

1

Congruence Closure of Compressed Terms

in Polynomial Time

Manfred Schmidt-Schauß, David Sabel, Altug Anis

Goethe-University, Frankfurt am Main, Germany

FroCoS’11, Saarbrücken

Introduction STGs E-Word Problem Conclusion

Motivation

Consider compressed representation of terms
to optimize space (and time) usage

Applications e.g. XML-trees and XML-processing

Design efficient algorithms on compressed terms without prior
decompression

We use tree grammars as a clean representation of
compressed terms

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 2/18

Introduction STGs E-Word Problem Conclusion

Some Previous / Related Work

Polynomial equality check of grammar compressed strings:
Plandowski ’94, Lifshits ’07

Equality check of grammar compressed terms:
Busatto, Lohrey, Maneth ’05; Schmidt-Schauß ’05

Compression of XML documents using tree grammars:
Busatto, Lohrey, Maneth ’05

Unification for grammar compressed terms:
Gasćon, Godoy, & Schmidt-Schauß ’08

Analysis of pattern matching on compressed terms:
Schmidt-Schauß ’11

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 3/18

Introduction STGs E-Word Problem Conclusion

Our Contribution

Combining equational reasoning with
grammar compression for terms

We consider the special case of ground equations

In the uncompressed case efficiently decidable O(n log n) by
congruence closure algorithms

Applications e.g. SMT solvers can e.g. deal with equational
theories defined by a set of ground equations.

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 4/18

Introduction STGs E-Word Problem Conclusion

Compressed Representation of Terms

Singleton tree grammars (STG): G = (T N , CN , Σ, R)

T N term nonterminals CN context nonterminals
Σ signature of function symbols R production rules

Side-conditions

for every A ∈ T N : valG(A) ∈ T (Σ);
for every C ∈ C: valG(C) is a context on T (Σ)
R is acyclic and has exactly one rule for every nonterminal

Allowed rules in R (A, Ai ∈ T N ; C, Ci ∈ CN ; f ∈ Σ)

A ::= f(A1, . . . ,Am) A1 ::= A2 A1 ::= C1[A2]

C ::= f(A1, . . . ,Ai, [·], Ai+2, . . . ,Am) C ::= [·] C ::= C1[C2]

An STG is a directed acyclic graph (DAG), if CN = ∅.

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 5/18

Introduction STGs E-Word Problem Conclusion

Compressed Representation of Terms

Singleton tree grammars (STG): G = (T N , CN , Σ, R)

T N term nonterminals CN context nonterminals
Σ signature of function symbols R production rules

Side-conditions

for every A ∈ T N : valG(A) ∈ T (Σ);
for every C ∈ C: valG(C) is a context on T (Σ)
R is acyclic and has exactly one rule for every nonterminal

Allowed rules in R (A, Ai ∈ T N ; C, Ci ∈ CN ; f ∈ Σ)

A ::= f(A1, . . . ,Am) A1 ::= A2 A1 ::= C1[A2]

C ::= f(A1, . . . ,Ai, [·], Ai+2, . . . ,Am) C ::= [·] C ::= C1[C2]

An STG is a directed acyclic graph (DAG), if CN = ∅.

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 5/18

Introduction STGs E-Word Problem Conclusion

Compressed Representation of Terms

Singleton tree grammars (STG): G = (T N , CN , Σ, R)

T N term nonterminals CN context nonterminals
Σ signature of function symbols R production rules

Side-conditions

for every A ∈ T N : valG(A) ∈ T (Σ);
for every C ∈ C: valG(C) is a context on T (Σ)
R is acyclic and has exactly one rule for every nonterminal

Allowed rules in R (A, Ai ∈ T N ; C, Ci ∈ CN ; f ∈ Σ)

A ::= f(A1, . . . ,Am) A1 ::= A2 A1 ::= C1[A2]

C ::= f(A1, . . . ,Ai, [·], Ai+2, . . . ,Am) C ::= [·] C ::= C1[C2]

An STG is a directed acyclic graph (DAG), if CN = ∅.

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 5/18

Introduction STGs E-Word Problem Conclusion

Examples

DAGs allow sharing of subtrees

f

ag

b

f

ag

b

f

f
=⇒

A2

aA4gA3

bA5

fA1

A1 ::= f(A2, A2)
A2 ::= f(A3, A4)
A3 ::= g(A5)
A4 ::= a
A5 ::= b

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 6/18

Introduction STGs E-Word Problem Conclusion

Examples

STGs additionally allow sharing and compression of contexts

f

g

g

g

g

g

g

g

g

a

g

g

g

g

g

g

g

g

b

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 7/18

Introduction STGs E-Word Problem Conclusion

Examples

STGs additionally allow sharing and compression of contexts

f

g

g

g

g

g

g

g

g

a

g

g

g

g

g

g

g

g

b

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 7/18

Introduction STGs E-Word Problem Conclusion

Examples

STGs additionally allow sharing and compression of contexts

f

C8 C8

a b

C8 :

g

g

g

g

g

g

g

g

[·]

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 7/18

Introduction STGs E-Word Problem Conclusion

Examples

STGs additionally allow sharing and compression of contexts

f

C8 C8

a b

C8 :

g

g

g

g

g

g

g

g

[·]

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 7/18

Introduction STGs E-Word Problem Conclusion

Examples

STGs additionally allow sharing and compression of contexts

f

C8 C8

a b

C8 :

C4

C4

C4 :

g

g

g

g

[·]

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 7/18

Introduction STGs E-Word Problem Conclusion

Examples

STGs additionally allow sharing and compression of contexts

f

C8 C8

a b

C8 :

C4

C4

C4 :

g

g

g

g

[·]

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 7/18

Introduction STGs E-Word Problem Conclusion

Examples

STGs additionally allow sharing and compression of contexts

f

C8 C8

a b

C8 :

C4

C4

C4 :

C2

C2

C2 :

g

g

[·]

A1 ::= f(A2, A3) C1 ::= g([·])
A2 ::= C8[A4] C2 ::= g[C1]
A3 ::= C8[A5] C4 ::= C2[C2]
A4 ::= a C8 ::= C4[C4]
A5 ::= b

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 7/18

Introduction STGs E-Word Problem Conclusion

Compression and Equality Check

Size |G| of STG G = sum of sizes of all rhs of all production rules

valG(A) = term generated by nonterminal A in grammar G

For every STG: term size and depth of valG(A) = O(2|G|)

Example

A ::= Cn[Aa] val(A) = f2n
(a)

Ci+1 ::= Ci[Ci] for i = 1, . . . , n val(Ci) = f2i
([·])

C0 ::= f([·]) val(C0) = f([·])
Aa = a val(Aa) = a

Proposition (Busatto, Lohrey, Maneth ’05; Plandowski ’94; Lifshits ’07)

For an STG G and two term nonterminals A1, A2 it can be decided
in O(|G|3) whether valG(A1) = valG(A2) holds.

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 8/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

The E-Word Problem

Given a set ground equations E = {u1 = v1, . . . , un = vn}
Let =E be the smallest congruence on terms satisfying E

For ground terms s1, s2 the E-word problem
is the question whether s1 =E s2 holds.

We analyze this problem under compression:

E and s1, s2 DAG-compressed:
decidable in time O(n log n) by computing the congruence
closure where n is the size of the input

E and s1, s2 STG-compressed: obviously in DEXPTIME,
exact lower bound unknown

E DAG-compressed, s1, s2 STG-compressed:
our main result: decidable in polynomial time

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 9/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

E-word problem: STG-compr. Terms, DAG-compr. Equations

Algorithm
Input: – Ground equations L1 = R1, . . . , Ln = Rn where

Li, Ri are nonterminals of DAG GE ,
– Nonterminals S1, S2 of STG GInp representing terms s1, s2

Output: Yes or No (s1 =E s2)

1 Compute a DAG GT that represents a reduced ground TRS T which
is equivalent to GE using Snyder’s algorithm (Snyder ’89, ’93)

2 Optimally compress the DAG GT

(Kozen’ 77; Shostak ’78; Nelson & Oppen ’80)

3 Construct an STG G′ that represents the STG-compressed T -normal
forms of all term nonterminals of GInp

4 Use the Plandowski-Lifshits algorithm to decide whether S1, S2

represent the same terms.

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 10/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

E-word problem: STG-compr. Terms, DAG-compr. Equations

Algorithm
Input: – Ground equations L1 = R1, . . . , Ln = Rn where

Li, Ri are nonterminals of DAG GE ,
– Nonterminals S1, S2 of STG GInp representing terms s1, s2

Output: Yes or No (s1 =E s2)

1 Compute a DAG GT that represents a reduced ground TRS T which
is equivalent to GE using Snyder’s algorithm (Snyder ’89, ’93)

2 Optimally compress the DAG GT

(Kozen’ 77; Shostak ’78; Nelson & Oppen ’80)

3 Construct an STG G′ that represents the STG-compressed T -normal
forms of all term nonterminals of GInp

4 Use the Plandowski-Lifshits algorithm to decide whether S1, S2

represent the same terms.

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 10/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Normalform Computation

Input: – Reduced ground TRS T as DAG GT with nonterminals Li → Ri,
– STG GInp

Output: Compute the T -normalforms of all terms represented by GInp

val(GInp)

val(GInp)

Reduced & ground TRS
⇒ normalization can be performed bottom up,

since every contractum is irreducible

val(GInp) may have identical redexes
at exponential many positions

But the STG-representation shares the positions

Normalization can also be “shared”, like a parallel
rewriting step

Algorithm has two phases:
Phase 1: Compute tables φ0, φ1 for the normalforms

of almost all nonterminals by dynamic programming
Phase 2: Use φ0, φ1 to “normalize” GInp

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 11/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Normalform Computation

Input: – Reduced ground TRS T as DAG GT with nonterminals Li → Ri,
– STG GInp

Output: Compute the T -normalforms of all terms represented by GInp

val(GInp)val(GInp)

Reduced & ground TRS
⇒ normalization can be performed bottom up,

since every contractum is irreducible

val(GInp) may have identical redexes
at exponential many positions

But the STG-representation shares the positions

Normalization can also be “shared”, like a parallel
rewriting step

Algorithm has two phases:
Phase 1: Compute tables φ0, φ1 for the normalforms

of almost all nonterminals by dynamic programming
Phase 2: Use φ0, φ1 to “normalize” GInp

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 11/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Normalform Computation

Input: – Reduced ground TRS T as DAG GT with nonterminals Li → Ri,
– STG GInp

Output: Compute the T -normalforms of all terms represented by GInp

val(GInp)val(GInp)

Reduced & ground TRS
⇒ normalization can be performed bottom up,

since every contractum is irreducible

val(GInp) may have identical redexes
at exponential many positions

But the STG-representation shares the positions

Normalization can also be “shared”, like a parallel
rewriting step

Algorithm has two phases:
Phase 1: Compute tables φ0, φ1 for the normalforms

of almost all nonterminals by dynamic programming
Phase 2: Use φ0, φ1 to “normalize” GInp

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 11/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Normalform Computation

Input: – Reduced ground TRS T as DAG GT with nonterminals Li → Ri,
– STG GInp

Output: Compute the T -normalforms of all terms represented by GInp

val(GInp)val(GInp)

Reduced & ground TRS
⇒ normalization can be performed bottom up,

since every contractum is irreducible

val(GInp) may have identical redexes
at exponential many positions

But the STG-representation shares the positions

Normalization can also be “shared”, like a parallel
rewriting step

Algorithm has two phases:
Phase 1: Compute tables φ0, φ1 for the normalforms

of almost all nonterminals by dynamic programming
Phase 2: Use φ0, φ1 to “normalize” GInp

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 11/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Normalform Computation

Input: – Reduced ground TRS T as DAG GT with nonterminals Li → Ri,
– STG GInp

Output: Compute the T -normalforms of all terms represented by GInp

val(GInp)val(GInp)

Reduced & ground TRS
⇒ normalization can be performed bottom up,

since every contractum is irreducible

val(GInp) may have identical redexes
at exponential many positions

But the STG-representation shares the positions

Normalization can also be “shared”, like a parallel
rewriting step

Algorithm has two phases:
Phase 1: Compute tables φ0, φ1 for the normalforms

of almost all nonterminals by dynamic programming
Phase 2: Use φ0, φ1 to “normalize” GInp

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 11/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Normalform Computation

Input: – Reduced ground TRS T as DAG GT with nonterminals Li → Ri,
– STG GInp

Output: Compute the T -normalforms of all terms represented by GInp

val(GInp)val(GInp)

Reduced & ground TRS
⇒ normalization can be performed bottom up,

since every contractum is irreducible

val(GInp) may have identical redexes
at exponential many positions

But the STG-representation shares the positions

Normalization can also be “shared”, like a parallel
rewriting step

Algorithm has two phases:
Phase 1: Compute tables φ0, φ1 for the normalforms

of almost all nonterminals by dynamic programming
Phase 2: Use φ0, φ1 to “normalize” GInp

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 11/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Normalform Computation

Input: – Reduced ground TRS T as DAG GT with nonterminals Li → Ri,
– STG GInp

Output: Compute the T -normalforms of all terms represented by GInp

val(GInp)val(GInp)

Reduced & ground TRS
⇒ normalization can be performed bottom up,

since every contractum is irreducible

val(GInp) may have identical redexes
at exponential many positions

But the STG-representation shares the positions

Normalization can also be “shared”, like a parallel
rewriting step

Algorithm has two phases:
Phase 1: Compute tables φ0, φ1 for the normalforms

of almost all nonterminals by dynamic programming
Phase 2: Use φ0, φ1 to “normalize” GInp

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 11/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Normalform Computation

Input: – Reduced ground TRS T as DAG GT with nonterminals Li → Ri,
– STG GInp

Output: Compute the T -normalforms of all terms represented by GInp

val(GInp)val(GInp)

Reduced & ground TRS
⇒ normalization can be performed bottom up,

since every contractum is irreducible

val(GInp) may have identical redexes
at exponential many positions

But the STG-representation shares the positions

Normalization can also be “shared”, like a parallel
rewriting step

Algorithm has two phases:
Phase 1: Compute tables φ0, φ1 for the normalforms

of almost all nonterminals by dynamic programming
Phase 2: Use φ0, φ1 to “normalize” GInp

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 11/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Normalform Computation

Input: – Reduced ground TRS T as DAG GT with nonterminals Li → Ri,
– STG GInp

Output: Compute the T -normalforms of all terms represented by GInp

val(GInp)val(GInp)

Reduced & ground TRS
⇒ normalization can be performed bottom up,

since every contractum is irreducible

val(GInp) may have identical redexes
at exponential many positions

But the STG-representation shares the positions

Normalization can also be “shared”, like a parallel
rewriting step

Algorithm has two phases:
Phase 1: Compute tables φ0, φ1 for the normalforms

of almost all nonterminals by dynamic programming
Phase 2: Use φ0, φ1 to “normalize” GInp

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 11/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Normalform Computation

Input: – Reduced ground TRS T as DAG GT with nonterminals Li → Ri,
– STG GInp

Output: Compute the T -normalforms of all terms represented by GInp

val(GInp)

val(GInp)

Reduced & ground TRS
⇒ normalization can be performed bottom up,

since every contractum is irreducible

val(GInp) may have identical redexes
at exponential many positions

But the STG-representation shares the positions

Normalization can also be “shared”, like a parallel
rewriting step

Algorithm has two phases:
Phase 1: Compute tables φ0, φ1 for the normalforms

of almost all nonterminals by dynamic programming
Phase 2: Use φ0, φ1 to “normalize” GInp

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 11/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Normalform Computation

Input: – Reduced ground TRS T as DAG GT with nonterminals Li → Ri,
– STG GInp

Output: Compute the T -normalforms of all terms represented by GInp

val(GInp)val(GInp)

Reduced & ground TRS
⇒ normalization can be performed bottom up,

since every contractum is irreducible

val(GInp) may have identical redexes
at exponential many positions

But the STG-representation shares the positions

Normalization can also be “shared”, like a parallel
rewriting step

Algorithm has two phases:
Phase 1: Compute tables φ0, φ1 for the normalforms

of almost all nonterminals by dynamic programming
Phase 2: Use φ0, φ1 to “normalize” GInp

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 11/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Normalform Computation

Input: – Reduced ground TRS T as DAG GT with nonterminals Li → Ri,
– STG GInp

Output: Compute the T -normalforms of all terms represented by GInp

val(GInp)val(GInp)

Reduced & ground TRS
⇒ normalization can be performed bottom up,

since every contractum is irreducible

val(GInp) may have identical redexes
at exponential many positions

But the STG-representation shares the positions

Normalization can also be “shared”, like a parallel
rewriting step

Algorithm has two phases:
Phase 1: Compute tables φ0, φ1 for the normalforms

of almost all nonterminals by dynamic programming
Phase 2: Use φ0, φ1 to “normalize” GInp

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 11/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Phase 1: φ-Computation

subterms(GT) =
⋃
i
{A | Li

+−→GT
A} ∪

⋃
i
{Ri} ∪ {>}

“> and all nodes of GT without Li and proper subterms of Ri”

Compute two tables bottom up along the grammar GInp

For every term nonterminal A of GInp: φ0(A) ∈ subterms(GT)
– φ0(A) = N , if val(N) = nfT (val(A))
– φ0(A) = >, otherwise

For every context nonterminal C of GInp:
φ1(C) :: subterms(GT) → subterms(GT) represents the mapping
behavior of C on subterms(GT) after normalization

Informally: If φ0(A) = >, then normalization stops above A

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 12/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

φ-Computation

Computing φ0(A) for A ::= f(A1, . . . , An)
“Normalize all subterms of A”, i.e. compute f(φ0(A1), . . . ,φ0(An))
Does exist a production N ::= f(φ0(A1), . . . ,φ0(An)) in GT ?

If N = Li, then φ0(A) = Ri (found a redex)

If N ∈ subterms(GT) but N 6= Li, then φ0(A) = N
(f(φ0(A1), . . . ,φ0(An)) maybe a subterm of a redex)

Otherwise, φ0(A) = >
(f(φ0(A1), . . . ,φ0(An)) not a redex and not a subterm of a redex)

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 13/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

φ-Computation (2)

Other cases

C ::= f(A1, . . . , [·], . . . , An):
compute f(φ0(A1), . . . , X, . . . ,φ0(An)) for any X ∈ subterms(GT)
expensive case, requires time O(|GT | · log |GT |)
C ::= C1[C2] then φ1(C) = φ1(C) ◦ φ1(C)
C ::= [·] then φ1(C) = Id
A ::= B then φ0(A) = φ0(B)
A ::= C[B] then φ0(A) = φ1(C)(φ0(B))

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 14/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Phase 2: Normalization using φ

If φ0(A) = > then val(A) is not a redex, and every superterm of
val(A) is not a redex. This also holds after reducing inside val(A).
Otherwise φ0(A) is the normal form of A

⇒ Normalization: Modify GInp (rules for all C ∈ CN unchanged):

If φ0(A) = N then replace rule for A by A ::= N

If φ0(A) = > then rule is unchanged, except for:

A ::= C[B] and φ0(B) = N 6= >:

– Split C into C1[C2] using the grammar s.t.
– φ1(C2)(N) 6= > and C2 is maximal.
– Replace rule by A ::= C1[φ1(C2)(N)].

– Productions for C1 may increase the size of
the grammar by O(|GInp|)

φ1(C2)(N)

C

B

C2

C1

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 15/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Phase 2: Normalization using φ

If φ0(A) = > then val(A) is not a redex, and every superterm of
val(A) is not a redex. This also holds after reducing inside val(A).
Otherwise φ0(A) is the normal form of A

⇒ Normalization: Modify GInp (rules for all C ∈ CN unchanged):

If φ0(A) = N then replace rule for A by A ::= N

If φ0(A) = > then rule is unchanged, except for:

A ::= C[B] and φ0(B) = N 6= >:

– Split C into C1[C2] using the grammar s.t.
– φ1(C2)(N) 6= > and C2 is maximal.
– Replace rule by A ::= C1[φ1(C2)(N)].

– Productions for C1 may increase the size of
the grammar by O(|GInp|)

φ1(C2)(N)

C

B

C2

C1

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 15/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Phase 2: Normalization using φ

If φ0(A) = > then val(A) is not a redex, and every superterm of
val(A) is not a redex. This also holds after reducing inside val(A).
Otherwise φ0(A) is the normal form of A

⇒ Normalization: Modify GInp (rules for all C ∈ CN unchanged):

If φ0(A) = N then replace rule for A by A ::= N

If φ0(A) = > then rule is unchanged, except for:

A ::= C[B] and φ0(B) = N 6= >:

– Split C into C1[C2] using the grammar s.t.
– φ1(C2)(N) 6= > and C2 is maximal.
– Replace rule by A ::= C1[φ1(C2)(N)].

– Productions for C1 may increase the size of
the grammar by O(|GInp|)

φ1(C2)(N)

C

B

C2

C1

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 15/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Phase 2: Normalization using φ

If φ0(A) = > then val(A) is not a redex, and every superterm of
val(A) is not a redex. This also holds after reducing inside val(A).
Otherwise φ0(A) is the normal form of A

⇒ Normalization: Modify GInp (rules for all C ∈ CN unchanged):

If φ0(A) = N then replace rule for A by A ::= N

If φ0(A) = > then rule is unchanged, except for:

A ::= C[B] and φ0(B) = N 6= >:

– Split C into C1[C2] using the grammar s.t.
– φ1(C2)(N) 6= > and C2 is maximal.
– Replace rule by A ::= C1[φ1(C2)(N)].

– Productions for C1 may increase the size of
the grammar by O(|GInp|)

φ1(C2)(N)

C

B

C2

C1

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 15/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

Complexity

Let G := GInp ∪GE

1 Compute a DAG GT that represents a reduced ground TRS T which
is equivalent to GE using Snyder’s algorithm
time: O(|GE | · log2 |GE |), space |GT | = O(|GE |)

2 Optimally compress the DAG GT

time: O(|GE · log |GE |)
3 Construct an STG G′ that represents the STG-compressed T -normal

forms of all term nonterminals of GInp

time:O(|G|2︸︷︷︸
Normalization

+ O(|GInp| · |GT | · log(|GT |))︸ ︷︷ ︸
φ-computation

), space |G′| = O(|G|2)︸ ︷︷ ︸
Normalization

4 Use the Plandowski-Lifshits algorithm to decide whether S1, S2

represent the same terms.
time: O(|G′|3) = O(|G|6)

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 16/18

Introduction STGs E-Word Problem Conclusion TRS as DAG and Input as STG STG-Compressed Equations

STG-Compressed Equations

If equations E (grammar GE ,resp.) and s, t are STG-compressed:
Exact lower bound unknown.

We considered STG-compressed ground TRS GT and
normalization:

Normalization is NP-hard.
Proof is an encoding of positive SUBSETSUM

Normalization is in PSPACE.
Proof: For a reduction sequence s1 → s2 . . . → sn = nfT (s1)
show: Every grammar corresponding to si can be represented
in polynomial space.

⇒ Using normalization does not efficiently work for the
STG-compressed case

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 17/18

Introduction STGs E-Word Problem Conclusion

Conclusion

E-word problem is efficiently decidable for DAG-compressed E,
STG-compressed input

We implemented a prototype in about 2000 lines of Haskell code

E-word problem for STG-compressed E requires other methods

But note: Usually the equations E are much smaller than the input
terms

Future Work:

Find a good lower bound for STG-compressed E

Other open problems for the compressed case: non-ground TRS,
completion, etc.

D. Sabel Congruence Closure of Compressed Terms in Polynomial Time 18/18

	Introduction
	STGs
	E-Word Problem
	Conclusion

