

1

An Abstract Machine for

Concurrent Haskell with Futures

David Sabel

Goethe-University, Frankfurt am Main, Germany

ATPS’12, Berlin, Germany

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Motivation

Concurrent Haskell (Peyton Jones, Gordon, Finne 1996)
extends Haskell by concurrency

The process calculus CHF (S.,Schmidt-Schauß 2011) models
Concurrent Haskell with Futures
operational semantics inspired by (Peyton Jones, 2001)

Futures allow a declarative programming style for concurrency

− Future = Variable whose value becomes available in the future
− Our futures are concurrent, imperative, implicit
− implicit synchronisation by data dependency

do

x1 <- future e1

x2 <- future e2

some actions

print(x1+x2)

x1⇐ e1

| x2⇐ e2

|
main⇐== do some actions

print (x1+x2)

David Sabel An Abstract Machine for Concurrent Haskell with Futures 2/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Issues

Operational semantics of CHF given in (S.,Schmidt-Schauß 2011)

Appropriate for mathematical reasoning on contextual
equivalence w.r.t. may- and should-convergence

but its definition is complex

not obvious how to implement

In this work:

Design an abstract machine for CHF
based on the machines of (Sestoft 1997) for lazy evaluation

which can be implemented easily (prototype exists)

show correctness of the abstract machine
w.r.t. may- and should-convergence

David Sabel An Abstract Machine for Concurrent Haskell with Futures 3/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

The Process Calculus CHF: Syntax

Processes

P , Pi ∈ Proc ::= P1 |P2 | νx.P | x⇐ e | x = e | xm e | xm−
A process has a main thread: x

main⇐== e |P

Expressions & Monadic Expressions

e, ei ∈ Expr ::= me | x | λx.e | (e1 e2) | seq e1 e2 | c e1 . . . ear(c)
| caseT e of . . . (cT,i x1 . . . xar(cT,i) → ei) . . .

| letrec x1 = e1 . . . xn = en in e

me ∈ MExpr ::= return e | e1 >>= e2 | future e
| takeMVar e | newMVar e | putMVar e1 e2

Types

τ, τi ∈ Typ ::= (T τ1 . . . τn) | τ1 → τ2 | IO τ | MVar τ
Standard monomorphic type system

David Sabel An Abstract Machine for Concurrent Haskell with Futures 4/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Operational Semantics

Operational Semantics: Reduction P1
CHF−−→ P2

Small-step reduction
CHF−−→

Rules are closed w.r.t. structural congruence and process contexts

Reduction rules for monadic computation and functional evaluation

Some rules:
(fork) x⇐M[future e]

CHF−−→ νy.(x⇐M[return y] | y⇐ e), y fresh

(lbeta) L[((λx.e1) e2)]
CHF−−→ νx.(L[e1] |x = e2)

L-contexts: L::=x⇐M[F]
| x⇐M[F[xn]] |xn = En[xn−1] |. . .|x2 = E2[x1] |x1 = E1

evaluation contexts: E ::= [·] | (E e) | (case E of alts) | (seq E e)

forcing contexts: F ::= E | (takeMVar E) | (putMVar E e)

David Sabel An Abstract Machine for Concurrent Haskell with Futures 5/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Program Equivalence

Process P is successful if
P well-formed ∧ P ≡ ν−→xi(x

main⇐== return e |P ′)

May-Convergence: (a successful process can be reached by reduction)

Process P : P↓ iff P is w.-f. and ∃P ′ : P CHF,∗−−−→ P ′ ∧ P ′ successful

Expression e :: IO τ : e↓ iff x
main⇐== e↓

Should-Convergence: (every successor is may-convergent)

Process P : P⇓ iff P is w.-f. and ∀P ′ : P CHF,∗−−−→ P ′ =⇒ P ′↓
Expression e :: IO τ : e⇓ iff x

main⇐== e⇓

Contextual Equivalence

P1 ∼c P2 iff ∀D : (D[P1]↓ ⇐⇒ D[P2]↓) ∧ (D[P1]⇓ ⇐⇒ D[P2]⇓)

David Sabel An Abstract Machine for Concurrent Haskell with Futures 6/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Simplified Expressions and Processes

Processes

P, Pi ∈ Proc ::= P1 |P2 | νx.P | x⇐ e | x = e | xm e | xm−

Expressions & Monadic Expressions

e, ei ∈ Expr ::= me | x | λx.e | (e1 e2) | seq e1 e2 | c e1 . . . ear(c)
| caseT e of . . . (cT,i x1 . . . xar(cT,i) → ei) . . .

| letrec x1 = e1 . . . xn = en in e

me ∈ MExpr ::= return e | e1 >>= e2 | future e
| takeMVar e | newMVar e | putMVar e1 e2

David Sabel An Abstract Machine for Concurrent Haskell with Futures 7/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Simplified Expressions and Processes

Simplified Processes

P, Pi ∈ Proc ::= P1 |P2 | νx.P | x⇐ e | x = e | xm y | xm−

Simplified Expressions & Monadic Expressions

e, ei ∈ Expr ::= me | x | λx.e | (e1 x) | seq e1 x | c x1 . . . xar(c)
| caseT e of . . . (cT,i x1 . . . xar(cT,i) → ei) . . .

| letrec x1 = e1 . . . xn = en in e

me ∈ MExpr ::= return x | x1 >>= x2 | future x
| takeMVar x | newMVar x | putMVar x1 x2

David Sabel An Abstract Machine for Concurrent Haskell with Futures 7/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Constructing the Abstract Machine

Modular construction in three steps:

M1 IOM1 CIOM1

evaluates pure expressions

deterministic

treats monadic operators
like data constructors

slight modification of
Sestoft’s mark 1

adds storage (MVars)

monadic operations are
executed

uses M1 for purely
functional subevaluations

single-threaded

Concurrent threads (futures)

nondeterministic

Globally shared bindings and
MVars

uses IOM1 for thread-local
evaluation

David Sabel An Abstract Machine for Concurrent Haskell with Futures 8/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Constructing the Abstract Machine

Modular construction in three steps:

M1 IOM1 CIOM1

evaluates pure expressions

deterministic

treats monadic operators
like data constructors

slight modification of
Sestoft’s mark 1

adds storage (MVars)

monadic operations are
executed

uses M1 for purely
functional subevaluations

single-threaded

Concurrent threads (futures)

nondeterministic

Globally shared bindings and
MVars

uses IOM1 for thread-local
evaluation

David Sabel An Abstract Machine for Concurrent Haskell with Futures 8/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Constructing the Abstract Machine

Modular construction in three steps:

M1 IOM1 CIOM1

evaluates pure expressions

deterministic

treats monadic operators
like data constructors

slight modification of
Sestoft’s mark 1

adds storage (MVars)

monadic operations are
executed

uses M1 for purely
functional subevaluations

single-threaded

Concurrent threads (futures)

nondeterministic

Globally shared bindings and
MVars

uses IOM1 for thread-local
evaluation

David Sabel An Abstract Machine for Concurrent Haskell with Futures 8/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Machine M1

State

(H, e,S)
H is a heap: a set of shared bindings x 7→ e

e is the currently evaluated expression

S is a stack (holding the evaluation context)
entries: #app(x), #seq(x), #case(alts), #heap(x)

Start state: For expression e: (∅, e, [])

Final state: (H, v, []) where v = λz.e, v = (c . . .),
or v a monadic expression

David Sabel An Abstract Machine for Concurrent Haskell with Futures 9/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Machine M1 : Transitions

Unwinding

(pushApp) (H, (e x),S) M1−→ (H, e,#app(x) : S)
(pushSeq) (H, (seq e x),S) M1−→ (H, e,#seq(x) : S)
(pushAlts) (H, caseT e of alts,S) M1−→ (H, e,#case(alts) : S)
(mkBinds) (H, letrec {xi = ei}ni=1 in e,S) M1−→ (H ·∪

⋃n
i=1{xi 7→ ei}, e,S)

(enter) (H ·∪{y 7→ e}, y,S) M1−→ (H, e,#heap(y) : S)
Evaluation

(takeApp) (H, λx.e,#app(y) : S)
M1−→ (H, e[y/x],S)

(takeSeq) (H, v,#seq(y) : S)
M1−→ (H, y,S), if v = λz.e or v = c . . .

(branch) (H, (c −→xi),#case(. . . (c
−→yi → e) . . .) : S) M1−→ (H, e[xi/yi]ni=1,S)

(update) (H, v,#heap(y) : S)
M1−→ (H ·∪{y 7→ v}, v,S)

if v = λz.e, v = (c . . .), v = x, or v a monadic operator

David Sabel An Abstract Machine for Concurrent Haskell with Futures 10/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Example

(∅, letrec x1 = (λy.y) w, x2 = takeMVar x1 in ((λz.z) x2) , [])
M1,mkBinds−−−−−→ ({x1 7→ (λy.y) w, x2 7→ takeMVar x1}, (λz.z) x2 , [])
M1,pushApp−−−−−→ ({x1 7→ (λy.y) w, x2 7→ takeMVar x1}, λz.z , [#app(x2)])
M1,takeApp−−−−−→ ({x1 7→ (λy.y) w, x2 7→ takeMVar x1}, x2 , [])
M1,enter−−−−→ ({x1 7→ (λy.y) w}, takeMVar x1 , [#heap(x2)])
M1,update−−−−−→ ({x1 7→ (λy.y) w, x2 7→ takeMVar x1}, takeMVar x1 , [])

David Sabel An Abstract Machine for Concurrent Haskell with Futures 11/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Machine IOM1

M1 -state: (H, e,S)

State

(H,M, e,S, I)
H is a heap

e is the currently evaluated expression

S is a stack (holding the evaluation context)

M is a set of MVars: filled xm y, empty xm−
I is an IO-stack (holding the monadic context)
entries: #take,#put(x),# >>= (x)

Start state: For expression e :: IO τ : (∅, ∅, e, [], [])

Final state: (H,M, return x, [], [])

David Sabel An Abstract Machine for Concurrent Haskell with Futures 12/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Machine IOM1 : Transitions

Functional Evaluation

(M1) (H,M, e,S, I) IOM1−−→ (H′,M, e′,S ′, I)
if (H, e,S) M1−→ (H′, e′,S ′) on machine M1

Monadic Unwinding

(pushTake) (H,M, takeMVar x, [], I) IOM1−−→ (H,M, x, [],#take :I)
(pushPut) (H,M, putMVar x y, [], I) IOM1−−→ (H,M, x, [],#put(y) :I)
(pushBind) (H,M, x >>= y, [], I) IOM1−−→ (H,M, x, [],# >>= (y) :I)

Monadic Computation

(newMVar) (H,M, newMVar x, [], I) IOM1−−→ (H,M·∪{ymx}, return y, [], I)
where y is a fresh variable

(takeMVar) (H,M·∪{xm y}, x, [],#take :I)
IOM1−−→ (H,M·∪{xm−}, return y, [], I)

(putMVar) (H,M·∪{xm−}, x, [],#put(y) :I)
IOM1−−→ (H,M·∪{xm y}, return (), [], I)

(lunit) (H,M, return x, [],# >>= (y) :I)
IOM1−−→ (H,M, (y x), [], I)

David Sabel An Abstract Machine for Concurrent Haskell with Futures 13/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Example

(∅, {wm c}, letrec x1 = (λy.y) w, x2 = takeMVar x1 in ((λz.z) x2) , [], [])
IOM1,M1−−−−→ ({x1 7→ (λy.y) w, x2 7→ takeMVar x1}, {wm c}, (λz.z) x2 , [], [])
IOM1,M1−−−−→ ({x1 7→ (λy.y) w, x2 7→ takeMVar x1}, {wm c}, λz.z , [#app(x2)], [])
IOM1,M1−−−−→ ({x1 7→ (λy.y) w, x2 7→ takeMVar x1}, {wm c}, x2 , [], [])
IOM1,M1−−−−→ ({x1 7→ (λy.y) w}, {wm c}, takeMVar x1 , [#heap(x2)], [])
IOM1,M1−−−−→ ({x1 7→ (λy.y) w, x2 7→ takeMVar x1}, {wm c}, takeMVar x1 , [], [])
IOM1,pushTake−−−−−−−→ ({x1 7→ (λy.y) w, x2 7→ takeMVar x1}, {wm c}, x1 , [], [#take])

IOM1,M1−−−−→ ({x2 7→ takeMVar x1}, {wm c}, (λy.y) w , [#heap(x1)], [#take])
IOM1,M1−−−−→ ({x2 7→ takeMVar x1}, {wm c}, λy.y , [#app(w),#heap(x1)], [#take])
IOM1,M1−−−−→ ({x2 7→ takeMVar x1}, {wm c}, w , [#heap(x1)], [#take])
IOM1,M1−−−−→ ({x2 7→ takeMVar x1, x1 7→ w}, {wm c}, w , [], [#take])

IOM1,takeMVar−−−−−−−→ ({x2 7→ takeMVar x1, x1 7→ w}, {wm−}, return c , [], [])

David Sabel An Abstract Machine for Concurrent Haskell with Futures 14/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Machine CIOM1

IOM1 -state: (H,M, e,S, I)

State

(H,M, T)
H is a heap

M is a set of MVars

T is a set of threads

Start state for expression e :: IO τ :
Init(e) = (∅, ∅, {(x, e, [], [])main})

Final state: Main-thread is of the
form (y, return x, [], [])main

Thread

(x, e,S, I)
x is a variable, the name of the
future

e is the currently evaluated
expression

S is a stack

I is an IO-stack

Main-thread: (x, e,S, I)main.

David Sabel An Abstract Machine for Concurrent Haskell with Futures 15/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Machine CIOM1 : Transitions

Thread Evaluation

(IOM1) (H,M, T ·∪{(x, e,S, I)}) CIOM1−−−→ (H′,M′, T ·∪{(x, e′,S ′, I ′)})
if (H,M, e,S, I) IOM1−−→ (H′,M′, e′,S ′, I ′) on machine IOM1 .

Thread Creation and Finalization

(fork) (H,M, T ·∪{(x, (future y), [], I)})
CIOM1−−−→ (H,M, T ·∪{(x, (return z), [], I), (z, y, [], [])})
where z is a fresh variable

(unIO) (H,M, T ·∪{(x, (return y), [], [])}) CIOM1−−−→ (H ·∪{x 7→ y},M, T)
if thread named x is not the main-thread

David Sabel An Abstract Machine for Concurrent Haskell with Futures 16/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Correctness

May- and should-convergence on CIOM1

State S: - S↓CIOM1 iff S
CIOM1,∗−−−−→ S′ ∧ S′ is a final state

- S⇓CIOM1 iff ∀S′ : S CIOM1,∗−−−−→ S′ =⇒ S′↓CIOM1

Expression e :: IO τ - e↓CIOM1 iff Init(σ(e))↓CIOM1

- e⇓CIOM1 iff Init(σ(e))⇓CIOM1

where σ translates usual expressions into simplified expressions

Theorem

For every expression e :: IO τ :
e↓ ⇐⇒ e↓CIOM1 and e⇓ ⇐⇒ e⇓CIOM1

Proof is not obvious, since transition on the machine is more
restrictive than reduction in the process calculus

David Sabel An Abstract Machine for Concurrent Haskell with Futures 17/18

Introduction Calculus CHF Equivalence Abstract Machines Conclusion

Conclusion & Further Work

Conclusion

Sestoft’s machine for lazy evaluation can be modularly
extended to monadic I/O and concurrency

CIOM1 is a correct abstract machine for the process calculus
CHF

Correctness w.r.t. may- and should-convergence

CIOM1 is easy to implement, a prototype exists

Further Work

Optimize CIOM1 by using nameless representation and
avoiding substitutions. Show correctness of the optimized
machine.

Investigate how to map CIOM1 ’s threads to parallel
architectures

David Sabel An Abstract Machine for Concurrent Haskell with Futures 18/18

	Introduction
	Calculus CHF
	Equivalence
	Abstract Machines
	Conclusion

