

1

Conservative Concurrency in Haskell

David Sabel and Manfred Schmidt-Schauß

Goethe-University, Frankfurt am Main, Germany

LICS’12, Dubrovnik, Croatia

Introduction CHF Conservativity Conclusion

Motivation – a View on Haskell

Purely functional core language
call-by-need lambda-calculus

with letrec, seq, data constructors

+ Monadic I/O ≈ Haskell

+ concurrent threads & MVars
≈ Concurrent Haskell

+ lazy I/O unsafePerformIO, unsafeInterleaveIO
≈ Real implementations of Haskell

semantically well-understood & extensively investigated

a lot of correct of program transformations & compiler
optimizations are known

David Sabel Conservative Concurrency in Haskell 2/10

Introduction CHF Conservativity Conclusion

Issues

Is the compiler still correct after extending the language?

In short: Are these extensions safe?

Safety = Conservativity

An extension is conservative if it preserves program equalitites

L extension L′

=⇒e1 ∼L e2 e1 ∼L′ e2

=⇒ correct program transformations of L are also correct in L′

David Sabel Conservative Concurrency in Haskell 3/10

Introduction CHF Conservativity Conclusion

Our Setting

Concurrent Haskell (Peyton Jones, Gordon, Finne 1996)
extends Haskell by concurrency

The process calculus CHF (Sabel, Schmidt-Schauß 2011)

models Concurrent Haskell with Futures
operational semantics inspired by (Peyton Jones, 2001)

Future = variable whose value is computed concurrently
by a monadic computation

allow implicit synchronisation by data dependency

Concurrent Haskell + unsafeInterleaveIO can encode CHF
(CHF is a sublanguage of Concurrent Haskell + unsafeInterleaveIO)

David Sabel Conservative Concurrency in Haskell 4/10

Introduction CHF Conservativity Conclusion

The Process Calculus CHF

Processes

P , Pi ∈ Proc ::=P1|P2 | νx.P | x⇐ e︸ ︷︷ ︸
future x

| x = e | xm e | xm−︸ ︷︷ ︸
filled & empty MVar

A process has a main thread: x
main⇐== e|P

Expressions
e, ei ∈ ExprCHF ::= x | λx.e | (e1 e2) | seq e1 e2 | c e1 . . . ear(c)

| caseT e of . . . (cT,i x1 . . . xar(cT,i) → ei) . . .

| letrec x1 = e1 . . . xn = en in e
| return e | e1 >>= e2 | future e
| takeMVar e | newMVar e | putMVar e1 e2

Types: standard monomorphic type system

David Sabel Conservative Concurrency in Haskell 5/10

Introduction CHF Conservativity Conclusion

Semantics & Program Equivalence

Operational semantics: Small-step reduction relation
CHF−−→

Process P is successful if P well-formed ∧ P ≡ ν−→xi(x
main⇐== return e|P ′)

May-Convergence: (a successful process can be reached by reduction)

P↓ iff P is w.-f. and ∃P ′ : P CHF,∗−−−→ P ′ ∧ P ′ successful

Should-Convergence: (every successor is may-convergent)

P⇓ iff P is w.-f. and ∀P ′ : P CHF,∗−−−→ P ′ =⇒ P ′↓

Contextual Equivalence ∼c,CHF

On processes:
P1 ∼c,CHF P2 iff ∀D : (D[P1]↓ ⇐⇒ D[P2]↓) ∧ (D[P1]⇓ ⇐⇒ D[P2]⇓)

On expressions: e1, e2 :: τ
e1 ∼c,CHF e2 iff ∀C : (C[e1]↓ ⇐⇒ C[e2]↓) ∧ (C[e1]⇓ ⇐⇒ C[e2]⇓)

David Sabel Conservative Concurrency in Haskell 6/10

Introduction CHF Conservativity Conclusion

Conservativity

PF = Pure, deterministic sublanguage of CHF, no futures, no I/O

e, ei ∈ ExprPF ::= x | λx.e | (e1 e2) | seq e1 e2 | c e1 . . . ear(c)
| caseT e of . . . (cT,i x1 . . . xar(cT,i) → ei) . . .

| letrec x1 = e1 . . . xn = en in e

Main Theorem

CHF extends PF conservatively
I.e., for all e1, e2 :: τ ∈ ExprPF : e1 ∼c,PF e2 =⇒ e1 ∼c,CHF e2.

=⇒ correct transformations of the pure core are still valid in CHF

David Sabel Conservative Concurrency in Haskell 7/10

Introduction CHF Conservativity Conclusion

Outline of the Proof

finite syntax infinite trees

CHF

e1 ∼c,CHF e2

e1 ∼c,PF e2

PF

CHFI

IT (e1) ∼c,CHFI IT (e2)

PFMI

PFI

IT (e1) ∼c,PFI IT (e2)

IT (e1) ∼b,PFI IT (e2)

IT (e1) ∼b,PFMI IT (e2)

?

?

IT

IT

David Sabel Conservative Concurrency in Haskell 8/10

Introduction CHF Conservativity Conclusion

Outline of the Proof

finite syntax infinite trees

CHF

e1 ∼c,CHF e2

e1 ∼c,PF e2

PF

CHFI

IT (e1) ∼c,CHFI IT (e2)

PFMI

PFI

IT (e1) ∼c,PFI IT (e2)

IT (e1) ∼b,PFI IT (e2)

IT (e1) ∼b,PFMI IT (e2)

? ?

IT

IT

David Sabel Conservative Concurrency in Haskell 8/10

Step 1: transport the problem to calculi with infinite trees:
– IT unfolds all bindings, CHFI = IT (CHF) and PFI = IT (PF)

e.g. x = 1 : x
IT−−→

:
yy %%

1 :
zz ##

1 :
{{ %%1 . . .

Introduction CHF Conservativity Conclusion

Outline of the Proof

finite syntax infinite trees

CHF

e1 ∼c,CHF e2

e1 ∼c,PF e2

PF

CHFI

IT (e1) ∼c,CHFI IT (e2)

PFMI

PFI

IT (e1) ∼c,PFI IT (e2)

IT (e1) ∼b,PFI IT (e2)

IT (e1) ∼b,PFMI IT (e2)

?

?

IT

IT

David Sabel Conservative Concurrency in Haskell 8/10

Step 2: define bisimilarity ∼b,PFI in PFI
– Howe’s method shows ∼b,PFI=∼c,PFI

Introduction CHF Conservativity Conclusion

Outline of the Proof

finite syntax infinite trees

CHF

e1 ∼c,CHF e2

e1 ∼c,PF e2

PF

CHFI

IT (e1) ∼c,CHFI IT (e2)

PFMI

PFI

IT (e1) ∼c,PFI IT (e2)

IT (e1) ∼b,PFI IT (e2)

IT (e1) ∼b,PFMI IT (e2)

?

?

IT

IT

David Sabel Conservative Concurrency in Haskell 8/10

Step 3: add monadic operators (interpreted like constants) = PFMI
– bisimilarity is unchanged: ∼b,PFI=∼b,PFMI

Introduction CHF Conservativity Conclusion

Outline of the Proof

finite syntax infinite trees

CHF

e1 ∼c,CHF e2

e1 ∼c,PF e2

PF

CHFI

IT (e1) ∼c,CHFI IT (e2)

PFMI

PFI

IT (e1) ∼c,PFI IT (e2)

IT (e1) ∼b,PFI IT (e2)

IT (e1) ∼b,PFMI IT (e2)

? ?

IT

IT

David Sabel Conservative Concurrency in Haskell 8/10

Step 4: show e1 ∼b,PFMI e2 =⇒ e1 ∼c,CHFI e2
– syntactical proof by cases

Introduction CHF Conservativity Conclusion

Non-Conservativity Results

CHFL = CHF + lazy futures

lazy future =
concurrent computation starts only if the value is demanded

CHFL is not a conservative extension of PF

Counterexample: seq e2 (seq e1 e1) ∼PF (seq e1 e2)

Since lazy futures are encodable with unsafeInterleaveIO:

CHF+unsafeInterleaveIO is also
not a conservative extension of PF

David Sabel Conservative Concurrency in Haskell 9/10

Introduction CHF Conservativity Conclusion

Conclusion & Further Work

Conclusion

CHF (and also Concurrent Haskell) are
conservative extensions of the pure core language

result shown w.r.t. contextual equivalence
based on may- and should-convergence

adding unsafeInterleaveIO (or even lazy futures)
breaks conservativity

Future Work

CHF with polymorphic typing

other primitives like exceptions

David Sabel Conservative Concurrency in Haskell 10/10

	Introduction
	CHF
	Conservativity
	Conclusion

