depend on the content type
⇒ existential types can be used

data TVarAny = forall a. TVarAny (TVarId, MVar (ITVar a))

A TVar is a pair of TVarA a and TVarAny:

newtype TVar a = TVar (TVarA a,TVarAny)

newtype TVarA a = TVarA (MVar (ITVar a))

Invariant:
both MVar (ITVar a)-components always point to the same object

9/16



Implementation: Transaction Log

data Log = Log {

readTVars :: Set TVarAny,

tripleStack :: [(Set TVarAny,Set TVarAny,Set TVarAny)],

lockingSet :: Set TVarAny }

Read , Accessed , Written, Created , and Locked
are heterogenous sets of TVars

All operations on the sets do not depend on the content type
⇒ existential types can be used

data TVarAny = forall a. TVarAny (TVarId, MVar (ITVar a))

A TVar is a pair of TVarA a and TVarAny:

newtype TVar a = TVar (TVarA a,TVarAny)

newtype TVarA a = TVarA (MVar (ITVar a))

Invariant:
both MVar (ITVar a)-components always point to the same object

9/16



Implementation: Transaction Log

data Log = Log {

readTVars :: Set TVarAny,

tripleStack :: [(Set TVarAny,Set TVarAny,Set TVarAny)],

lockingSet :: Set TVarAny }

Read , Accessed , Written, Created , and Locked
are heterogenous sets of TVars

All operations on the sets do not depend on the content type
⇒ existential types can be used

data TVarAny = forall a. TVarAny (TVarId, MVar (ITVar a))

A TVar is a pair of TVarA a and TVarAny:

newtype TVar a = TVar (TVarA a,TVarAny)

newtype TVarA a = TVarA (MVar (ITVar a))

Invariant:
both MVar (ITVar a)-components always point to the same object

9/16



Implementation: STM-Transactions

Like an embedded language:

data STM a = Return a

| Retry

| forall b. NewTVar b (TVar b -> STM a)

| forall b. ReadTVar (TVar b) (b -> STM a)

| forall b. WriteTVar (TVar b) b (STM a)

| forall b. OrElse (STM b) (STM b) (b -> STM a)

additional argument stores the continuation

existential types to hide intermediate types

readTVar :: TVar a -> STM a

readTVar a = ReadTVar a return

...

instance Monad STM where

return = Return

m >>= f = case m of

ReadTVar x cont -> ReadTVar x (cont >>= f)

...

10/16



Implementation: atomically

atomically executes the embedded language

atomically :: STM a -> IO a

atomically act = do

tlog <- emptyTLOG

catch (performSTM tlog act)

(\e -> case e of RetryException ->

do uninterruptibleMask_ (globalRetry tlog)

atomically act)

Exceptions are used to notify the conflicting thread

notify :: [ThreadId] -> IO ()

notify [] = return ()

notify (tid:xs) = throwTo tid RetryException >> notify xs

performSTM calls specific functions for every operation

performSTM tlog (Return a) = commit tlog >> return a

performSTM tlog Retry = waitForExternalRetry

performSTM tlog (ReadTVar x cont) = do c <- readTVarWithLog tlog x

performSTM tlog (cont c)

11/16



Commit Phase

commit :: TLOG -> IO ()

commit tlog = do

writeStartWithLog tlog -- lock the TVars

writeClearWithLog tlog -- remove own notify entries

sendRetryWithLog tlog -- notify conflicting threads

writeTVWithLog tlog -- copy local content into global TVars

writeTVnWithLog tlog -- create the new TVars

writeEndWithLog tlog -- clear the local TVar-stacks

unlockTVWithLog tlog -- unlock the TVars, unblock waiting threads

locking the TVars is not atomic (difference to CSHF )

locks are taken in total order

if not all locks are available, already held locks are released,
since the thread maybe conflicting

12/16



Experimental Results

Test environment:

Intel i7-2600 CPU (4 cores)

compiled with GHC 7.4.2 and -O2 on Linux

mean runtime of 15 runs

4 libraries: GHC STM, SHFSTM, Huch & Kupke, du Bois

Tests:

Some tests used of the Haskell STM Benchmark
http://www.bscmsrc.eu/software/haskell-stm-benchmark

Some own tests

13/16



Experimental Results (2)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0

10

20

30

40

50

60

70

sec.

#cores
GHCSTM SHFSTM Huch/Kupke du Bois

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0

5

10

15

20

25

30

sec.

#cores

GHCSTM SHFSTM Huch/Kupke du Bois
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0

5

10

15

20

25

30

sec.

#cores

GHCSTM SHFSTM Huch/Kupke du Bois

Shared Int Sum of Shared TVars Sudoku

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0

10

20

30

40

50

60

70

sec.

#cores
GHCSTM SHFSTM Huch/Kupke du Bois

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0

2

4

6

8

#cores

sec.

GHCSTM SHFSTM Huch/Kupke du Bois
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0

2

4

6

8

#cores

sec.

GHCSTM SHFSTM Huch/Kupke du Bois

Linked List Binary Tree Hash Table

Shared Int: 200 threads increase the value of a single TVar
Sum of Shared TVars: 200 threads write the sum of 200 TVars into the last TVar
Sudoku: Parallel Sudoku-Solver, cells are stored in TVars
Linked List: 200 threads perform 100 operations on a linked list built from TVars
Binary Tree: 200 threads perform 100 operations on a binary tree built from TVars
Hash Table: 100 threads perform 100 operations on a hashtable built from TVars 14/16



Experimental Results (3)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0

5

10

15

20

25

30

sec.

#cores

GHCSTM SHFSTM Huch/Kupke du Bois

40 threads: every thread reads the same 5 TVars,

for every read: compute ackermann(i,3) where i is between 6
and 8 depending on the thread number

write the sum into the last TVar

15/16



Conclusion

correct STM implementations require correct treatment of
nonterminating transactions

the SHFSTM-implementation works and detects conflicts early

GHC STM performs in most cases much better

implementation of SHFSTM uses exceptions as programming
primitive

Further work

optimize the implementation using concurrent data structures

implementation in C as part of the runtime system?

16/16




