
 

1

A Contextual Semantics for

Concurrent Haskell with Futures

David Sabel & Manfred Schmidt-Schauß

Goethe-University, Frankfurt am Main, Germany

PPDP’11, Odense, Denmark



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Motivation

Haskell’s monadic IO allows a clean separation of
pure functional expressions and side-effects

Concurrent Haskell (Peyton Jones, Gordon, Finne 1996)
extends Haskell by concurrency

We propose to extend Concurrent Haskell by
concurrent futures to obtain a more
declarative programming style for concurrency

Our language model: process calculus CHF
inspired by (Peyton Jones, 2001) and (Niehren et. al. 2006)

David Sabel Concurrent Haskell with Futures 2/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Issues

Is Concurrent Haskell with Futures “semantically sound”?

Correctness of compiler optimizations
and program transformations

Do monad laws hold?

Requires a notion of program equivalence

David Sabel Concurrent Haskell with Futures 3/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Futures

Future = Variable whose value becomes available in the future

We consider concurrent, imperative, implicit futures:

concurrent: the value is computed by a concurrent thread

imperative: the value is obtained by a monadic computation
in the IO-monad.

implicit: threads implicitly block until the demanded value of
a future is available, no explicit force required

Declarative style:
Implicit futures allow implicit synchronisation by data dependency

Example: do

x1 ← future e1

x2 ← future e2

print (x1 + x2)

David Sabel Concurrent Haskell with Futures 4/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Concurrent Haskell

Concurrent Haskell = Haskell + threads + MVars (synchronizing variables)

Thread creation: forkIO :: IO a → IO ThreadId

MVar creation: newMVar :: a → IO (MVar a)

Reading a filled MVar: takeMVar :: MVar a → IO a

Writing into an empty MVar: putMVar :: MVar a → a → IO ()

Encoding implicit futures in Concurrent Haskell using lazy IO:

future :: IO a → IO a

future act = do ack ←newEmptyMVar

thread ←forkIO (act >>= putMVar ack)

unsafeInterleaveIO (takeMVar ack)

David Sabel Concurrent Haskell with Futures 5/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

The Process Calculus CHF: Syntax

Processes

P , Pi ∈ Proc ::= P1 |P2 (parallel composition)

| νx.P (name restriction)

| x⇐ e (concurrent thread, future x)

| x = e (binding)

| xm e (filled MVar)

| xm− (empty MVar)

A process has a main thread: x
main⇐== e |P

Expressions & Monadic Expressions

e, ei ∈ Expr ::= me | x | λx.e | (e1 e2) | seq e1 e2 | c e1 . . . ear(c)
| caseT e of . . . (cT,i x1 . . . xar(cT,i) → ei) . . .

| letrec x1 = e1 . . . xn = en in e

me ∈ MExpr ::= return e | e1 >>= e2 | future e
| takeMVar e | newMVar e | putMVar e1 e2

David Sabel Concurrent Haskell with Futures 6/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

The Process Calculus CHF: Syntax

Processes

P , Pi ∈ Proc ::= P1 |P2 (parallel composition)

| νx.P (name restriction)

| x⇐ e (concurrent thread, future x)

| x = e (binding)

| xm e (filled MVar)

| xm− (empty MVar)

A process has a main thread: x
main⇐== e |P

Expressions & Monadic Expressions

e, ei ∈ Expr ::= me | x | λx.e | (e1 e2) | seq e1 e2 | c e1 . . . ear(c)
| caseT e of . . . (cT,i x1 . . . xar(cT,i) → ei) . . .

| letrec x1 = e1 . . . xn = en in e

me ∈ MExpr ::= return e | e1 >>= e2 | future e
| takeMVar e | newMVar e | putMVar e1 e2

David Sabel Concurrent Haskell with Futures 6/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

The Process Calculus CHF: Typing

Syntax of (monomorphic) types

τ, τi ∈ Typ ::= (T τ1 . . . τn) | τ1 → τ2 | IO τ | MVar τ

Type system:

Usual monomorphic type system with recursive data constructors

An exception is seq :: τ1 → τ2 → τ2
τ1 must not be an IO- or MVar-type

Otherwise, the monad laws would not hold even in usual Haskell!

Example: left unit law: (return e1) >>= e2 6= (e2 e1)

Prelude> seq ((return True >>= undefined)::IO ()) True

True

Prelude> seq ((undefined True)::IO ()) True

*** Exception: Prelude.undefined

David Sabel Concurrent Haskell with Futures 7/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Operational Semantics

Structural congruence ≡ (similar as in the π-calculus)

P1 |P2 ≡ P2 |P1

(P1 |P2) |P3 ≡ P1 | (P2 |P3)
(νx.P1) |P2 ≡ νx.(P1 |P2), if x 6∈ FV (P2)
νx1.νx2.P ≡ νx2.νx1.P

P1 ≡ P2, if P1 =α P2

D[P1] ≡ D[P2], if P1 ≡ P2, D a process context

Process contexts: D ::= [·] | D |P | P |D | νx.D

Operational Semantics: Reduction P1
sr−→ P2

Small-step reduction

Rules are closed w.r.t. ≡ and D-contexts
Reduction rules for monadic computation and functional
evaluation

David Sabel Concurrent Haskell with Futures 8/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Rules for Monadic Computations

performed inside monadic contexts: M ::= [·] | M >>= e

direct implementation of the monad:

(lunit) x⇐M[return e1 >>= e2]
sr−→ x⇐M[e2 e1]

future creation:

(fork) x⇐M[future e]
sr−→ νy.(x⇐M[return y] | y⇐ e), y fresh

completed evaluation of a future:

(unIO) y⇐ return e
sr−→ y = e, if the thread is not the main-thread

operations on MVars:

(nmvar) y⇐M[newMVar e]
sr−→ νx.(y⇐M[return x] |xm e)

(tmvar) y⇐M[takeMVar x] |xm e
sr−→ y⇐M[return e] |xm−

(pmvar) y⇐M[putMVar x e] |xm− sr−→ y⇐M[return ()] |xm e

David Sabel Concurrent Haskell with Futures 9/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Rules for Functional Evaluation

Functional evaluation performs call-by-need evaluation with sharing

Sharing β-reduction:

(lbeta) L[((λx.e1) e2)]
sr−→ νx.(L[e1] |x = e2)

Copying abstractions & variables:

(cp) L̂[x] |x = v
sr−→ L̂[v] |x = v, v an abstraction or a variable

further rules for copying constructors, case- and seq-reduction,
and letrec

monadic operators are treated like constructors

L-contexts: L::=x⇐M[F]
| x⇐M[F[xn]] |xn = En[xn−1] |. . .|x2 = E2[x1] |x1 = E1

evaluation contexts: E ::= [·] | (E e) | (case E of alts) | (seq E e)

forcing contexts: F ::= E | (takeMVar E) | (putMVar E e)

David Sabel Concurrent Haskell with Futures 10/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Program Equivalence

Process P is successful if
P well-formed ∧ P ≡ ν−→xi(x

main⇐== return e |P ′)

May-Convergence: (a successful process can be reached by reduction)

P↓ iff P is w.-f. and ∃P ′ : P sr,∗−−→ P ′ ∧ P ′ successful

Should-Convergence: (every successor is may-convergent)

P⇓ iff P is w.-f. and ∀P ′ : P sr,∗−−→ P ′ =⇒ P ′↓

Contextual Equivalence

P1 ∼c P2 iff ∀D : (D[P1]↓ ⇐⇒ D[P2]↓) ∧ (D[P1]⇓ ⇐⇒ D[P2]⇓)

Analogous on expressions ei of type τ : e1 ≤c,τ e2 and e1 ∼c,τ e2.

David Sabel Concurrent Haskell with Futures 11/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Fairness

Proposition

⇓, ↓,≤c,∼c do not change
if only fair reduction sequences are allowed

An infinite reduction sequence P1
sr−→ P2

sr−→ . . . is unfair if

P1
sr−→ P2

sr−→ . . . has an infinite suffix Pj
sr−→ Pj+1

sr−→ . . .
where a (reducible) thread is never reduced

David Sabel Concurrent Haskell with Futures 12/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Context Lemma

A proof tool to show equivalences:

Context Lemma for Expressions

If ∀D[L[·τ ]-contexts:

D[L[e1]]↓ ⇐⇒ D[L[e2]]↓ and D[L[e1]]⇓ ⇐⇒ D[L[e2]]⇓

Then e1 ∼c,τ e2.

David Sabel Concurrent Haskell with Futures 13/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Results: Call-by-name Evaluation is Correct

Call-by-name Reduction

Small-step reduction
src−−→ with full substitution, no sharing:

(cpce) y⇐M[F[x]] |x = e
src−−→ y⇐M[F[e]] |x = e

(nbeta) y⇐M[F[((λx.e1) e2)]]
src−−→ y⇐M[F[e1[e2/x]]]

(ncase) y⇐M[F[caseT (c e1 . . . en) of . . . ((c y1 . . . yn)→ e) . . .]]
src−−→ y⇐M[F[e[e1/y1, . . . , en/yn]]]

↓src,⇓src: call-by-name may- & should-convergence

Theorem

P↓ ⇐⇒ P↓src and P⇓ ⇐⇒ P⇓src

David Sabel Concurrent Haskell with Futures 14/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Outline of the Proof

Translation IT :: CHF→ CHFI unfolds all bindings into infinite trees, e.g.

IT

(
letrec xs = (True : xs)
in xs

)
=

:
vvnnn

((PPP
PPP

True :
wwoooo $$HH

HH

True :
zzvvv   A

AA

True . . .

Steps of the proof

CHFI = calculus with infinite trees, no letrec, no bindings

Call-by-name reduction on infinite trees

Convergence equivalence: tree reduction and call-by-need reduction

Convergence equivalence: tree reduction and call-by-name reduction

David Sabel Concurrent Haskell with Futures 15/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Correct Program Transformations

Correctness

A transformation on processes P1 → P2 is correct iff P1 ∼c P2

A transformation on expressions e1 → e2 is correct iff e1 ∼c,τ e2

Results on Reductions

All rules for functional evaluation are correct in any context

(sr, lunit), (sr, nmvar), (sr, fork), (unIO) are correct

(sr, tmvar) and (sr, pmvar) are in general not correct

Deterministic take and put are correct:

νx.D[y⇐M[takeMVar x] |xm e]→ νx.D[y⇐M[return e] |xm−]
if no other takeMVar on x is possible in any context

νx.D[y⇐M[putMVar x e] |xm−]→ νx.D[y⇐M[return ()] |xm e]
if no other putMVar on x is possible in any context

David Sabel Concurrent Haskell with Futures 16/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Further Transformations and Optimizations

Results on other transformations

General copying (gcp):

(gcp) C[x] |x = e→ C[e] |x = e

Garbage collection (gc):

(gc) νx1, . . . , xn.(P | Comp(x1) | . . . | Comp(xn))→ P

where every Comp(xi) is

a binding xi = ei,

an MVar xi m ei, or

an empty MVar xi m−
and xi 6∈ FV (P ).

David Sabel Concurrent Haskell with Futures 17/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Monad Laws

Theorem

The monad laws

(M1) return e1 >>= e2 ∼c e2 e1
(M2) e1 >>= λx.return x ∼c e1
(M3) e1 >>= (λx.(e2 x >>= e3)) ∼c (e1 >>= e2) >>= e3

are correct.

⇒ use of do-notation is correct

do

x1 ← future e1

x2 ← future e2

return (x1 + x2)

David Sabel Concurrent Haskell with Futures 18/19



Introduction Calculus CHF Equivalence Call-by-name Results Conclusion

Conclusion & Further Work

Conclusion

CHF models Concurrent Haskell with futures

Contextual equivalence based on may- and should-convergence

Call-by-need and and call-by-name are equivalent in CHF

A lot of program transformations are correct

The monad laws hold, but the type of seq must be restricted

do-notation is available

Further Work

Is CHF referentially transparent?

Analyze further extensions:

Exceptions
killThread

. . .

David Sabel Concurrent Haskell with Futures 19/19


	Introduction
	Calculus CHF
	Equivalence
	Call-by-name
	Results
	Conclusion

