GOETHE @4

UNIVERSITAT

FRANKFURT AM MAIN

An Abstract Machine for
Concurrent Haskell with Futures

David Sabel

Goethe-University, Frankfurt am Main, Germany

ATPS'12, Berlin, Germany

Introduction

Motivation CvERSITAY

e Concurrent Haskell (Peyton Jones, Gordon, Finne 1996)
extends Haskell by concurrency

@ The process calculus CHF (S.,Schmidt-SchauB 2011) models
Concurrent Haskell with Futures
operational semantics inspired by (Peyton Jones, 2001)

@ Futures allow a declarative programming style for concurrency

— Future = Variable whose value becomes available in the future
— Our futures are concurrent, imperative, implicit
— implicit synchronisation by data dependency

do
x1 <- future el xl<el
x2 <- future €2 =3 | X2<e2
some actions | ,<m:ai:"do some actions
print (x1+x2) print (x1+x2)

An Abstract Machine for Concurrent Haskell with Futures 2/18

GOETHE,
Issues commne

Operational semantics of CHF given in (S.,Schmidt-SchauB 2011)

@ Appropriate for mathematical reasoning on contextual
equivalence w.r.t. may- and should-convergence

@ but its definition is complex
@ not obvious how to implement
In this work:
@ Design an abstract machine for CHF
based on the machines of (Sestoft 1997) for lazy evaluation

@ which can be implemented easily (prototype exists)

@ show correctness of the abstract machine
w.r.t. may- and should-convergence

An Abstract Machine for Concurrent Haskell with Futures 3/18

Calculus CHF

The Process Calculus CHF: Syntax ol
Processes
P,P,eProc := P |P, | va.P | z<e | =€ | zme | zm—

A process has a main thread: z &= ¢ | P

Expressions & Monadic Expressions

e,e; € Expri=me | z | Az.e | (e1e2) | seqerea | cer...eu
| caser e of ...(cr; 1. o B (g) = €)-..
| letrecx; =¢€; ... z, =ey ine

me € MExpr ::= return e | e; »= ey | futuree
| takeMVar e | newMVar e | putMVar e; e

Types
€ Typ=(T 7 ...)| 71— 12| I0 T |MVar 7
Standard monomorphic type system

An Abstract Machine for Concurrent Haskell with Futures 4/18

Calculus CHF

Operational Semantics B

Operational Semantics: Reduction P; LHR P

5 CHF
@ Small-step reduction —
@ Rules are closed w.r.t. structural congruence and process contexts

@ Reduction rules for monadic computation and functional evaluation

Some rules:
(fork) 2 < M[future ¢] <% vy.(z < M][return y] | y < e), y fresh

(Ibeta) L[((Az.e1) e2)] == va.(Lled] | & = es)

L-contexts: L::=x < MJ[F]
| @ =M[F[z,]] | 2 = Epfzn_1] |...1 22 = Eg[z1] | 21 = E;

evaluation contexts: E =[] | (Ee) | (case E of alts) | (seqE e)
forcing contexts: F ::=E | (takeMVar E) | (putMVar E e)

An Abstract Machine for Concurrent Haskell with Futures 5/18

Equivalence

Program Equivalence

Process P is successful if _
P well-formed A P = v (x &2 return e | P')

May-Convergence: (a successful process can be reached by reduction)
CHF,*

Process P: P| iff P is w-f. and 3P': P —— P’ A P’ successful
main

Expression e :: I0 7: el iff x <= ¢l

Should-Convergence: (every successor is may-convergent)
Process P: Pl iff Pisw-f. and VP': P <25 Pl — P/

main

Expression ¢ :: 10 7: el iff x <= el

Contextual Equivalence

An Abstract Machine for Concurrent Haskell with Futures 6/18

Abstract Machines
GOETHE, 53

Simplified Expressions and Processes SRR
Processes
P,P,€Proc := P |P | va.P | z<e | z=¢ | zme | zm—

Expressions & Monadic Expressions

e,e; € Expriz=me | z | Az.e | (e1e2) | seqerea | cer...eu
| caser e of ...(cr; 1. - o B) =5 €)...
| letrecx; =¢€; ... z, =ey ine

me € MExpr::= return e | e; »= ey | futuree
| takeMVar e | newMVar e | putMVar e; e

An Abstract Machine for Concurrent Haskell with Futures

Abstract Machines

Simplified Expressions and Processes commne f

Simplified Processes

P, P,€Proc := P |P | vez.P | z<e | z=¢ | zmy | am—

v

Simplified Expressions & Monadic Expressions

e,ei € Expri=me | © | Az.e | (e17) | seqer @ | cT1...Tyuy(e)
| caser eof ...(cr;x1... Tar(erq) = €i)...
| letrecxy=¢€ ... z, =ey ine

me € MExpr ::= return x | z; »= x5 | future x
| takeMVar x | newMVar x | putMVar z; x2

An Abstract Machine for Concurrent Haskell with Futures 7/18

Abstract Machines

Constructing the Abstract Machine o

Modular construction in three steps:

M1 IOM1 CIOM1

@ evaluates pure expressions
@ deterministic

@ treats monadic operators
like data constructors

@ slight modification of
Sestoft's mark 1

An Abstract Machine for Concurrent Haskell with Futures 8/18

Abstract Machines

Constructing the Abstract Machine o

Modular construction in three steps:

M1 IOM1 CIOM1

@ adds storage (MVars)

@ monadic operations are
executed

@ uses M1 for purely
functional subevaluations

@ single-threaded

An Abstract Machine for Concurrent Haskell with Futures 8/18

Abstract Machines

Constructing the Abstract Machine s

GOETHE, 53

Modular construction in three steps:

M1 IOM1 CIOM1

An Abstract Machine for Concurrent Haskell with Futures

Concurrent threads (futures)
nondeterministic

Globally shared bindings and
MVars

uses IOM1 for thread-local
evaluation

Machine M1 CvERSITAY

State
(H,e,S)

@ M is a heap: a set of shared bindings x +— e
@ e is the currently evaluated expression
e S is a stack (holding the evaluation context)

entrieS: #app(x)’ #seq(x)’ #case(a’lts)Y #heap(‘r)

Start state: For expression e: (0, ¢, [])

Final state: (H,v,[]) where v = Az.e, v = (c...),
or v a monadic expression

An Abstract Machine for Concurrent Haskell with Futures 9/18

Machine M1: Transitions

Unwinding

(pushapp) (H, (e z),S) 25 (7—[e, #ap(2) 1 S)

(pushSeq) (M, (seq e z),S) ~5 (H, e, #Seq(x):S)

(pushAlts) (H, caser e of alts,S) — (H, e, #Case(alts) S)

(mkBinds) (#,letrec {z; = el} ' in e, 8) B (HUUL {zi— e}, e, S)
(HU{y = €},1,8) = (H, e, #ep(y) : S)

Evaluation

(takeApp) (H, Az, #,.(y) : S) “5 (H, e[y/x],S)

(takeSeq) (H, v, #.4(y) : S) LEN (H,y,S), ifv=Azeorv=c...

ranch) (Hy (¢ 7)o+ (€ T2 = €)2): 8) 25 (W, syl S)

(update) (Hv v, #heap(y) : S) ﬂ) (HU{y = U}, v, S)
if v=MAz.e,v=(c ...), v=u, or vamonadic operator

(enter)

An Abstract Machine for Concurrent Haskell with Futures 10/18

Example

0, letrec x1 = (\y.y) w, xo = takeMVar z; in ((A\z.2) x2) ,[])

M1,mkBinds

(
——— ({z1 —~ (\y.y) w,zo — takeMVar z;}, (Az.2) 2 ,[])
M pushAep, ({z1— (\y.y) w,xo — takeMVar x1}, Az.2 , [#,,,(z2)])
M tekehvp, ({x1 = (\y.y) w,zo — takeMVar x1}, 23 ,[])
Mhenter, ({z1 — (A\y.y) w}, takeMVar x; , [#,.,,(22)])
M1,update (()

J

{z1 — (\y.y) w, x9 — takeMVar z,}, takeMVar z ,[])

An Abstract Machine for Concurrent Haskell with Futures 11/18

Machine IOM1

M1-state: (H,e,S)

State
(Ha M7 €, 87 I)

@ H is a heap

@ e is the currently evaluated expression

e S is a stack (holding the evaluation context)

@ M is a set of MVars: filled zmy, empty zm —

@ 7 is an l0-stack (holding the monadic context)
entries: #,..., #put(x), #,_(x)

Start state: For expression e :: 10 7: (0,0, e,], [])

Final state: (H, M,return z,[],[])

An Abstract Machine for Concurrent Haskell with Futures

Machine IOM1: Transitions

Functional Evaluation
(M1) (H,M,e,S, I) (H', M, e, 8", T)

if (H,e,S) = (H,¢/,S') on machine M1
Monadic Unwinding
(pushTake) (7, M, takeMVar x,[],Z) o (H, M, z, [], #1ue:)
(pushPut) (H, M, putMVar = y, [|,Z) % (H, M, z,], #oa():T)
(pushBind) (H, M,z »= y,[|,T) 2% (H, M, z, [}, #5.(y):T)
Monadic Computation

(newMVar) (H, M,newMVar z,[],Z) —
where y is a fresh variable

(takeMVar) (H, Mu{amy}, o, (], #pe: L) — (H,MU{xm -}, returny,[],Z)
(putMVar) (H, MU{zm =}, 2, [, #,.(v): T) = (H, Mu{zmy},return (), [|,Z)
(lunit) (H7 Ma return z, Ha # e (y)) IOMJ (H M (y 33'), H’I)

An Abstract Machine for Concurrent Haskell with Futures 13/18

IOMI

IOMl

(H, MU{ymz}, return y,[],Z)

IOMl

Abstract Machines

Exam P le vt

(0, {wmc}, letrec z1 = (\y.y) w, xo = takeMVar x1 in ((A\z.2) z2) ,[,[])

MM ({5 (Ap.y) w2 > takeMVar a1}, {wme}, (Az.2) @2 . [[)
fomLM1 ({z1 — (A\y.y) w,x2 — takeMVar x1}, {wmc}, Az.z | [#,,.(22)],[])
fom1,M1, ({z1 — (A\y.y) w,x9 — takeMVar x1}, {fwme}, 22, [],[])

1OM1,M1 ({x1 — (A\y.y) w}, {wmc}, takeMVar z; , [#heap(mQ)]’)

O ({21~ (\yy) w, 20 — takeMVar 21}, {wme}, takeMVar 21 , [, [])
JOM1,pushTake, ({z1 = (\y.y) w,x9 — takeMVar x1}, {wmec}, 1, [], [#ue))
JomL.L, ({2 > takeMVar z1}, {wmc}, (A\y.y) w , [#e(21)]; [#are))

JoML ML, ({2 > takeMVar z1}, {wmch, Ayy , [#.,0 (W), #oeap (1)) [Fraie])
O, ({wy — takeMVar z1}, {wmc}, w, [Fbea (1)) [Feate))

M, ({wg — takeMVar 2y, 21— w}, {wmel, w, [], [#e))

1OM1,takeMVar, ({z2 — takeMVar z1,z1 — w},{wm—}, return c, [,])

An Abstract Machine for Concurrent Haskell with Futures 14/18

Machine CIOM1

IOM1-state: (H, M,e,S,T)

.

State Thread
(H, M, T) (x,e,8,7)
@ H is a heap @ z is a variable, the name of the
@ M is a set of MVars future
@ 7T is a set of threads @ e is the currently evaluated

Start state for expression e :: I0 7: expression

init(e) = (0,0, {(x,e, [, [)™}) | o S isastack

i) cmties Mz s apils | [0 2 o0 Qe

form (y,return z, [, [|)™" Main-thread: (z,e,S,Z)™an.

4

An Abstract Machine for Concurrent Haskell with Futures 15/18

Machine CIOM1: Transitions

Thread Evaluation

(om1) (H, M, T{(z,e,S,1)}) < (H/, M, TW{(z,¢,S',T')})
if (#, M,e,S,T) 2 (H',M',¢’,S',T') on machine IOM1.

Thread Creation and Finalization

(fork) (H, M, TU{(x, (future y),[],Z)})
= (MM, Tu{(z, (return 2), [,2), (2,4, [, [)})

where z is a fresh variable

(unlO) (Ha M7 TU{(I’, (return y)7 []7 H)}) CIOMI (HU{‘T = y} M T)
if thread named z is not the main-thread

An Abstract Machine for Concurrent Haskell with Futures 16/18

Abstract Machines

Correctness ced

May- and should-convergence on CIOM1

CIOM1,%

State S: - Slerouy iff S ———= S A S is a final state
- Sheromy VS 1§ —— LS = S\ crom

Expression e :: I0 7 - el cronr iff Init(o(e)d croums

- el cron iff nit(o(e))d cronm:
where o translates usual expressions into simplified expressions

Theorem
For every expression e :: I0 7:

el = 6¢C]OM1 and e|l <~ ellCIOMI

Proof is not obvious, since transition on the machine is more
restrictive than reduction in the process calculus

An Abstract Machine for Concurrent Haskell with Futures 17/18

Conclusion

Conclusion & Further Work coere £

UNIVERSITAT

Conclusion

@ Sestoft's machine for lazy evaluation can be modularly
extended to monadic 1/O and concurrency

o CIOM1 is a correct abstract machine for the process calculus
CHF

@ Correctness w.r.t. may- and should-convergence

e CIOM1 is easy to implement, a prototype exists

Further Work

o Optimize CIOMI1 by using nameless representation and

avoiding substitutions. Show correctness of the optimized
machine.

@ Investigate how to map CIOM1's threads to parallel
architectures

v

An Abstract Machine for Concurrent Haskell with Futures 18/18

	Introduction
	Calculus CHF
	Equivalence
	Abstract Machines
	Conclusion

