GOETHE @4

UNIVERSITAT

FRANKFURT AM MAIN

A Contextual Semantics for
Concurrent Haskell with Futures

David Sabel & Manfred Schmidt-SchauB3

Goethe-University, Frankfurt am Main, Germany

PPDP’'11, Odense, Denmark

Introduction

Motivation CvERSITAY

@ Haskell's monadic 10 allows a clean separation of
pure functional expressions and side-effects

e Concurrent Haskell (Peyton Jones, Gordon, Finne 1996)
extends Haskell by concurrency

@ We propose to extend Concurrent Haskell by
concurrent futures to obtain a more
declarative programming style for concurrency

@ Our language model: process calculus CHF
inspired by (Peyton Jones, 2001) and (Niehren et. al. 2006)

Concurrent Haskell with Futures 2/19

Issues corn @

UNIVERSITAT

Is Concurrent Haskell with Futures “semantically sound”?

o Correctness of compiler optimizations
and program transformations

@ Do monad laws hold?

@ Requires a notion of program equivalence

Concurrent Haskell with Futures 3/19

Introduction

Futures CvERSITAY

Future = Variable whose value becomes available in the future
We consider concurrent, imperative, implicit futures:

@ concurrent: the value is computed by a concurrent thread

@ imperative: the value is obtained by a monadic computation
in the I0-monad.

e implicit: threads implicitly block until the demanded value of
a future is available, no explicit force required

Declarative style:
Implicit futures allow implicit synchronisation by data dependency

Example: do
x1 < future el
x2 < future e2
print (x1 + x2)

Concurrent Haskell with Futures 4/19

Concurrent Haskell cormne B

Concurrent Haskell = Haskell + threads 4+ MVars (synchronizing variables)
@ Thread creation: forkI0O :: I0 a — I0 Threadld
@ MVar creation: newMVar :: a — I0 (MVar a)
@ Reading a filled MVar: takeMVar :: MVar a — I0 a
o Writing into an empty MVar: putMvar :: MVar a — a — I0 O

Encoding implicit futures in Concurrent Haskell using lazy 10:

future :: I0 a — I0 a

future act = do ack <—newEmptyMVar
thread <forkIO (act >»>= putMVar ack)
unsafeInterleaveI0 (takeMVar ack)

Concurrent Haskell with Futures 5/19

Calculus CHF

The Process Calculus CHF: Syntax ol
Processes
P, P; € Proc Py | P, (parallel composition)

| wvax.P (name restriction)

| x<e (concurrent thread, future z)
| x=-e (binding)

| xme (filled MVar)

| xm— (empty MVar)

main

A process has a main thread: z <=¢e | P

Concurrent Haskell with Futures 6/19

Calculus CHF

The Process Calculus CHF: Syntax e
Processes
P, P; € Proc Py | P, (parallel composition)

| wvax.P (name restriction)

| x<e (concurrent thread, future z)
| x=-e (binding)

| xme (filled MVar)

| xm— (empty MVar)

main

A process has a main thread: z <=¢e | P

Expressions & Monadic Expressions

e,e; € Expri=me | z | Az.e | (e1e2) | seqerea | cer...eu
| caser eof ...(c1; x1. - Tar(ep) — €i)...
| letrecx;=¢€; ... z, =ey ine

me € MExpr::= return e | e; »= ey | futuree
| takeMVar ¢ | newMVar e¢ | putMVar e; ey

Concurrent Haskell with Futures 6/19

Calculus CHF

The Process Calculus CHF: Typing e

Syntax of (monomorphic) types
€ Typ=T 7 ...)| 71— 72| I07|MVar 7 J

Type system:
@ Usual monomorphic type system with recursive data constructors

@ An exception is seq :: 7] — Ty — T2
71 must not be an I0- or MVar-type

Otherwise, the monad laws would not hold even in usual Haskell!

Example: left unit law: (return e;)»=ey # (e2 €1)

Prelude> seq ((return True >>= undefined)::I0 ()) True
True

Prelude> seq ((undefined True)::I0 ()) True

*** Exception: Prelude.undefined

Concurrent Haskell with Futures 7/19

Calculus CHF

Operational Semantics B
Structural congruence = (similar as in the w-calculus)
Pl | PQ = P2 | Pl
(Pl P) | Ps=P | (Py] Ps)
(ve.P1) | Po=ve.(P1 | P), ifx g FV(Ps)
ve,.ves. P = veg.ve, P
P1 EPQ, IfPl :aP2
D[P] = D[R], if P, = P2, D a process context
Process contexts: D =[] | DI P | PID | ve.D

Operational Semantics: Reduction P, -5 P,
@ Small-step reduction
@ Rules are closed w.r.t. = and ID-contexts

@ Reduction rules for monadic computation and functional
evaluation

Concurrent Haskell with Futures 8/19

Calculus CHF

Rules for Monadic Computations J‘
e performed inside monadic contexts: M =[] | M>»=e
o direct implementation of the monad:

(lunit) z < Mlreturn e; »= ey] 2 < Mle €]

future creation:

(fork) = < M[future ¢] 2 vy.(x < Mreturn y] | y <e), y fresh

completed evaluation of a future:

(unlO) y <return e = y = e, if the thread is not the main-thread
@ operations on MVars:

(nmvar) y <= M[newMVar ¢] 2 vz.(y < M[return z] | zme)

(tmvar) y <= M[takeMVar z] | tme 5 y <= M[return €] | zm —

pmvar) y < M[putMVar = €] | zm — =5 3 <= M[return | zme
P

Concurrent Haskell with Futures 9/19

Rules for Functional Evaluation cormne B

Functional evaluation performs call-by-need evaluation with sharing
@ Sharing S-reduction:
(Ibeta) L[((Az.e1) e2)] 5 va.(Lle] | = e2)
@ Copying abstractions & variables:
(cp) IE[QS] lz =0]IAJ[U] | x = v, v an abstraction or a variable

o further rules for copying constructors, case- and seg-reduction,
and letrec

@ monadic operators are treated like constructors
L-contexts: L::=x < M[F]

| * =M[F[z,]] | 2 = Eplzn-1] |...| 22 = Eg[z1] | 21 =
evaluation contexts: E :=[] | (Ee) | (case E of alts) | (seq E e)

forcing contexts: F :=E | (takeMVar E) | (putMVar E e)

Concurrent Haskell with Futures 10/19

Equivalence

Program Equivalence

Process P is successful if _
P well-formed A P = v (x &= return e | P')

May-Convergence: (a successful process can be reached by reduction)
Pl iff Pis w-f. and 3P": P 225 P/ A P’ successful

Should-Convergence: (every successor is may-convergent)
ST ,%

Pl iff Pisw.-f. and VP': P —» P — P'|

Contextual Equivalence
P ~. P, iff VD: (D[P]) < D[R]]) A (DA <~]D)[Pg]iL)J

Analogous on expressions e; of type 7: e1 <. ez and e ~r €.

Concurrent Haskell with Futures 11/19

Fairness J‘

Proposition

U, 4, <c, ~c do not change
if only fair reduction sequences are allowed

An infinite reduction sequence P; 2 Py Zs s unfair if

P Py 2 L has an infinite suffix P; =, Pjiq LN
where a (reducible) thread is never reduced

Concurrent Haskell with Futures 9

Equivalence

Context Lemma corrue. B

UNIVERSITAT

A proof tool to show equivalences:

Context Lemma for Expressions
If VD[L[-7]-contexts:

DL{e1]ly < D[L{ez]] and DLLes]|§ <= D[L{es]]Y

Then e ~¢r €.

Concurrent Haskell with Futures 13/19

Results: Call-by-name Evaluation is Correct o

Call-by-name Reduction
Small-step reduction == with full substitution, no sharing:

(cpce) y<=MFz]]lz=e 5 y<=MFle]]lz=¢
(nbeta) y<=MIF[((A\z.e1) e2)]] == y <= M[F[ey[ea/]]]
(ncase) y<M]F[caser (cey ... ey)of ...((cy1 ... yn) —€)...]]

src

— y<=MFle[ei/y1, ..., en/yn]]]

dores Yopet call-by-name may- & should-convergence

Theorem
P| <= P|l,..and P| < Pl,. }

Concurrent Haskell with Futures 14/19

Outline of the Proof CvERSITAY

Translation IT :: CHF — CHFI unfolds all bindings into infinite trees, e.g.

= :
T (Z!.it;:c xs = (True : zs) > _ True) \/ : “
i :
rue P
True

Steps of the proof
o CHFI = calculus with infinite trees, no letrec, no bindings
o Call-by-name reduction on infinite trees
@ Convergence equivalence: tree reduction and call-by-need reduction

@ Convergence equivalence: tree reduction and call-by-name reduction

Concurrent Haskell with Futures 15/19

Correct Program Transformations oere £

UNIVERSITAT

Correctness

A transformation on processes P, — P» is correct iff P, ~. P
A transformation on expressions e; — eg is correct iff e; ~ €2

Results on Reductions

@ All rules for functional evaluation are correct in any context
@ (sr, lunit), (sr,nmvar), (sr,fork), (unlO) are correct

@ (sr,tmvar) and (sr, pmvar) are in general not correct

@ Deterministic take and put are correct:

vz D[y < M[takeMVar z] | z me] — vz.D[y <M]|return e] | zm —]
if no other takeMVar on x is possible in any context

ve.D[y < M[putMVar z e] | tm—] — vz.Djy < M[return ()] | zme]
if no other putMVar on z is possible in any context

v

Concurrent Haskell with Futures 16/19

Further Transformations and Optimizations o

Results on other transformations
@ General copying (gcp):

(gep) Clz]lza=e—Cle]lx=e
e Garbage collection (gc):

(gc) wvxy,...,zn.(P | Comp(x1) | ... | Comp(xy,)) — P
where every Comp(z;) is
e a binding z; = e;,
e an MVar z; me;, or
e an empty MVar z; m —
and z; & FV(P).

Concurrent Haskell with Futures 17/19

Monad Laws iimg

Theorem
The monad laws

(M1) returne; »= e ~. e e]
(M2) e; »= Ax.return z ~e €]
(M3) e »= (Az.(ea & »= e3)) ~. (e1 »= e3) = e3

are correct.

= use of do-notation is correct

do

x1 < future el
x2 < future e2
return (x1 + x2)

Concurrent Haskell with Futures 18/19

Conclusion & Further Work o

Conclusion
@ CHF models Concurrent Haskell with futures
@ Contextual equivalence based on may- and should-convergence
@ Call-by-need and and call-by-name are equivalent in CHF
@ A lot of program transformations are correct
@ The monad laws hold, but the type of seq must be restricted

@ do-notation is available

Further Work
@ Is CHF referentially transparent?
@ Analyze further extensions:

o Exceptions
o killThread
O coc

v

Concurrent Haskell with Futures 19/19

	Introduction
	Calculus CHF
	Equivalence
	Call-by-name
	Results
	Conclusion

