

Congruence Closure of Compressed Terms in Polynomial Time

Manfred Schmidt-Schauß, David Sabel, Altug Anis

Goethe-University, Frankfurt am Main, Germany

FroCoS'11, Saarbrücken

Motivation

- **.** Consider **compressed** representation of terms to optimize space (and time) usage
- Applications e.g. XML-trees and XML-processing
- Design efficient algorithms on compressed terms without prior decompression
- We use tree grammars as a clean representation of compressed terms

[Introduction](#page-1-0) [STGs](#page-4-0) E[-Word Problem](#page-16-0) [Conclusion](#page-40-0)

Some Previous / Related Work

- Polynomial **equality check** of grammar compressed **strings**: Plandowski '94, Lifshits '07
- **Equality check** of grammar compressed **terms**: Busatto, Lohrey, Maneth '05; Schmidt-Schauß '05
- **Compression** of XML documents using tree grammars: Busatto, Lohrey, Maneth '05
- **. Unification** for grammar compressed terms: Gascon, Godoy, & Schmidt-Schauß '08
- Analysis of **pattern matching** on compressed **terms**: Schmidt-Schauß '11

Our Contribution

- Combining **equational reasoning** with grammar compression for terms
- We consider the special case of **ground equations**
- In the **uncompressed** case efficiently decidable $O(n \log n)$ by congruence closure algorithms

Applications e.g. SMT solvers can e.g. deal with equational theories defined by a set of ground equations.

Compressed Representation of Terms

Singleton tree grammars (STG): $G = (\mathcal{TN}, \mathcal{CN}, \Sigma, R)$

-
- Σ signature of function symbols R production rules
- TN term nonterminals \bullet CN context nonterminals
	-

Compressed Representation of Terms

Singleton tree grammars (STG): $G = (TN, CN, \Sigma, R)$

- \bullet TN term nonterminals \bullet CN context nonterminals
- Σ signature of function symbols R production rules

Side-conditions

- for every $A \in \mathcal{TN}$: $\mathrm{val}_G(A) \in \mathcal{T}(\Sigma)$; for every $C \in \mathcal{C}$: $val_G(C)$ is a context on $\mathcal{T}(\Sigma)$
- \bullet R is acyclic and has exactly one rule for every nonterminal
- Allowed rules in R $(A, A_i \in \mathcal{TN}$; $C, C_i \in \mathcal{CN}$; $f \in \Sigma$)

$$
\begin{aligned} A &::= f(A_1, \dots, A_m) \qquad A_1 &::= A_2 \qquad A_1 &::= C_1[A_2] \\ C &::= f(A_1, \dots, A_i, [\cdot], A_{i+2}, \dots, A_m) \qquad C &::= [\cdot] \qquad C &::= C_1[C_2] \end{aligned}
$$

Compressed Representation of Terms

Singleton tree grammars (STG): $G = (TN, CN, \Sigma, R)$

- \bullet TN term nonterminals \bullet CN context nonterminals
- Σ signature of function symbols R production rules

Side-conditions

- for every $A \in \mathcal{TN}$: $\mathrm{val}_{G}(A) \in \mathcal{T}(\Sigma)$; for every $C \in \mathcal{C}$: $val_G(C)$ is a context on $\mathcal{T}(\Sigma)$
- \bullet R is acyclic and has exactly one rule for every nonterminal
- Allowed rules in R $(A, A_i \in \mathcal{TN}$; $C, C_i \in \mathcal{CN}$; $f \in \Sigma$)

$$
A ::= f(A_1, \ldots, A_m) \qquad A_1 ::= A_2 \qquad A_1 ::= C_1[A_2]
$$

$$
C ::= f(A_1, \ldots, A_i, [\cdot], A_{i+2}, \ldots, A_m) \qquad C ::= [\cdot] \qquad C ::= C_1[C_2]
$$

An STG is a **directed acyclic graph (DAG)**, if $c \mathcal{N} = \emptyset$.

DAGs allow sharing of subtrees

$$
\begin{array}{ccccc}\n & f & & & & C_8: \\
C_8 & & & & g & & \\
& \downarrow & & & \downarrow & & \\
a & b & & & g & & \\
& & & g & & & \\
& & & & g & & & \\
& & & & & g & & \\
& & & & & & g & & \\
& & & & & & & & \n\end{array}
$$

f C_8 C_8 a b C_8 : g g g g g g g g $\lfloor \cdot \rfloor$

f C⁸ C⁸ a b C⁸ : C⁴ C⁴ C⁴ : C² C² C² : g g [·]

$$
A_1 ::= f(A_2, A_3) \qquad C_1 ::= g([\cdot])A_2 ::= C_8[A_4] \qquad C_2 ::= g[C_1]A_3 ::= C_8[A_5] \qquad C_4 ::= C_2[C_2]A_4 ::= a \qquad C_8 ::= C_4[C_4]A_5 ::= b
$$

Compression and Equality Check

Size |G| of STG $G =$ sum of sizes of all rhs of all production rules

 $val_G(A)$ = term generated by nonterminal A in grammar G

For every STG: term size and depth of $\operatorname{val}_G(A) = O(2^{|G|})$

Example

$$
A := C_n[A_a] \quad \text{val}(A) = f^{2^n}(a)
$$
\n
$$
C_{i+1} := C_i[C_i] \text{ for } i = 1, ..., n \quad \text{val}(C_i) = f^{2^n}([\cdot])
$$
\n
$$
C_0 := f([\cdot]) \quad \text{val}(C_0) = f([\cdot])
$$
\n
$$
A_a = a \quad \text{val}(A_a) = a
$$

Proposition (Busatto, Lohrey, Maneth '05; Plandowski '94; Lifshits '07) For an STG G and two term nonterminals A_1, A_2 it can be decided in $O(|G|^3)$ whether $\text{val}_G(A_1) = \text{val}_G(A_2)$ holds.

The E-Word Problem

- Given a set ground equations $E = \{u_1 = v_1, \ldots, u_n = v_n\}$
- Let $=_E$ be the smallest congruence on terms satisfying E

For ground terms s_1, s_2 the E-word problem is the question whether $s_1 = E s_2$ holds.

We analyze this problem under compression:

- E and s_1, s_2 DAG-compressed: decidable in time $O(n \log n)$ by computing the congruence closure where n is the size of the input
- E and s_1, s_2 STG-compressed: obviously in DEXPTIME, exact lower bound unknown
- E DAG-compressed, s_1, s_2 STG-compressed: our main result: decidable in polynomial time

Algorithm

Input: – Ground equations $L_1 = R_1, \ldots, L_n = R_n$ where

 L_i,R_i are nonterminals of DAG G_E ,

– Nonterminals S_1, S_2 of STG G_{Inp} representing terms s_1, s_2

Output: Yes or No $(s_1 =_E s_2)$

- \bullet Compute a DAG G_T that represents a reduced ground TRS T which is equivalent to G_E using Snyder's algorithm (Snyder '89, '93)
- **2** Optimally compress the DAG G_T (Kozen' 77; Shostak '78; Nelson & Oppen '80)
- \bullet Construct an STG G' that represents the STG-compressed T -normal forms of all term nonterminals of G_{Inp}
- \bullet Use the Plandowski-Lifshits algorithm to decide whether S_1, S_2 represent the same terms.

Algorithm

Input: – Ground equations $L_1 = R_1, \ldots, L_n = R_n$ where

 L_i,R_i are nonterminals of DAG G_E ,

– Nonterminals S_1, S_2 of STG G_{Inn} representing terms s_1, s_2

Output: Yes or No $(s_1 =_E s_2)$

- \bullet Compute a DAG G_T that represents a reduced ground TRS T which is equivalent to G_E using Snyder's algorithm (Snyder '89, '93)
- **2** Optimally compress the DAG G_T (Kozen' 77; Shostak '78; Nelson & Oppen '80)
- \bullet Construct an STG G' that represents the STG-compressed T -normal forms of all term nonterminals of G_{Inp}
- \bullet Use the Plandowski-Lifshits algorithm to decide whether S_1, S_2 represent the same terms.

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i\to R_i,$ – STG G_{Inn}

Output: Compute the T-normalforms of all terms represented by G_{Inn}

- Reduced & ground TRS
	- \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i\to R_i,$ – STG G_{Inn}

Output: Compute the T-normalforms of all terms represented by G_{Inn}

-
- Reduced & ground TRS
	- \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i\to R_i,$ – STG G_{Inn}

Output: Compute the T-normalforms of all terms represented by G_{Inn}

-
- Reduced & ground TRS
	- \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i\to R_i,$ – STG G_{Inn}

Output: Compute the T-normalforms of all terms represented by G_{Inn}

-
- Reduced & ground TRS
	- \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i\to R_i,$ – STG G_{Inn}

Output: Compute the T-normalforms of all terms represented by G_{Inn}

-
- Reduced & ground TRS
	- \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i\to R_i,$ – STG G_{Inn}

Output: Compute the T-normalforms of all terms represented by G_{Inn}

-
- Reduced & ground TRS
	- \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i\to R_i,$ – STG G_{Inn}

Output: Compute the T-normalforms of all terms represented by G_{Inn}

-
- Reduced & ground TRS
	- \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i\to R_i,$ – STG G_{Inn}

Output: Compute the T-normalforms of all terms represented by G_{Inn}

-
- Reduced & ground TRS
	- \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i\to R_i,$ – STG G_{Inn}

Output: Compute the T-normalforms of all terms represented by G_{Inn}

- Reduced & ground TRS
	- \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i\to R_i,$ – STG G_{Inn}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- Reduced & ground TRS
	- \Rightarrow normalization can be performed bottom up, since every contractum is irreducible
- val (G_{Inp}) may have identical redexes at exponential many positions
- But the STG-representation shares the positions

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i\to R_i,$ – STG G_{Inn}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- Reduced & ground TRS
	- \Rightarrow normalization can be performed bottom up, since every contractum is irreducible
- val (G_{Inp}) may have identical redexes at exponential many positions
- But the STG-representation shares the positions
- Normalization can also be "shared", like a parallel rewriting step

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i\to R_i,$ – STG G_{Inn}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- Reduced & ground TRS
	- \Rightarrow normalization can be performed bottom up, since every contractum is irreducible
- val (G_{Inp}) may have identical redexes at exponential many positions
- But the STG-representation shares the positions
- Normalization can also be "shared", like a parallel rewriting step

Algorithm has two phases:

Phase 1: Compute tables ϕ_0 , ϕ_1 for the normalforms of almost all nonterminals by dynamic programming **Phase 2:** Use ϕ_0, ϕ_1 to "normalize" G_{Inp}

Phase 1: φ-Computation

subterms
$$
(G_T)
$$
 = $\bigcup_i \{A \mid L_i \stackrel{+}{\longrightarrow}_{G_T} A\} \cup \bigcup_i \{R_i\} \cup \{\top\}$

" \top and all nodes of G_T without L_i and proper subterms of R_i "

Compute two tables bottom up along the grammar G_{Inp}

- For every term nonterminal A of G_{Inp} : $\phi_0(A) \in \text{subterms}(G_T)$ $-\phi_0(A) = N$, if $val(N) = nf_T(val(A))$ $-\phi_0(A) = \top$, otherwise
- For every context nonterminal C of G_{Inp} : $\phi_1(C)$:: subterms $(G_T) \rightarrow$ subterms (G_T) represents the mapping behavior of C on subterms (G_T) after normalization

Informally: If $\phi_0(A) = \top$, then normalization stops above A

φ-Computation

Computing $\phi_0(A)$ for $A ::= f(A_1, \ldots, A_n)$

- "Normalize all subterms of A", i.e. compute $f(\phi_0(A_1), \ldots, \phi_0(A_n))$
- Does exist a production $N ::= f(\phi_0(A_1), \ldots, \phi_0(A_n))$ in G_T ?
- If $N=L_i$, then $\boldsymbol{\phi_0}(A)=R_i$ (found a redex)
- If $N \in \text{subterms}(G_T)$ but $N \neq L_i$, then $\phi_{\mathbf{0}}(A) = N$ $(f(\phi_0(A_1), \ldots, \phi_0(A_n))$ maybe a subterm of a redex)
- Otherwise, $\phi_0(A) = \top$ $(f(\phi_0(A_1), \ldots, \phi_0(A_n))$ not a redex and not a subterm of a redex)

Other cases

- $C ::= f(A_1, \ldots, [\cdot], \ldots, A_n)$: compute $f(\phi_0(A_1), \ldots, X, \ldots, \phi_0(A_n))$ for any $X \in \text{subterms}(G_T)$ expensive case, requires time $O(|G_T| \cdot \log |G_T|)$
- \bullet $C ::= C_1[C_2]$ then $\phi_1(C) = \phi_1(C) \circ \phi_1(C)$

$$
\bullet \ C ::= [\cdot] \ \mathsf{then} \ \phi_\mathbf{1}(C) = \mathit{Id}
$$

•
$$
A ::= B
$$
 then $\phi_0(A) = \phi_0(B)$

• $A ::= C[B]$ then $\phi_0(A) = \phi_1(C)(\phi_0(B))$

- If $\phi_0(A) = \top$ then val (A) is not a redex, and every superterm of $val(A)$ is not a redex. This also holds after reducing inside $val(A)$.
- Otherwise $\phi_0(A)$ is the normal form of A

- If $\phi_0(A) = \top$ then val (A) is not a redex, and every superterm of $val(A)$ is not a redex. This also holds after reducing inside $val(A)$.
- Otherwise $\phi_0(A)$ is the normal form of A
- \Rightarrow **Normalization:** Modify G_{Inp} (rules for all $C \in \mathcal{CN}$ unchanged):
	- If $\phi_0(A) = N$ then replace rule for A by $A ::= N$
	- If $\phi_0(A) = \top$ then rule is unchanged, except for:
		- $A ::= C[B]$ and $\phi_0(B) = N \neq \top$:
		- **Split** C into $C_1[C_2]$ using the grammar s.t.
		- $-\phi_1(C_2)(N) \neq \top$ and C_2 is maximal.
		- Replace rule by $A ::= C_1[\phi_1(C_2)(N)]$.
		- Productions for C_1 may increase the size of the grammar by $O(|G_{Inp}|)$

C

B

- If $\phi_0(A) = \top$ then val (A) is not a redex, and every superterm of $val(A)$ is not a redex. This also holds after reducing inside $val(A)$.
- Otherwise $\phi_0(A)$ is the normal form of A
- \Rightarrow **Normalization:** Modify G_{Inp} (rules for all $C \in \mathcal{CN}$ unchanged):
	- If $\phi_0(A) = N$ then replace rule for A by $A ::= N$
	- If $\phi_0(A) = \top$ then rule is unchanged, except for:
		- $A ::= C[B]$ and $\phi_0(B) = N \neq \top$:
		- **Split** C into $C_1[C_2]$ using the grammar s.t.
		- $-\phi_1(C_2)(N) \neq \top$ and C_2 is maximal.
		- Replace rule by $A ::= C_1[\phi_1(C_2)(N)]$.
		- Productions for C_1 may increase the size of the grammar by $O(|G_{Inp}|)$

- If $\phi_0(A) = \top$ then val (A) is not a redex, and every superterm of $val(A)$ is not a redex. This also holds after reducing inside $val(A)$.
- Otherwise $\phi_0(A)$ is the normal form of A
- \Rightarrow **Normalization:** Modify G_{Inp} (rules for all $C \in \mathcal{CN}$ unchanged):
	- If $\phi_0(A) = N$ then replace rule for A by $A ::= N$
	- If $\phi_0(A) = \top$ then rule is unchanged, except for:
		- $A ::= C[B]$ and $\phi_0(B) = N \neq \top$:
		- **Split** C into $C_1[C_2]$ using the grammar s.t.
		- $-\phi_1(C_2)(N) \neq \top$ and C_2 is maximal.
		- Replace rule by $A ::= C_1[\phi_1(C_2)(N)]$.
		- Productions for C_1 may increase the size of the grammar by $O(|G_{Inp}|)$

 C_1

 ϕ_1 ((

Complexity

Let $G := G_{Inp} \cup G_E$

- \bullet Compute a DAG G_T that represents a reduced ground TRS T which is equivalent to G_E using Snyder's algorithm time: $O(|G_E| \cdot \log^2 |G_E|)$, space $|G_T| = O(|G_E|)$
- **2** Optimally compress the DAG G_T time: $O(|G_E \cdot \log |G_E|)$

 \bullet Construct an STG G' that represents the STG-compressed T -normal forms of all term nonterminals of G_{Inp} time: $O(|G|^2+O(|G_{Imp}|\cdot |G_T|\cdot \log(|G_T|))),$ space $|G'|=O(|G|^2)$ Normalization ϕ -computation Normalization

 \bullet Use the Plandowski-Lifshits algorithm to decide whether S_1, S_2 represent the same terms. time: $O(|G'|^3) = O(|G|^6)$

STG-Compressed Equations

If equations E (grammar G_E , resp.) and s, t are STG-compressed: Exact lower bound unknown.

We considered STG-compressed ground TRS G_T and normalization:

• Normalization is NP-hard.

Proof is an encoding of positive SUBSETSUM

• Normalization is in PSPACE. Proof: For a reduction sequence $s_1 \rightarrow s_2 \ldots \rightarrow s_n = nf_T(s_1)$ show: Every grammar corresponding to s_i can be represented in polynomial space.

 \Rightarrow Using normalization does not efficiently work for the STG-compressed case

Conclusion

- \bullet E-word problem is efficiently decidable for DAG-compressed E , STG-compressed input
- We implemented a prototype in about 2000 lines of Haskell code
- \bullet E-word problem for STG-compressed E requires other methods
- But note: Usually the equations E are much smaller than the input terms

Future Work:

- Find a good lower bound for STG-compressed E
- Other open problems for the compressed case: non-ground TRS, completion, etc.