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Introduction

Motivation — a View on Haskell o

> Purely functional core language
call-by-need lambda-calculus
with letrec, seq, data constructors

+ Monadic 1/0 ~ Haskell

+ concurrent threads & MVars
~ Concurrent Haskell

+ lazy 1/0 unsafePerformlO, unsafelnterleavelO
~ Real implementations of Haskell

@ semantically well-understood & extensively investigated

@ a lot of correct of program transformations & compiler
optimizations are known
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Introduction

Issues J

@ Is the compiler still correct after extending the language?

@ In short: Are these extensions safe?

Safety = Conservativity

An extension is conservative if it preserves program equalitites

L extension L'

v

= correct program transformations of L are also correct in L'
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Introduction

Our Setting vt

e Concurrent Haskell (Peyton Jones, Gordon, Finne 1996)
extends Haskell by concurrency

@ The process calculus CHF (Sabel, Schmidt-SchauB 2011)
models Concurrent Haskell with Futures
operational semantics inspired by (Peyton Jones, 2001)

o Future = variable whose value is computed concurrently
by a monadic computation

@ allow implicit synchronisation by data dependency

@ Concurrent Haskell + unsafeInterleaveIO can encode CHF
(CHF is a sublanguage of Concurrent Haskell + unsafeInterleaveI0)
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CHF

The Process Calculus CHF el

Processes

P,P; € Proc::=P||P, | ve.P | z<e¢ | x=¢ | zme | zm—
N—— |
future z filled & empty MVar
main

A process has a main thread: x <= el P

Expressions
e,e; € Expropgp n=x | Av.e | (e1e2) | seqerex | cer...eu(
| caser eof ...(cr; 1. o Tar(er,) = ).
| letrecx; =¢€ ... z, =¢y ine
| returne | e; »= ey | futuree
| takeMVar e | newMVar e | putMVar e; e

Types: standard monomorphic type system
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CHF

Semantics & Program Equivalence coere £

UNIVERSITAT

A . . . CHF
Operational semantics: Small-step reduction relation —

Process P is successful if P well-formed A P = v} (z &= return e| P’)

May-Convergence: (a successful process can be reached by reduction)
CHF %

Pl iff Pisw.-f. and 3P : P —— P’ A P’ successful

Should-Convergence: (every successor is may-convergent)
CHF,*

Pl iff Pisw.-f. and VP': P —— P’ — P'|
Contextual Equivalence ~. cfr

On processes:

Py ~ccpr Py iff VD : (D[P]l <= D[R)A (D[Pl < D[R]|)
On expressions: e1,e9 :: T

€1 ~e¢,CHF €2 iff VC : ((C[el]i <= (C[GQH,) AN (C[el]iL <= (C[eg]ll)
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Conservativity iﬁ”“ﬁ

PF = Pure, deterministic sublanguage of CHF, no futures, no /0
e,e; € Exprpp =1z | Av.e | (e1e2) | seqerex | cer...eu
| caser eof ...(cr;x1... Tar(er) = €i)...
| letrecxy=¢€ ... z,=¢, ine

Main Theorem

CHF extends PF conservatively
le., for all er,e2 :: 7 € Exprpp: €1 ~c pr €2 = €1 ~¢ CHF €2.

= correct transformations of the pure core are still valid in CHF
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Conservativity

Outline of the Proof cormne B

€1 ~¢,CHF €2
N
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€1 ~¢,PF €2
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Conservativity

Outline of the Proof

finite syntax infinite trees
€1 ~c,CHF €2 & > ]T(el) ~c,CHFI IT(eg)

IN P W PN
n 1
1

1]
2
]
]

]

]

]

]

€1 ~¢,PF €2 &

> [T (e1) ~¢ prr IT (e2)

Step 1: transport the problem to calculi with infinite trees:

— IT unfolds all bindings, CHFI = IT(CHF) and PFI = IT(PF)
T AN
e.g. =1: — 1 :

& v Y

1

S
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Conservativity

Outline of the Proof DR
finite syntax infinite trees
€1 ~e,CHF €2 & > IT(e1) ~c curr 1T (e2)

IN s T

)
f - IT(e1) ~p,prr IT (e2)
€1 ~¢,PF €2 ( > IT(el) ~¢ PFI IT(GQ)

Step 2: define bisimilarity ~; pr; in PFI
— Howe’s method shows ~p,PFI="¢c,PF]
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Conservativity

Outline of the Proof ORI
finite syntax infinite trees
€1 ~c,CHF €2 & > ]T(el) ~c,CHFI IT(eg)

A\ P UPPPEL
1 . '
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€1 ~¢,PF €2 &

IT(e1) ~p.prmr 1T (e2)

!

. ]T(el) ~b,PFI IT(eg)
> IT(e1) ~c prr IT(e2)

Step 3: add monadic operators (interpreted like constants) = PFMI
— bisimilarity is unchanged: ~y prr=~p prur
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Conservativity
Outline of the Proof SR

finite syntax infinite trees
> IT(e1) ~c curr 1T (e2)

....... )

IT(e1) ~p.prmr IT (e2)

!

- IT(er) ~p,prr 1T (e2)

!

> [T (e1) ~¢ prr IT (e2)

€1 ~c,CHF €2 &

€1 ~¢,PF €2 &

Step 4: show e; ~p pryT €2 = €1 ~¢ CHFI €2
— syntactical proof by cases
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Conservativity

Non-Conservativity Results o

CHFL = CHF + lazy futures

o lazy future =
concurrent computation starts only if the value is demanded

e CHFL is not a conservative extension of PF

e Counterexample: seq e2 (seq ey 1) ~prp (seqep €2)
Since lazy futures are encodable with unsafeInterleavelIO:

o CHF +unsafeInterleavelIO is also
not a conservative extension of PF
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Conclusion & Further Work o

Conclusion

e CHF (and also Concurrent Haskell) are
conservative extensions of the pure core language

@ result shown w.r.t. contextual equivalence
based on may- and should-convergence

@ adding unsafeInterleaveI0 (or even lazy futures)
breaks conservativity

Future Work
e CHF with polymorphic typing
@ other primitives like exceptions
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