

Congruence Closure of Compressed Terms in Polynomial Time

Manfred Schmidt-Schauß, David Sabel, Altug Anis

Goethe-University, Frankfurt am Main, Germany

FroCoS'11, Saarbrücken

Motivation

- Consider compressed representation of terms to optimize space (and time) usage
- Applications e.g. XML-trees and XML-processing
- Design efficient algorithms on compressed terms without prior decompression
- We use tree grammars as a clean representation of compressed terms

Introduction STGs E-Word Problem Conclusion

Some Previous / Related Work

OETHE O

- Polynomial equality check of grammar compressed strings: Plandowski '94, Lifshits '07
- Equality check of grammar compressed terms: Busatto, Lohrey, Maneth '05; Schmidt-Schauß '05
- Compression of XML documents using tree grammars: Busatto, Lohrey, Maneth '05
- Unification for grammar compressed terms: Gasćon, Godoy, & Schmidt-Schauß '08
- Analysis of **pattern matching** on compressed **terms**: **Schmidt-Schauß** '11

Our Contribution

- Combining equational reasoning with grammar compression for terms
- We consider the special case of ground equations
- In the uncompressed case efficiently decidable $O(n \log n)$ by congruence closure algorithms

Applications e.g. SMT solvers can e.g. deal with equational theories defined by a set of ground equations.

Compressed Representation of Terms

Singleton tree grammars (STG): $G = (TN, CN, \Sigma, R)$

- TN term nonterminals
- Σ signature of function symbols R production rules
- CN context nonterminals

Compressed Representation of Terms

Singleton tree grammars (STG): $G = (TN, CN, \Sigma, R)$

- \mathcal{TN} term nonterminals \mathcal{CN} context nonterminals
- Σ signature of function symbols $\$ R production rules

Side-conditions

- for every $A \in \mathcal{TN}$: $\operatorname{val}_G(A) \in \mathcal{T}(\Sigma)$; for every $C \in \mathcal{C}$: $\operatorname{val}_G(C)$ is a context on $\mathcal{T}(\Sigma)$
- R is acyclic and has exactly one rule for every nonterminal
- Allowed rules in R $(A, A_i \in \mathcal{TN}; C, C_i \in \mathcal{CN}; f \in \Sigma)$

$$egin{aligned} m{A} & ::= m{f}(m{A}_1, \dots, m{A}_m) & m{A}_1 & ::= m{A}_2 & m{A}_1 & ::= m{C}_1[m{A}_2] \ & m{C} & ::= m{f}(m{A}_1, \dots, m{A}_i, [m{\cdot}], m{A}_{i+2}, \dots, m{A}_m) & m{C} & ::= [m{\cdot}] & m{C} & ::= m{C}_1[m{C}_2] \end{aligned}$$

Compressed Representation of Terms

Singleton tree grammars (STG): $G = (TN, CN, \Sigma, R)$

- \mathcal{TN} term nonterminals \mathcal{CN} context nonterminals
- Σ signature of function symbols R production rules

Side-conditions

- for every $A \in \mathcal{TN}$: $\operatorname{val}_G(A) \in \mathcal{T}(\Sigma)$; for every $C \in \mathcal{C}$: $\operatorname{val}_G(C)$ is a context on $\mathcal{T}(\Sigma)$
- \bullet R is acyclic and has exactly one rule for every nonterminal
- Allowed rules in R $(A, A_i \in \mathcal{TN}; C, C_i \in \mathcal{CN}; f \in \Sigma)$

$$\begin{aligned} \mathbf{A} &::= \mathbf{f}(\mathbf{A}_1, \dots, \mathbf{A}_m) \qquad \mathbf{A}_1 &::= \mathbf{A}_2 \qquad \mathbf{A}_1 &::= \mathbf{C}_1[\mathbf{A}_2] \\ \mathbf{C} &::= \mathbf{f}(\mathbf{A}_1, \dots, \mathbf{A}_i, [\cdot], \mathbf{A}_{i+2}, \dots, \mathbf{A}_m) \qquad \mathbf{C} &::= [\cdot] \qquad \mathbf{C} &::= \mathbf{C}_1[\mathbf{C}_2] \\ \text{An STG is a directed acyclic graph (DAG), if } \mathcal{CN} &= \emptyset. \end{aligned}$$

DAGs allow sharing of subtrees

 $\begin{smallmatrix}f\\&C_8\\&\downarrow\\b\end{smallmatrix}$ $C_8:$ C_8 \boldsymbol{g} $\stackrel{\downarrow}{m{a}}$ g \boldsymbol{g} gg g**g** g $[\cdot]$

 $\begin{smallmatrix} f \\ & \ddots \\ & C_8 \\ & \stackrel{+}{b} \end{smallmatrix}$ $C_8:$ C_8 $\stackrel{\downarrow}{a}$ ·

$$\begin{array}{rcl} A_1 & ::= & f(A_2, A_3) & C_1 & ::= & g([\cdot]) \\ A_2 & ::= & C_8[A_4] & C_2 & ::= & g[C_1] \\ A_3 & ::= & C_8[A_5] & C_4 & ::= & C_2[C_2] \\ A_4 & ::= & a & C_8 & ::= & C_4[C_4] \\ A_5 & ::= & b \end{array}$$

Compression and Equality Check

GOETHE GOETHE

Size |G| of STG G = sum of sizes of all rhs of all production rules

 $\operatorname{val}_G(A) = \operatorname{term}$ generated by nonterminal A in grammar G

For every STG: term size and depth of $val_G(A) = O(2^{|G|})$

Example

Proposition (Busatto, Lohrey, Maneth '05; Plandowski '94; Lifshits '07)

For an STG G and two term nonterminals A_1, A_2 it can be decided in $O(|G|^3)$ whether $val_G(A_1) = val_G(A_2)$ holds.

The *E*-Word Problem

- Given a set ground equations $E = \{u_1 = v_1, \dots, u_n = v_n\}$
- Let $=_E$ be the smallest congruence on terms satisfying E

For ground terms s_1, s_2 the *E*-word problem is the question whether $s_1 =_E s_2$ holds.

We analyze this problem under compression:

- *E* and s₁, s₂ DAG-compressed: decidable in time O(n log n) by computing the congruence closure where n is the size of the input
- E and s_1, s_2 **STG**-compressed: obviously in DEXPTIME, exact lower bound unknown
- *E* DAG-compressed, *s*₁, *s*₂ STG-compressed: our main result: decidable in polynomial time

Algorithm

Input: – Ground equations $L_1 = R_1, \ldots, L_n = R_n$ where

 L_i, R_i are nonterminals of DAG G_E ,

– Nonterminals S_1, S_2 of STG G_{Inp} representing terms s_1, s_2

Output: Yes or No $(s_1 =_E s_2)$

- Compute a DAG G_T that represents a reduced ground TRS T which is equivalent to G_E using Snyder's algorithm (Snyder '89, '93)
- Optimally compress the DAG G_T (Kozen' 77; Shostak '78; Nelson & Oppen '80)
- Construct an STG G' that represents the STG-compressed T-normal forms of all term nonterminals of G_{Inp}
- Use the Plandowski-Lifshits algorithm to decide whether S₁, S₂ represent the same terms.

E-word problem: STG-compr. Terms, DAG-compr. Equations

Algorithm

Input: – Ground equations $L_1 = R_1, \ldots, L_n = R_n$ where

 L_i, R_i are nonterminals of DAG G_E ,

– Nonterminals S_1, S_2 of STG G_{Inp} representing terms s_1, s_2

Output: Yes or No $(s_1 =_E s_2)$

- Compute a DAG G_T that represents a reduced ground TRS T which is equivalent to G_E using Snyder's algorithm (Snyder '89, '93)
- Optimally compress the DAG G_T (Kozen' 77; Shostak '78; Nelson & Oppen '80)
- Construct an STG G' that represents the STG-compressed T-normal forms of all term nonterminals of G_{Inp}
- Use the Plandowski-Lifshits algorithm to decide whether S_1, S_2 represent the same terms.

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i \rightarrow R_i$, – STG G_{Inp}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- Reduced & ground TRS
 - \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i \rightarrow R_i$, – STG G_{Inp}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- Reduced & ground TRS
 - \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i \rightarrow R_i$, – STG G_{Inp}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- Reduced & ground TRS
 - \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i \rightarrow R_i$, – STG G_{Inp}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- Reduced & ground TRS
 - \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i \rightarrow R_i$, – STG G_{Inp}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- Reduced & ground TRS
 - \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i \rightarrow R_i$, – STG G_{Inp}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- Reduced & ground TRS
 - \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i \rightarrow R_i$, – STG G_{Inp}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- Reduced & ground TRS
 - \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i \rightarrow R_i$, – STG G_{Inp}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- Reduced & ground TRS
 - \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i \rightarrow R_i$, – STG G_{Inp}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- Reduced & ground TRS
 - \Rightarrow normalization can be performed bottom up,

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i \rightarrow R_i$, – STG G_{Inp}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- Reduced & ground TRS
 - ⇒ normalization can be performed bottom up, since every contractum is irreducible
- val(G_{Inp}) may have identical redexes at exponential many positions
- But the STG-representation shares the positions

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i \rightarrow R_i$, – STG G_{Inp}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- $\bullet~\mbox{Reduced}$ & ground TRS
 - ⇒ normalization can be performed bottom up, since every contractum is irreducible
- val(G_{Inp}) may have identical redexes at exponential many positions
- But the STG-representation shares the positions
- Normalization can also be "shared", like a parallel rewriting step

Input: – Reduced ground TRS T as DAG G_T with nonterminals $L_i \rightarrow R_i$, – STG G_{Inp}

Output: Compute the T-normalforms of all terms represented by G_{Inp}

- $\bullet~\mbox{Reduced}$ & ground TRS
 - ⇒ normalization can be performed bottom up, since every contractum is irreducible
- val(G_{Inp}) may have identical redexes at exponential many positions
- But the STG-representation shares the positions
- Normalization can also be "shared", like a parallel rewriting step

Algorithm has two phases:

Phase 1: Compute tables ϕ_0, ϕ_1 for the normalforms of almost all nonterminals by dynamic programming **Phase 2:** Use ϕ_0, ϕ_1 to "normalize" G_{Inp}

Phase 1: ϕ -Computation

subterms
$$(G_T) = \bigcup_i \{A \mid L_i \xrightarrow{+}_{G_T} A\} \cup \bigcup_i \{R_i\} \cup \{\top\}$$

" \top and all nodes of G_T without L_i and proper subterms of R_i "

Compute two tables bottom up along the grammar G_{Inp}

- For every term nonterminal A of G_{Inp} : $\phi_0(A) \in \text{subterms}(G_T)$ - $\phi_0(A) = N$, if $\text{val}(N) = \text{nf}_T(\text{val}(A))$
 - $-\phi_0(A) = \top$, otherwise

Informally: If $\phi_0(A) = \top$, then normalization stops above A

ϕ -Computation

Computing $\phi_0(A)$ for $A ::= f(A_1, \ldots, A_n)$

- "Normalize all subterms of A", i.e. compute $f(\phi_0(A_1), \ldots, \phi_0(A_n))$
- Does exist a production $N ::= f(\phi_0(A_1), \dots, \phi_0(A_n))$ in G_T ?
- If $N = L_i$, then $\phi_0(A) = R_i$ (found a redex)
- If $N \in \operatorname{subterms}(G_T)$ but $N \neq L_i$, then $\phi_0(A) = N$ $(f(\phi_0(A_1), \dots, \phi_0(A_n))$ maybe a subterm of a redex)
- Otherwise, $\phi_0(A) = \top$ $(f(\phi_0(A_1), \dots, \phi_0(A_n))$ not a redex and not a subterm of a redex)

ϕ -Computation (2)

Other cases

- $C ::= f(A_1, \dots, [\cdot], \dots, A_n)$: compute $f(\phi_0(A_1), \dots, X, \dots, \phi_0(A_n))$ for any $X \in \text{subterms}(G_T)$ expensive case, requires time $O(|G_T| \cdot \log |G_T|)$
- $C ::= C_1[C_2]$ then $\phi_1(C) = \phi_1(C) \circ \phi_1(C)$

•
$$C ::= [\cdot]$$
 then $\phi_1(C) = Id$

•
$$A ::= B$$
 then $\phi_0(A) = \phi_0(B)$

• A ::= C[B] then $\phi_0(A) = \phi_1(C)(\phi_0(B))$

- If φ₀(A) = ⊤ then val(A) is not a redex, and every superterm of val(A) is not a redex. This also holds after reducing inside val(A).
- Otherwise $\phi_0(A)$ is the normal form of A

- If φ₀(A) = ⊤ then val(A) is not a redex, and every superterm of val(A) is not a redex. This also holds after reducing inside val(A).
- Otherwise $\phi_0(A)$ is the normal form of A
- \Rightarrow **Normalization:** Modify G_{Inp} (rules for all $C \in CN$ unchanged):
 - If $\phi_0(A) = N$ then replace rule for A by A ::= N
 - If $\phi_0(A) = \top$ then rule is unchanged, except for:
 - $A ::= \mathbf{C}[\mathbf{B}] \text{ and } \phi_{\mathbf{0}}(B) = N \neq \top$:
 - **Split** C into $C_1[C_2]$ using the grammar s.t.
 - $-\phi_1(C_2)(N) \neq \top$ and C_2 is maximal.
 - Replace rule by $A ::= C_1[\phi_1(C_2)(N)].$
 - Productions for C_1 may **increase the size** of the grammar by $O(|G_{Inp}|)$

- If φ₀(A) = ⊤ then val(A) is not a redex, and every superterm of val(A) is not a redex. This also holds after reducing inside val(A).
- Otherwise $\phi_0(A)$ is the normal form of A
- \Rightarrow **Normalization:** Modify G_{Inp} (rules for all $C \in CN$ unchanged):
 - If $\phi_0(A) = N$ then replace rule for A by A ::= N
 - If $\phi_0(A) = \top$ then rule is unchanged, except for:
 - $A ::= \mathbb{C}[\mathbb{B}]$ and $\phi_0(B) = N \neq \top$:
 - **Split** C into $C_1[C_2]$ using the grammar s.t.
 - $-\phi_1(C_2)(N) \neq \top$ and C_2 is maximal.
 - Replace rule by $A ::= C_1[\phi_1(C_2)(N)].$
 - Productions for C_1 may increase the size of the grammar by $O(|G_{Inp}|)$

- If φ₀(A) = ⊤ then val(A) is not a redex, and every superterm of val(A) is not a redex. This also holds after reducing inside val(A).
- Otherwise $\phi_0(A)$ is the normal form of A
- \Rightarrow **Normalization:** Modify G_{Inp} (rules for all $C \in CN$ unchanged):
 - If $\phi_0(A) = N$ then replace rule for A by A ::= N
 - If $\phi_0(A) = \top$ then rule is unchanged, except for:
 - $A ::= \mathbb{C}[\mathbb{B}]$ and $\phi_0(B) = N \neq \top$:
 - **Split** C into $C_1[C_2]$ using the grammar s.t.
 - $-\phi_1(C_2)(N) \neq \top$ and C_2 is maximal.
 - Replace rule by $A ::= C_1[\phi_1(C_2)(N)].$
 - Productions for C_1 may increase the size of the grammar by $O(|G_{Inp}|)$

 $\phi_1(0$

Complexity

Let $G := G_{Inp} \cup G_E$

- Compute a DAG G_T that represents a reduced ground TRS T which is equivalent to G_E using Snyder's algorithm time: $O(|G_E| \cdot \log^2 |G_E|)$, space $|G_T| = O(|G_E|)$
- Optimally compress the DAG G_T time: $O(|G_E \cdot \log |G_E|)$

• Construct an STG G' that represents the STG-compressed T-normal forms of all term nonterminals of G_{Inp} time: $O(|G|^2 + O(|G_{Inp}| \cdot |G_T| \cdot \log(|G_T|)))$, space $|G'| = O(|G|^2)$ Normalization ϕ -computation Normalization

Use the Plandowski-Lifshits algorithm to decide whether S₁, S₂ represent the same terms.
time: O(|G'|³) = O(|G|⁶)

STG-Compressed Equations

If equations E (grammar G_E , resp.) and s, t are STG-compressed: Exact lower bound unknown.

We considered STG-compressed ground TRS ${\cal G}_{\cal T}$ and normalization:

• Normalization is NP-hard.

Proof is an encoding of positive SUBSETSUM

Normalization is in PSPACE.
Proof: For a reduction sequence s₁ → s₂... → s_n = nf_T(s₁) show: Every grammar corresponding to s_i can be represented in polynomial space.

 \Rightarrow Using normalization does not efficiently work for the STG-compressed case

Conclusion

- *E*-word problem is efficiently decidable for DAG-compressed *E*, STG-compressed input
- We implemented a prototype in about 2000 lines of Haskell code
- *E*-word problem for STG-compressed *E* requires other methods
- But note: Usually the equations ${\cal E}$ are much smaller than the input terms

Future Work:

- Find a good lower bound for STG-compressed E
- Other open problems for the compressed case: non-ground TRS, completion, etc.